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ABSTRACT 
The emergence of mobile apps for Massive Open Online 
Courses (MOOCs) allows learners to access quality 
learning materials at low cost and “to control where, what, 
how and with whom they learn”. Unfortunately, when 
compared with traditional classroom education, learners 
face more distractions and are more likely to multitask 
when they study alone in an informal learning environment. 
In this paper, we investigate the impact of divided attention 
(DA) on both the learning process and learning outcomes in 
the context of mobile MOOC learning. We propose 
OneMind, a system and algorithm for detecting divided 
attention on unmodified mobile phones via implicit, 
camera-based heart rate tracking. In an 18-participant study, 
we found that internal divided attention has a significant 
negative impact on learning outcomes; and that the 
photoplethysmography (PPG) waveforms implicitly 
captured by OneMind can be used to detect the presence, 
type, and intensity of divided attention in mobile MOOC 
learning. 

Author Keywords 
MOOC; Mobile interfaces; PPG; Divided attention. 

ACM Classification Keywords 
H.5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces.  

INTRODUCTION 
Massive Open Online Courses (MOOCs), as a scalable 
paradigm in online education, are experiencing rapid 
growth since 2011. In addition to the increased scale and 
reduced cost in knowledge dissemination, researchers found 
that MOOCs could help students develop new skills such as 
autonomous learning, and improve the visibility of 
universities and courses [9].  At the same time, challenges 
such as high dropout rates, and lack of individualized 
assessment and feedback also make today’s MOOCs an 
inferior choice to one-on-one tutoring [3].  

Many MOOC providers such as Coursera, Udacity, and 
edX, have offered mobile apps to support “learning on the 
go”. Unfortunately, mobile MOOC learning faces 
significant challenges when compared with classroom 
education or even traditional MOOCs on PCs. This is in 
part due to the highly diversified learning environments and 
highly interruptive learning contexts when learning with 
one’s mobile device. Distractions could come from both 
external sources (e.g. background conversations or ambient 
noise) and multitasking (e.g. checking/updating social 
networking sites). When learners divide their attention 
between learning materials and other tasks or external 
distractions, the interference hampers their intentional use 
of memory [7] and reduces the memory performance 
substantially [4]. Both outcomes hinder the knowledge 
encoding process and lead to decreased understanding of 
the learning materials.   

 

Figure 1. Using OneMind for MOOC learning while 
colleagues discuss in the background. 

In this paper, we investigate the impact of divided attention 
(DA) on the learning process and learning outcomes in the 
context of mobile MOOC learning. We also propose 
OneMind (Figure 1), a mobile MOOC learning system that 
detects the presence, type, and intensity of divided attention 
via implicit physiological signal sensing on unmodified 
mobile phones. OneMind is built on top of 
AttentiveLearner [12, 18], monitoring a learner’s heart rate 
implicitly via commodity camera based 
photoplethysmography (PPG) sensing. We present the 
design, implementation, and evaluation of OneMind. 
Through an 18-subject user study, we show the feasibility 
of using heart rate signals, implicitly recorded by the built-
in camera of mobile phones, to infer the presence, type, and 
intensity of divided attention during learning.   

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than ACM must be honored. 
Abstracting with credit is permitted. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org. 
CHI 2017, May 06-11, 2017, Denver, CO, USA  
© 2017 ACM. ISBN 978-1-4503-4655-9/17/05…$15.00  
DOI: http://dx.doi.org/10.1145/3025453.3025552 

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2411



RELATED WORK 
By definition, divided attention (DA) occurs when attention 
is divided among simultaneous stimuli [8]. DA is different 
from mind wandering (MW) in that DA is either caused by 
intentional multi-tasking (internal distractions) or passive 
external distractions [8], while MW is an involuntary shift 
in attention from task-related thoughts to task-unrelated 
thoughts [11] and is stimulus independent [10]. Existing 
DA research in learning technology is limited because MW 
can happen in any environment [10] while DA is more 
pervasive in informal learning. 

Research on DA has been focusing on understanding 
human capabilities to perform multiple tasks 
simultaneously [8, 4, 7]. Kahneman [8] systematically 
reviewed experiments on the parallel processing of 
simultaneous inputs and found that although parallel 
processing was possible, its effectiveness was often 
impaired due to the interferences among multiple activities. 
Craik et al. [4] conducted four experiments to explore the 
effects of DA on encoding and retrieval processes. 
Experimental results showed that DA during the encoding 
process was associated with large reductions in memory 
performance. The divided attention made the selection of 
information imperfect, resulting in delayed or slowed 
processes [15].  

