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ABSTRACT
Recent improvements in ultrasound imaging enable new op-
portunities for hand pose detection using wearable devices.
Ultrasound imaging has remained under-explored in the HCI
community despite being non-invasive, harmless and capable
of imaging internal body parts, with applications including
smart-watch interaction, prosthesis control and instrument tu-
ition. In this paper, we compare the performance of different
forearm mounting positions for a wearable ultrasonographic
device. Location plays a fundamental role in ergonomics and
performance since the anatomical features differ among po-
sitions. We also investigate the performance decrease due to
cross-session position shifts and develop a technique to com-
pensate for this misalignment. Our gesture recognition al-
gorithm combines image processing and neural networks to
classify the flexion and extension of 10 discrete hand gestures
with an accuracy above 98%. Furthermore, this approach can
continuously track individual digit flexion with less than 5%
NRMSE, and also differentiate between digit flexion at dif-
ferent joints.

Author Keywords
Gesture recognition; interactive ultrasound imaging;
machine learning; computer vision

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Our hands are capable of skillful and intricate movements
with multiple degrees of freedom, giving us the capacity to
manipulate objects and enhance or replace verbal communi-
cation through the use of gestures. Gestures play a funda-
mental role in emerging Human-Computer Interaction (HCI)
paradigms, and several wearables have been developed to
capture gestures as a way of controlling devices naturally.
However, many of these existing technologies and techniques
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to detect gestures have limitations which make them unsuit-
able for general applications.

These limitations include inaccurate or variable performance,
ergonomic challenges of wearing the devices, and lack of ro-
bustness during regular use. Here, we explore the capabilities
of ultrasound imaging as a gesture detection mechanism. Ul-
trasound imaging, or UltraSonography (US), has long been
available as a medical technique for safe anatomical inspec-
tion for example to see developing fetuses or heart disease.
While progress in the medical area has been significant, the
use of ultrasound for interactive applications has not been ex-
plored within the HCI community.

Ultrasonography allows one to see the musculature within the
body in real time. By observing the movement of the mus-
cles, it is possible to infer hand movements. It is unlikely that
this technique provides more accuracy than systems which
directly measure the moving body parts, such as cameras or
data gloves, but US has potential benefits over these exist-
ing wearable hand tracking techniques. Directly imaging the
muscles is not subject to occlusion, unlike imaging the body
parts externally which can be obscured by other body parts or
be out of view depending on the mounting of the camera. In
contrast to wearing instrumentation on the hand, imaging the
muscles leaves the hands free to perform actions unencum-
bered by devices or sensors. This could be beneficial for sen-
sitive or expert manipulation as in the case of fragile objects,
surgical operations, or simply to keep the physical naturalness
of a handshake.

Surface electromyography (EMG) captures the electric sig-
nals from the muscles with sensors on the skin. EMG is one
of the main alternatives for non-invasive hand pose detection,
but suffers from cross-talk. That is, it is difficult to differen-
tiate between individual muscles particularly those which lie
deeper in the forearm [35]. Techniques that measure wrist
shape changes have been shown to work well for small num-
bers of wrist gestures but there is limited evidence that they
are robust to a wide variety of hand movements.

Ultrasound imaging requires a small area of contact with the
arm, whereas EMG electrodes are typically placed around the
forearm at specific locations selected with a calibration pro-
cedure. With ultrasound, the probe that is used to obtain the
images is considerably smaller in size, and in contrast with
EMG, lends itself well to be integrated with smaller form fac-
tors. We discuss this and other wearable hand tracking tech-
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niques in related work below and suggest reasons why US is
beneficial over existing methods.

In this paper, we analyse the performance of ultrasound to
recognise discrete gestures, measure continuous angles of
digit flexion and discriminate between different types of digit
flexion. Recent work on US for gesture detection has shown
very high accuracy. We explore issues of this technology in
the context of HCI, and for the first time study the effects of
probe location on accuracy, and find that ergonomic mounting
positions are viable without significant variation in accuracy.
We also provide a simple calibration mechanism to mitigate
the effects of cross-session position shift, which is important
for day-to-day use. We provide guidelines for the best loca-
tions depending on the gesture recognition application. The
high recognition accuracy could make several applications
possible, including robotic hand control, natural interactions
and enhanced sports and musical instrument tuition. Given
the trend in reduction of size and cost of ultrasonic imaging
devices, we expect to see this approach applied for more in-
teractive scenarios.

RELATED WORK
In this section we describe the different sensing technologies
for hand gesture recognition, focusing on non-invasive wear-
able techniques, and review previous work on ultrasound to
support interactive applications.

Optical
Optical methods are based on employing a camera to deter-
mine 2D or 3D hand position. The camera can be sensitive to
the visible spectrum but alternatives exist in the infra-red or
below. A review of these methods can be found in Rautaray
et al. work [31]. An example is Digits [23] which uses an
IR camera attached to the wrist to sense the distance to the
fingers. The sensor is worn on the wrist and as with all opti-
cal approaches requires direct line of sight to the fingers, and
suffers from occlusions of the fingers by the hand.