Researchers have explored the use of various physiological 
signals, such as Electroencephalography (EEG) [13, 16], 
eye gaze [1], galvanic skin responses (GSR) [2], and heart 
rate [12] to infer learners’ attentional states in educational 
settings. However, most existing work focused on detecting 
MW or zoning out rather than divided attention.  

The work by Rodrigue et al. [13] is perhaps the most 
relevant research. In two three-participant experiments, 
Rodrigue and colleagues built user-dependent models 
(accuracies range from 79% to 99%, depending on the user) 
to detect DA from signals collected by a consumer-grade 
eye tracker and an EEG sensor. OneMind advances the 
state-of-the-art by eliminating the requirements of dedicated 
sensors, investigating learning activities in mobile MOOC 
settings, and quantifying the impact of DA and its intensity 
on learning outcomes statistically. 

THE DESIGN OF ONEMIND 
OneMind adopts the tangible video control interface of 
AttentiveLearner [12, 17]. The back camera lens of mobile 
phones is used as the "play" button for video/media control. 
To play an instructional video, a learner uses his/her finger 
to cover and hold the camera lens. Uncovering the lens 
pauses the video. Detection of the lens covering actions is 
based on the Static LensGesture detection algorithm in [18]. 
Such a tangible video control integrates the lens-covering 
requirement in commodity camera based PPG sensing [6] 
(i.e., covering the camera lens with a fingertip to measure 
heart rate) naturally into video watching, thus allowing 
implicit physiological signal monitoring on unmodified 
mobile phones. Please refer to [17] for the implementation 

and evaluation details of the tangible video control 
interface.  

While a learner is watching the lecture video, OneMind 
monitors her heart rate implicitly by analyzing the fingertip 
transparency changes captured by the back camera 
(commodity camera based PPG sensing) [6]. LivePulse 
algorithm [6] is used to extract learners’ PPG signals and 
measure their heart rate. This algorithm itself is accurate 
and robust against motions of the device [6]. We used the 
commodity camera based PPG sensing, instead of a 
dedicated heart rate monitor, to capture heart rate signals 
for two reasons: 1) it works directly on unmodified 
smartphones and requires no extra devices, and 2) covering 
the camera lens to watch the videos can make learners pay 
more attention to the lecture [17].    

USER STUDY 
We ran an 18-participant study to investigate the impact of 
divided attention on both learning outcomes and learners’ 
PPG signals. We studied two types of distractions: 1) 
multitasking distractions (i.e. internal divided attention) 
where the subject’s attention is divided between two 
stimuli; and 2) unpredictable and intrusive auditory 
distractions (i.e. external divided attention).  

Task 
Each participant watched four lecture videos (8 minutes 
each) with OneMind. We used two types of stimuli to 
create internal divided attention condition (e.g. 
multitasking) and external divided attention condition (e.g. 
distractive audio sound) while participants were watching 
the MOOC videos. In the control condition (full attention), 
participants can focus on the video without any internal or 
external stimuli.  

We adopted the color counting task [13] to introduce 
internal divided attention. While a participant was watching 
the lecture video using OneMind, a computer placed on her 
side spoke the names of six different colors in a random 
order at the speed of one-second per word (high divided 
attention) or five-second per word (low divided attention). 
Participants were told to focus on the video but also count 
the number of times a target color (e.g., the color “red”) 
was spoken during the video. The participants reported the 
counted number of the target color after each video, which 
was compared to the ground truth to ensure that they indeed 
divided their attention between the two tasks.  

To simulate an environment where a learner is distracted by 
external stimuli (external divided attention), such as 
unexpected and intrusive auditory distractions, the 
computer placed on the side of the learner played loud and 
energetic music while the learner was watching the lecture 
video. We chose to use music as an external stimulus 
because it is a common environmental sound during 
informal learning.  

Although stimulus of the internal divided attention 
condition (the “color counting” task) also comes from an 
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external source, it aims to create an internal distracted state, 
i.e. multitasking, when the learner is mentally performing 
multiple tasks at the same time.  