Wrist Deformation
When we flex our fingers and wrist the muscles inside our
forearm change in size and shift around, causing a deforma-
tion of the wrist shape. Measuring this deformation is an
indirect method to infer the hand gesture which caused this
change in shape. One way of sensing the shape is with pres-
sure sensors, WristFlex [10] uses 15 pressure sensors around
the wrist and a Support Vector Machine (SVM) to classify
five pinch gestures with an average accuracy of 80%.

Another method for measuring the distance between two parts
of a wearable is to use capacitive sensing. The capacitance
between two parallel plates is proportional to the distance
and material between them. This technique was used by
GestureWrist [32] to measure the deformation of the wrist
and qualitatively detect some common gestures. Cheng et
al. showed that this method can operate with accuracies of
77% for 36 gestures [9]. Electrical impedance tomography
is a similar approach that has shown to be more effective in
recent work by Zhang et al. [43], reaching accuracies above
94% for a variety of gestures. This technique is close to ul-
trasound imaging, the key difference is the images formed

with IET lack detail of the muscles, meaning they cannot be
tracked, but morphological changes of musculature is enough
to classify discrete gestures with.

Another way of detecting the wrist shape is with an infra-red
distance sensor [17]. Qualitative results suggest that it would
be possible to differentiate between 10 gestures.

From these recent findings it is clear that improvements are
needed for this to be a sufficiently accurate technique for
many applications.

EMG: Electromyography
Electromyography consists of measuring the bioelectric sig-
nals produced by the muscles upon contraction. These signals
can be measured with surface electrodes on the skin in a non-
invasive way.

Tenore et al. [37] showed that with 32 electrodes around the
forearm it is possible to detect individual flexion and exten-
sion movements of each fingers with an accuracy greater than
90% both in amputees and able-bodied subjects. An interest-
ing and promising result is that detection accuracy between
transradial amputees and able-bodied subjects showed no sta-
tistical difference. Castellini [7] showed that 10 electrodes is
enough to differentiate 4 types of grasps as well as the force
applied with an accuracy ranging from 75% to 90%. You
et al. used 4 electrodes to detect flexion each of finger with
97.75% accuracy [42].

NASA developed a wearable band for astronaut suits made of
17 electrodes and accelerometers [39]. This wearable repre-
sents a way of enhancing communications with other astro-
nauts or vehicles since the accuracy of gesture detection was
greater than 96%.

Recent improvements came from using a dense array of 192
EMG electrodes to detect up to 27 gestures with 90% accu-
racy [2].

EMG tends to suffer from a trade-off between accuracy and
the surface area used for measurements. Whilst EMG proves
to be highly effective for a high number of electrodes, it per-
forms poorly under placement and surface area restrictions,
making it awkward to fit into existing wearable device form
factors such as watch straps.

Smith at al. demonstrated that EMG can be used to detect
continuous angle of the fingers [36] with an NRMSE of
11%. However, the nature of the biosignal creates particu-
lar difficulties regarding continuous angle detection, and so
there have been very few attempts to challenge this task us-
ing EMG, and is therefore currently more suited to discrete
gesture recognition.

Mechanomyography
Mechanomyography is a technique which records vibrations
of the muscle fibres after contraction, which oscillate at their
resonant frequencies and is characteristic of a specific mus-
cle’s activity [28]. Mechanomyography is a useful technique
to support prosthesis and switch control since the placement
of the sensors does not have to be precise and the change in
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the skin impedance due to sweating does not affect the per-
formance [21]. Although this technique uses sound, it is not
an imaging technique and has been under-explored within the
HCI community (with the exception of [40]) despite its sim-
plicity in hardware and robustness to sensor placement or skin
condition.

Ultrasound
Sonomyography is the use of ultrasound imaging to create 1-
dimensional scans (A-scans). An early study by Hodges et al.
[19] proved that muscle contraction of the tibia, biceps and
abdomen can be measured with an ultrasound sensor. Later,
Zheng et al. [44] showed that it is also possible to infer the
wrist angle with an mean error of 7.2%. They defined Sono-
myography as measuring the dimensional change of muscles
with ultrasound sensors.

Sonomyography has the advantage of using simple hardware
because it only needs one transducer element per A-scan; cur-
rent ultrasonic probes have more than 128 elements and are
becoming the standard for ultrasound imaging. Sonomyogra-
phy can also be used to continuously detect the opening and
closing of the hand with an RMS of 12.8% [8] and recently
to detect 6 common gestures with an accuracy of 74% [18].
The latter study used a wearable device and a bracelet with
five transducers. Comparisons between EMG and sonomyo-
graphy were favourable for the latter in detecting continuous
wrist flexion [15] and hand grasping force [16].

Sonomyography is an appropriate method to detect a reduced
set of gestures, but provides limited information and lacks the
possibilities offered by modern phased arrays of ultrasound
transducers for more detailed imaging.

Mujibiya et al. presented a device that is capable of detect-
ing arm grasps and other on-body touch interactions, using a
band of ultrasonic transducers around the forearm and fingers
[27]. This device has the advantage of working at much lower
frequencies and with fewer transducers than imaging devices,
but the drawback is that it can only detect interactions when
one hand is touching the arm of the other. Detecting hand
movements involving only one hand is a requirement for cer-
tain situations [22].

Ultrasound Imaging
Ultrasound imaging has been used previously to infer the po-
sition of the foot by tracking the muscle displacement [26].
An image of the muscles and tendons was taken and the inser-
tions of the tendons into the muscle were used as markers to
track. A comparison between the estimated position and the
ground truth (metallic plate inserted in the tendon) showed
errors of less than 10 micrometers or the equivalent of 0.7
degrees on the ankle rotation. Markers were tracked using
cross-correlation. Later, this technique was used to track the
tendon in the wrist with an error of 80 micrometers [25].

Castellini et al. estimated continuously changing finger an-
gles by analyzing ultrasonic images of the forearm [5] [6],
obtaining an NRMSE of approximately 2%. This technique
was also extended to determine the force that the fingers were
exerting [14]. They captured ultrasound images at the wrist

and divided them into regions. Then, the features from each
region were used in a linear regressor to establish a relation-
ship between the features and the angle or force of each finger.
In more recent work, it was shown that it is possible to recog-
nize 4 different grasps with 80% accuracy, and also 3 levels
of strength with 60% accuracy [29].

Sikdar et al. focused their work on recognising discrete hand
gestures by imaging the muscles mid-forearm. They divided
the image and calculated the average brightness change per
region to create different activity patterns for each gesture. A
Nearest Neighbour search was able to classify input gestures
correctly with 98% accuracy for the flexion of 4 fingers [35]
and 91% for 15 gestures [1]. Another group of researchers
used an optical flow algorithm to determine the movement of
the extensor muscles [34], but they were only able to quali-
tatively detect different finger flexions.

The results from Castellini and Sikdar demonstrate the ca-
pabilities of modern ultrasound imaging in gesture detection,
but did not explore probe location or apply recent machine
learning techniques. Considering that the anatomy can vary a
lot between different locations, there is likely to be some vari-
ation in performance. Cross-session accuracies have also not
yet been studied, though it is vital for practical use. Given
the importance of location to interactive wearables, further
research is required to know whether probe location signifi-
cantly effects the recognition accuracy. We shall also exam-
ine the effects of cross-session performance for each of these
different locations.

ULTRASOUND IMAGING PRINCIPLES
Sound is a mechanical wave that travels by sequential com-
pression and expansion (rarefaction) of the medium. The fre-
quency describes the number of times the molecules expand
and contract per second whereas the amplitude refers to the
amount of compression.

Sound travels at a speed that depends on the temperature,
pressure and the medium (e.g. 340m/s in air and 1500m/s
in water under normal conditions). The product of the den-
sity of the medium and the speed of sound through it is called
the acoustic impedance. When a sound wave passes from one
medium to another with a different acoustic impedance, some
of the energy is reflected at the boundary. The proportion that
gets reflected is proportional to the mismatch in impedance
between the two media. Our forearms are made up of many
complex tissues with different acoustic impedances. The re-
flections from these tissues allow us to see the boundaries
between them.

The most basic idea of ultrasonic imaging is to emit a short
wave (pulse) and reading back the different reflections from
the tissues. The pulse will get partially reflected at different
depths of the body, the delay in arrival will be proportional
to the distance whereas the intensity will indicate the type
of tissue since different tissues have characteristic acoustic
impedance.

An ultrasonic transducer or probe is a device which houses
one or several piezoelectric elements. The elements can trans-
form an electric pulse into a mechanical pulse to generate a
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wave. The elements can also transduce the mechanical energy
from the reflected pulse into electric signals. These phenom-
ena are referred to as the inverse and forward piezoelectric
effect and support pulsing and reading with the same probe
by quickly switching the electronic components. Modern ul-
trasound imaging devices use algorithms to form images, ap-
plying beamforming and harmonic imaging to increase reso-
lution.

Ultrasonography typically uses sound waves with frequencies
in the order of MHz. The higher the frequency, the better
the resolution that can be attained, however the attenuation
is higher and therefore imaging depth is reduced. In this pa-
per we image musculoskeletal tissue using transducers with a
central frequency ranging from 8 to 12MHz for good resolu-
tion and enough image depth.

Figure 1: A transversal scan of the mid-forearm, anterior as-
pect. Labelled in red are the various muscles, and the bones
in green.

HAND ANATOMY
The muscles which control the hand can be categorised into
extrinsic muscles which originate in the upper/mid forearm,
and intrinsic muscles which originate within the hand itself.
The extrinsic muscles control wrist motions and some digit
movements. The intrinsic muscles are used for finer motor
control of the hand, for example pinch gestures and finger
adduction/abduction. The extrinsic muscles can be further
categorised into flexor and extensor muscles which bend or
straighten the digits respectively and, in combination, move
the wrist from side to side.

In this paper we exclusively image the extrinsic muscles at
positions from the wrist to the forearm. These locations pro-
vide a position for the probe that will not interfere with hand
movements. However, it will not be possible to capture hand
movements that use intrinsic muscles, and this is a tracking
limitation for all systems that measure muscle movement at
the forearm level.

The muscles that are principally responsible for the flexion
and extension of the fingers are the digitorum muscles (Fig. 1,
FDS, FDP). These also assist with flexing and extending at
the wrist, however the main muscles for the wrist are the carpi

radialis/ulnaris (Fig. 1, FCR, FCU). In addition, the carpi ra-
dialis and ulnaris assist with adduction and abduction of the
wrist. The thumb is controlled by the pollicis muscles (Fig. 1,
FPL).

Hand movements change the musculature of the forearm due
to contractions of the muscles. These contractions expand the
size of the muscles and pull the tendons, and these changes
are reflected in the US image. Furthermore, a particular hand
movement changes the image at the specific areas where the
involved tendons and muscles are located. Depending on the
position of the probe (e.g. wrist or forearm) the observed
muscles and tendons will be quite different.

STUDY DESIGN AND PILOT

Figure 2: The mounting positions of the probe that were com-
pared with their corresponding ultrasound image. a. Trans-
verse, b. Longitudinal, c. Diagonal, d. Wrist, e. Posterior.

The objective of our study is to analyse the best mounting
locations of a wearable device for discrete gesture recogni-
tion, cross-session accuracy and detection of continuous flex-
ion angle. The wearable uses ultrasound imaging to track the
muscles and tendons inside the forearm and with that infer
hand pose. There were several variables to consider in the
study; the main ones are locations and gesture sets. In or-
der to make the study feasible we ran a pilot study to discard
the options that were clearly inferior or not viable, which is
presented after this section.

Locations
There are three parameters to consider when deciding the
placement of the probe: orientations, proximity to the el-
bow, and anterior/posterior placement. The following ex-
plains each of these variables in more detail:

Orientation Clinical US scans are usually performed either
Transversally (Fig. 2a) or Longitudinally (Fig. 2b) along
the length of the forearm. In transverse mode, a larger
range of muscles can be seen, however the muscle fibre
displacement cannot be observed as well as in the longi-
tudinal scan. It is medically uncommon to use the probe
Diagonally (Fig. 2c) but we wanted to test if this position
could image a large range of muscles and still observe the
displacement of muscle fibres.
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Proximal/Distal The muscles are more predominant at the
Proximal mid-forearm (Fig. 2a), whereas the tendons are
more visible at the Distal wrist location (Fig. 2d).

Anterior/Posterior The flexor muscles/tendons are located
on the Anterior (inside) of the forearm and extensors on
the Posterior (outside) of the forearm (Fig. 2e).

We chose 5 locations to initially test: Transverse, Longitu-
dinal, Diagonal, Wrist and Posterior. These locations are il-
lustrated in Fig. 2, along with their corresponding ultrasound
images. The figure shows how different the US images look
between positions. Although it cannot be seen from static
images, the muscle fibre movement differs greatly with the
orientation of the probe. Fig. 5a shows the fibre movement
when the probe is oriented perpendicular to the flow of the
muscle movement (Transverse), whereas Fig. 5b shows that
the general movement is along the axis of the forearm in a
Longitudinal scan.

Transverse mounting was used by Sikdar et al. [35] [1], Wrist
was the location employed by Castellini et al. [6] [5] and
a preliminary study tested Posterior [34]. Here, we compare
those locations that were used in previous research and we in-
troduce Longitudinal and Diagonal. Longitudinal is the only
image that is completely parallel to the muscle and tendon
movement. In a preliminary study for continuously detect-
ing ankle angles it showed good accuracy [26] but we expect
it to show poor performance for classifying a variety of ges-
tures since there is less coverage of the muscles. We expected
Diagonal to be a good compromise between continuous and
discrete tracking.

For the purposes of dynamic assessment, clinical radiologists
rarely look at images in the axial plane of the wrist, as it is dif-
ficult to identify individual tendons and the movement is not
as easily appreciated as in the muscle. This was especially
true of the the extensor tendons in the posterior compartment
of the wrist, as the tendons here are too compact, and very
little motion can be observed when compared to the anterior
side. Since the wrist is normally considered to be the most
ergonomic location to place a wearable device, we included
the transverse distal anterior location to have at least one wrist
location. If the tendons provide sufficient information for ef-
fective gesture recognition, this technique can be integrated
with wrist-worn wearables.

In contrast to EMG, in US imaging we are also able to ob-
serve muscle relaxation. This means that it is not crucial to
image both the anterior and posterior parts as it is possible to
infer motion in both directions by inspecting either the flexor
or extensor muscles. Consequently, we did not repeat poste-
rior positions with anterior positions.

Gestures
In ultrasound images it is possible to observe the muscles
and tendons which control the fingers, thumb and wrist at all
locations, albeit more clearly in some locations than others.
Consequently, for our gesture set we mixed a representative
collection of single digit flexions, multi-finger flexion, wrist
flexion and adduction.

Figure 3: The set of gestures from top to bottom and left to
right: thumb, index, middle, ring, fist, point, gun, call, wrist
adduction and flexion.

We discarded movements that primarily involve intrinsic
hand muscles such as pinch gestures and adduction of the fin-
gers. Perhaps these gestures can be detected in the forearm
because they are usually accompanied by other characteris-
tic involuntary movements. However, we decided to remove
those gestures from this study and focus on the gestures that
involve a unique set of muscle movements that originate in
the forearm. Fig. 3 shows the selected gesture set. We split
each of these gestures into flexion and extension phases pro-
ducing a total of 20 discrete movements.

There are numerous ways to flex a digit since they have at
least two joints. We instructed the users to perform a natu-
ral flexion which usually involves all the joints but with more
emphasis on the proximal interphalangeal joint. We thought
that this would hinder the angle estimation since the finger
is bent at several positions, different to previous studies in
which the fingers were held with splints to force flexion at
only one joint [6]. We wanted to avoid unnatural or uncom-
fortable gestures as they would not be used in a real situation.
For the same reason, we also discarded individual pinky flex-
ion.

With US imaging it is feasible to see the separation between
the deep and the superficial muscles. For instance, the bound-
ary between the flexor digitorum superficialis (FDS) and the
flexor digitorum profundus (FDP) can be seen as a bright hor-
izontal line in Fig. 2b . Consequently, it should be possible to
differentiate between flexing of the digit at the metacarpopha-
langeal and the interphalangeal joints (ie different knuckles).

System
Hardware
We used a Toshiba Aplio 80 US imaging machine with a flat,
linear probe with an 8MHz central frequency and 12MHz har-
monic imaging mode. We used the default musculoskeletal
settings with 1 focal point and 4cm of depth imaging for all
the positions, except for the Wrist condition where we used
3cm. The machine was an ex-clinical machine but its defi-
ciencies compared to the state of the art reflect the likely lim-
itations of a mobile ultrasound device in resolution and im-
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age quality. In order to mount the probe onto the users fore-
arm, we used a 3D printed structure to hold the transducer in
place and to strap it around the user’s forearm (Fig. 4a). We
recorded the images from the US machine via a video cap-
ture card (Fig. 4d). Anagel US gel was applied for coupling
between the probe and the user’s skin.

In order to measure the ground truth of the hand pose, we
created a sensor glove (Fig. 4b). We used 5 Spectra Symbol
Flex Sensors [12] which were sewn onto each digit of the
glove. We used an Arduino to read the resistivity values of
each sensor and to transfer the data to the PC. This data was
only used for the continuous angle tracking studies. We found
that the sensor readings matched the amount of finger flexion
linearly.

Figure 4: The setup of the experiment: a. Transducer, b. Sen-
sor glove, c. Computer d. Video capture device.

Software
Since a gesture is actuated by a specific set of muscles,
the gestures have unique patterns of activity within the US
images. The type of motion depends on the location of
the probe, and the observed motion is caused by reflec-
tions/scattering from the muscle fibres. In a longitudinal scan,
the motion is primarily along the main axis of the probe,
whereas transversal scans have a variety of different motions
including rotations or elevations (Fig. 5). Nevertheless, there
are patterns in the images wherever the probe is placed. The
motion seemed therefore an appropriate feature to classify
discrete gestures with.

Several operations must be performed with the ultrasound
videos in order to classify discrete gestures or estimate finger
angles. A reduced set of features are extracted from a col-
lection of frames and then used to train a machine learning
classifier. Later, this trained classifier determines the gesture

or angles from a sample set of features derived from unseen
images.

For the discrete classification, the first step is to segment the
video stream into either flexions or extensions from the neu-
tral position. Then, we extract features for each of the frames
and these features are averaged per segment. In the continu-
ous angle inference, the machine is a regressor that is trained
with both the features at each frame and the angles from the
data glove.

(a) Optical flow for the Trans-
verse position during a thumb
gesture.

(b) Summation of the magni-
tudes of the flow vectors rep-
resenting the activity pattern of
the index gesture.

Figure 5: Image processing algorithms.

Figure 6: The blue line is a plot of the magnitudes of the flow
vectors from an ultrasound video of the index finger repeat-
edly being flexed. The other lines represent the sensor data
from the glove. Each channel is a 1D time signal.

Segmenting the videos for discrete classification was per-
formed by calculating the sum of the magnitudes of the dense
optical flow vectors for each pixel of every frame, using
Farnebäck’s algorithm [11]. A Gaussian blur with a ker-
nel size of 15 pixels was applied beforehand. Fig. 5a shows
the sampled points of the optical flow during the index flex-
ing gesture and Fig. 6 plots the magnitude of the optical flow
against the data glove values. The latter graph shows that the
optical flow produces little or no activity during the period of
time when the hand is not moving in the flexion hand pose,
unlike EMG signals. The videos were split based on a plot
such as this, where each gesture can easily be seen with two
peaks at the beginning and end. Each gesture in the training
set then has a video clip associated to show participants the
gesture.
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The machine learning algorithms cannot process all the in-
formation contained in an image and thus need a reduced fea-
ture set. For the discrete gesture classification, Sikdar et al.
used the accumulated difference in brightness level [35] [1].
In our experiments we used the vertical and horizontal com-
ponents of the optical flow. For each frame of a video clip,
the dense optical flow was calculated, and then the horizon-
tal and vertical optical flow values were averaged within each
region based on a grid with 20 pixel spacing. Then the op-
tical flow values were accumulated over every frame in the
video clip, giving a final feature vector with a length in the
order of hundreds of values. In continuous detection of finger
angles, Castellini et al. used the first order surface as fea-
tures [5], we calculated the moments for each frame (m00,
m20 and m21-m12) which are equivalent but more standard
in the computer vision community. The moments are com-
puted for each frame, and the regressor trained on moments
of each frame with the data glove data.

For machine learning in the discrete gesture recognition task,
Sikdar et al. used Nearest Neighbour algorithms [35] [1]. We
tested Support Vector Machine’s (SVM) since it was shown
that they gave better results for discrete gesture discrimina-
tion in another study [33]. We also tested a type of Neural
Network called Multi-Layer Perceptrons (MLP) since they
have often shown very good results and have yet to be ap-
plied in this technology. In the continuous angle detection,
Castellini et al. used Linear Ridge Regression but suggested
to use SVMs as they may yield better results [5]. In addi-
tion to testing SVMs for the regression task, we also test a
multi-layer perceptron regressor. The accuracies of these al-
gorithms are compared in the pilot study.

A shift correction was used to improve the accuracy for cross-
session studies. These errors occur because the wearable can
be placed slightly differently to the first time it was worn and
thus the anatomical features are not in the same position. To
correct this shift, we computed the optical flow between the
first frame of a training set and the first frame on the current
session. The flow was averaged to get a 2D translation and
this transformation was applied to the current video to better
align the training and sample features.

We used OpenCV [4] for processing the videos and Scikit
[30] for the machine learning implementations.

Pilot Study
We eliminated some of the variables from our main experi-
ment through a pilot study, including the least valuable loca-
tions, gestures and algorithms. For this pilot, 2 participants
performed each of the 10 gestures (with both flexion and ex-
tension of each) 20 times at each of the 5 locations. We com-
pared the accuracy of MLP and SVM, with different classi-
fier parameters to find a suitably accurate configuration. We
used 10-fold cross validation on the data set in order to have
a simple and reliable measure of the accuracy for each case.
Table 1 is a table of results for the average cross validation
accuracy for each location, given a particular classifier, for
the discrete gesture recognition case.

Classifier Diag. Long. Wrist Trans. Post.
MLP 99.875 99.5 99.5 99.25 97.875
SVM 99.625 99.125 99.375 98.75 97.5

Table 1: Results for the average discrete gesture classification
accuracies for each position, using different classification al-
gorithms.

Classifier Diag. Long. Wrist Trans.
Participant 1 99.5 97.0 94.0 98.5
Participant 2 98.5 97.0 97.0 98.0

Average 99.0 97.0 95.5 98.25

Table 2: 10-fold cross validation classification accuracies for
finger flexing at different joints.

Our initial results demonstrated that MLPs had a slight ad-
vantage over SVMs in every location, so our main study used
MLPs. Our best MLP configuration had 15 neurons in the
hidden layer, alpha=0.001 and BFGS for weight optimiza-
tion. After initial exploration, it was very difficult to find a
position for the posterior location that gave good coverage of
all the required muscles. This is due to the arrangement of
muscles and bones around the posterior side of the arm and
the larger surface area, and is likely to be the reason for the
Posterior location’s weaker performance.

In our regression tests for this same data set, the same out-
come was mirrored: Posterior location showed the worst per-
formance, and the MLP neural network regressor surpassed
the SVM. For this reason, we eliminated the Posterior posi-
tion from our main study. The best MLP regressor configu-
ration we used for this had 15 neurons in the hidden layer,
alpha=0.0001 and Adam for weight optimization. The Poste-
rior position is also the usual location for screens and interac-
tive elements of wearables (e.g., watch face). Therefore our
decision to ignore this location is appropriate for ergonomics
as well as efficiency.

We also asked these participants to perform flexions for each
of the 5 digits 10 times, flexing at the metacarpo-phalangeal
joint and again at the interphalangeal joints. For each of these
10 video clips, they were again split into flexion and exten-
sion gestures. Analysis of this data indicated that it was in fact
possible to differentiate between flexing at different joints,
with an average accuracy of 97.4% across all positions. The
different types of flexing exhibit unique areas of muscle ac-
tivity across the superficial and deep muscles. This shows the
potential for US to detect finer differences in hand pose, a fea-
ture that is difficult to achieve with EMG since it is difficult
to differentiate between signals from the superficial and the
deep flexors.

The ability to differentiate between different levels of pres-
sure has been demonstrated in previous studies with ultra-
sound imaging [14] [29]. We also found discernible differ-
ences in the images and could qualitatively infer the amount
of pressure with the changes in the ultrasound images.
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USER STUDY

Procedure
12 participants aged between 20 and 50 years were recruited
to take part in the user study; 8 were male and 4 female. The
participants were asked to sit in front of a computer, wear
the sensor glove and the probe mount on the right hand and
then to follow the instructions shown on the monitor (Fig. 4c).
The arm position was as depicted in (Fig. 4a). The video
showed the user which gesture to perform and an indicator at
the bottom gave visual cues for the timing of the gestures.

The conditions for the experiment were the locations of the
probe: Diagonal, Longitudinal, Wrist and Transverse. Each
of the 12 participants were assigned a pair of conditions (there
are 12 ways of picking 2 out of 4 with order) and repeated the
last condition. Therefore, each participant performed the ges-
tures on three locations, the second and third locations were
the same for testing cross-session performance. At each lo-
cation, the probe was removed and placed again after a short
rest, without any attempt to recalibrate using the US images.
In this regard, the short time in between may not seem suf-
ficient for a cross-session study. However, we presume the
main issue for cross-session performance is sensor misalign-
ment (as is the case with EMG [2]), as the significant changes
in the US images are likely to cause classification problems.
A short delay between sessions is enough to simulate the mis-
alignment that would occur with extended delays, and this
way we focus solely on the calibration mechanism without
interferences from other variables.

At each location the participant had to perform a total of 10
gestures, 10 times each. Each 5-second gesture clip prompted
the flexion and extension phases, which were then split into
those two halves for a total of 10 flexion and extension ges-
tures. Therefore the study involved: 12 participants X 3 lo-
cations X 10 gestures X 10 repetitions = 3600 gesture perfor-
mances. The average study lasted 45 minutes including the
time taken to explain the procedure to the participants and to
equip the user with the sensors. The data collected from the
participants were analysed offline. The data from the pilot
study was not used in the main study.

Results
Different measures of accuracy were calculated for discrete
recognition and continuous angle detection. All experiments
are within-user.

Cross validation was performed on the data, using the MLP
classifier described in the pilot study to produce classifica-
tions. We employed a 10-fold leave-one-out cross-validation
strategy, with each fold containing one instance of every ges-
ture, of which there are 20 of. Since we split gestures into
flexion and extension, gestures instances of the same type
were not temporally adjacent. The average classification per-
centages for each location are shown in Fig. 7. The confusion
matrix for the Longitudinal location is shown in Fig. 9.

A one-way mixed Analysis of Variance (ANOVA) was con-
ducted to compare the main effect of sensor location on 10-
fold MLP classification performance in Diagonal, Longitudi-
nal, Wrist and Traversal conditions. There was a significant

effect of location, F(3,6)=14.44, p<0.01. Post hoc pairwise
comparisons used t-tests with Bonferroni corrections to ac-
count for multiple comparisons. There was a significant dif-
ference between Diagonal (M=99.78, SD=0.09) and Longi-
tudinal (M=97.94, SD=0.38), t=5.67, p<0.01; Diagonal and
Transverse (M=98.94, SD=0.19), t=4.08, p<0.05; Longitu-
dinal and Wrist (M=99.78, SD=0.12), t=-4.30, p<0.01; and
Wrist and Transverse, t=4.08, p<0.05. There was no sig-
nificant difference between Diagonal and Wrist, or Longitu-
dinal and Transverse. From these results we can establish
that for classification accuracy the Diagonal and Wrist condi-
tions were best, followed by Transverse, with the Longitudi-
nal condition last.

The cross-session accuracy is shown in Fig. 8 divided by lo-
cation for both the raw videos and the shift-corrected videos.
The cross-session accuracy is obtained by training the classi-
fier with the data from the second session and then classifying
the data from the third session which belonged to the same lo-
cation.

For the continuous detection of finger angles, the main metric
was the Normalised Root Mean Square Error (NRMSE) of
the predicted angle compared to the real angle. The value was
averaged over the five fingers since the errors were similar
for all the digits. These values are shown for each location in
Fig. 10.

Figure 7: Accuracy of the discrete gesture classification. Av-
erage 10-fold cross-validation for each location across all par-
ticipants.

DISCUSSION
The accuracy in discrete gesture recognition is very high, with
the average of all locations being above 99%. The Longitudi-
nal position has been statistically shown to perform the worst
for this task. A more limited range of muscles are within
the view of the probe at this position, supported by the fact
that the gun and ring gestures were usually confused (for both
flexion and extension - Fig. 9) since they involve a common
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Figure 8: A graph plotting the average classification accura-
cies for the cross-session data at different locations.

Figure 9: A confusion matrix for the Longitudinal position.

muscle. Other locations showed similar issues, however the
issue was more marked in the Longitudinal images. This may
also be indicative of inconsistent or insufficient information
about the fifth digit muscle across all the locations. In our ob-
servations of the images, the thumb and pinky muscles were
at the extremities of the images, and it is likely that the pinky
could have been out of view. Unexpectedly, the Wrist location
offered good results, even when the images seemed to show
little movement in comparison to the proximal locations. One
possible reason for this is the good coverage of the tendons by
the probe, which can easily cover the central part of the wrist
due to the smaller surface area. The tendons that move the
fingers and wrist have to pass through the carpal tunnel in the
wrist making it a concentrated area of information, in contrast

Figure 10: NRMSE values of the continuous digit flexion pre-
dictions averaged over all digits and for all participants.

to the proximal locations where the muscles and tendons are
spread across a larger area.

The cross-session results show that the loss in accuracy due
to probe displacement between sessions affects each location
differently. Prior to shift compensation, Transverse and Lon-
gitudinal had worse cross-session accuracy when compared
to the other locations. This suggests that large shifts occurred
between sessions for these positions, and that it may be more
difficult to place the probe in the same place between ses-
sions. The shift compensation algorithm improves the cross
session accuracy for every location, but this improvement is
much larger for Transverse. In contrast, Wrist only improves
slightly but that position already offered high cross-session
accuracy. This is likely because the smaller size of the wrist
allowed less variation in the placement of the probe. Al-
though there were large cross-session errors for Transverse
and Longitudinal, the shift can only be compensated well
for Transverse. The image shift with Longitudinal cannot
be recovered because the image changes differently when
the probe shifts laterally, and a simple 2d translation is not
enough to correct this change. The other locations are more
robust to image changes as displacements perpendicular to
the probe do not affect the images significantly.

In summary, the results from the study suggest that there is no
significant difference between Diagonal and Wrist in discrete
gesture classification, but these are superior to other locations.
For ergonomic reasons, Wrist seems like the best location for
discrete gestures. For continuous detection of digit angles
both Diagonal and Transverse offer the best results. There-
fore, the best position for both requirements is Diagonal but
if ergonomics is an important factor the Wrist location could
be selected for discrete gesture or Transverse for continuous
angle detection.
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LIMITATIONS AND FUTURE WORK
There are issues with practicality which are yet to be solved
before this method is viable as a wearable gesture recognition
device. In this section, we will address these limitations and
provide information about the current state of research for
each of these problems.

Gel is needed to couple the transducer to the skin and facil-
itate the transmission of ultrasound into the body. It may
not be practical to use gel with an everyday wearable, but
there have been recent developments which show that hydro-
gel pads can be used as an alternative coupling medium [20].

Participants were sedentary during our experiments. Differ-
ent postures will change the muscular disposition inside the
forearm and shift the features. There have been some prelim-
inary studies that investigates classification rates for different
arm positions, which show that they do not seem to signifi-
cantly compromise reliability [1]. Further comprehensive re-
search is required to analyse and mitigate the effects of arm
movement during everyday activities. It may be possible to
use a similar method to our cross-session calibration for this
purpose. Also, with inferences of posture from other sensors
(e.g. IMU), specific calibration schemes could be applied.

In our experiments, we used a decade old ex-clinical scan-
ner, we are aware of the elevated price and bulky size of these
machines. Recently, emergency point of care ultrasonogra-
phy has created a need for cheaper and smaller pocket-sized
scanners; in fact, several portable devices exist [38]. These
handheld devices utilise the power of mobile phones to pro-
cess the raw data. The image quality of these portable devices
are comparable to the machine used in our studies. These de-
vices are expensive (>$2k) but will decrease in price with
acquisition boards integrated into a chip, and as research in
transducer technology progresses [3]. As with most electron-
ics, the cost of the raw materials of these devices is low.

Since the wrist requires a shorter imaging depth, it is possi-
ble to use a probe with a higher frequency. This higher fre-
quency may yield better results with the increase in resolu-
tion. Higher frequency probes can be smaller in size, making
it easier to integrate with wearables.

The probe that was used in this study was large and rigid, hin-
dering its utilization in wearable scenarios. Transducer fab-
rication research has developed small and flexible thin-film
probes, which should help reduce the size. Currently, it is
possible to build a flexible probe with multiple elements that
can be wrapped around the thumb [41]. This technology may
also help to alleviate the aforementioned arm movement arti-
facts.

The US probe that we used is linear; that is, it has the ele-
ments arranged in one dimension. 2D probes that can image
3D volumes without moving them are becoming more avail-
able. These probes could improve robustness to shifts in the
positioning of the probe, as well as providing more features
to classify with.

Always-on gesture detection is desirable for real use. We do
not have a dedicated study for proof of gesture spotting, but

we found that high levels of activity can be measured by inte-
grating the magnitudes of the optical flow vectors. While we
only used this method to split our data, it may also be used as
a variable for segmentation. However, this simple approach
could be brittle and remains to be tested under realistic con-
ditions, where motion artifacts may cause problems.

Power is a concern for wearable ultrasound imaging devices
at the moment. The portable GE Vscan [13] lasts for 1̃ hour
of continuous use. Battery improvements are expected in the
future, but a more interesting approach is to only activate full
imaging during gestures, for instance pulsing ultrasound with
fewer elements, effectively providing a low-res image to de-
tect gesture onset. A more complete system could have other
low-power sensors integrated, such as myoelectric sensors to
initially spot the gesture using existing segmentation tech-
niques.

All of the presented experiments are within-user. Much like
electromyographic devices, anatomical differences between
users creates an interesting challenge for cross-participant use
of US wearables. Perhaps a more elaborate classifier and cal-
ibration scheme that takes into account the common anatom-
ical features between users, could lead to an effective user-
independent system.

Bio identification could be possible with ultrasound imaging.
The veins and other anatomical features are detectable with
high frequency probes; previously, it has been shown that the
structure of the veins can be used as an unique characteristic
for identification [24]. This technique could be used to iden-
tify the wearer and load their preferences, without the need
for external validation.

CONCLUSION
We have presented a solution for detecting discrete gestures
and tracking continuous angles of the fingers using ultrasound
images captured from a probe mounted on the forearm. Our
novel contributions include findings on the variation in per-
formance between different mounting locations. In contrast
to previous studies, we provide results for the cross-session
accuracy decrease, and show that a simple calibration algo-
rithm can improve the accuracy, and highlights the useful-
ness for future work. In conclusion, the performance varia-
tion across the tested locations vary somewhat insignificantly,
meaning that an ergonomic location such as the wrist may
be chosen as the desired location for a wearable US device.
However, there are some differences in robustness and con-
tinuous angle recognition, and depending on the requirements
other locations may be more desirable. Wearable applications
using ultrasound imaging for gesture detection will become
more feasible with the continued decrease in cost and size of
US devices, and we hope that this work inspires research in
this promising approach.
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