Participants and Apparatus 

Eighteen subjects (6 females) participated in the study 
(Figure 2). The average age was 25.8 (σ = 2.73) ranging 
from 22 to 32. All participants were graduate students from 
a local university. None of them had prior knowledge of the 
learning materials used in the study. Four subjects had prior 
experience of using mobile apps for MOOC learning.  

    

Figure 2. Some participants in the user study.  

The experiment was completed on a Nexus 5 smartphone 
with a 4.95 inch, 1920 x 1080 pixel display.  

Procedure 
The study consisted of three parts: 

Introduction: we ran a tutorial session and collected 
background information from participants. 

MOOC Learning Session: Participants used OneMind to 
watch four video clips in four conditions (i.e. within-
subjects design): control condition (i.e. Full Attention, FA), 
low internal divided attention (LIDA), high internal divided 
attention (HIDA), and external divided attention (EDA). 
The order of conditions assigned to each video was 
counterbalanced by a Latin Square pattern.  

Two video clips were from the course “Intro to Design of 
Everyday Things”, and the other two were from the course 
“Intro to iOS App Development with Swift”. Both courses 
were taken from the MOOC learning platform, Udacity. All 
clips were edited to exact eight-minute long.  

Post-video Quiz and Self-Rating: After finishing each video 
clip, participants reported the perceived distraction level for 
the current learning condition on a 7-point Likert scale. 
Participants also completed a five-question quiz (short 
answer questions) on the topics covered in the video.  

RESULTS AND DISCUSSIONS 

Perceived Distractions 
The perceived distractions were 1.33 (σ = 0.47), 3.11 (σ = 
1.59), 4.11 (σ = 1.24), and 4.97 (σ = 1.18) for the four 
conditions FA, EDA, LIDA, and HIDA respectively.  

Repeated Measures of Analysis of Variance showed a 
significant main effect (F (3, 15) = 9.28, p < 0.0001) of the 
perceived distractions among the four conditions. Pairwise 
mean comparison (t-tests) with Bonferroni correction 
showed that the control condition (FA) was rated 
significantly less distractive than all other conditions (t(17) 
= 4.74, p < 0.001; t(17) = 8.71, p < 0.001; t(17) = 12.27, p < 
0.001). External Divided Attention (EDA) was significantly 

less distractive than the high internal divided attention 
(HIDA) (t(17) = 4.28, p < 0.001). The difference between 
the two levels of internal divided attentions, i.e. HIDA and 
LIDA, was also significant (t(17) = 3.38, p < 0.005).  

Effect of Divided Attention on Learning Performance 

 

Figure 3. Participants’ quiz performance by conditions (Error 
bars represent standard error of the mean).  

Questions in the post-video quiz were graded by the 
following rubrics: a participant received 1 point for a 
complete and accurate answer; the participant received 0.5 
points for an answer with a correct general idea but missing 
critical details; the participant didn’t receive any point if the 
answer was incorrect or missing. The grader was blind to 
the conditions when grading. Figure 3 shows the 
distributions of correct and partially correct answers by 
conditions. 

Participants’ average scores for the four conditions were 
4.11 (σ = 0.66), 3.83 (σ = 0.90), 3.33 (σ = 0.92), and 2.92 (σ 
= 0.98) respectively. Repeated measures of ANOVA 
showed a significant main effect (F (3, 15) = 1.12, p < 0.01) 
of the learning outcomes. Pair-wise mean comparison (t-
tests) with Bonferroni correction showed that participants 
performed significantly better in control condition (FA) 
than both LIDA (t(17) = -3.0, p < 0.01 ) and HIDA (t(17) = 
-4.13, p < 0.001). Although the learners’ average 
performance in FA was better than that in EDA, the 
difference was not significant (t(17) = -1.17, p = 0.256).  
Participants also performed significantly better in EDA  
than in HIDA (t(17) = -3.41, p < 0.005). These results 
suggest that IDA is more detrimental to learning than EDA.   

Compared to the full attention condition, participants had 
less entirely correct answers, but more partially correct 
answers in the divided attention conditions. This is 
especially true for the HIDA condition, where the number 
of entirely correct answers were only 58.1% of that in the 
FA condition (2 vs. 3.44), while the number of partially 
correct answers increased by 37.5% (1.83 vs. 1.33). We 
found that learners in the divided attention condition were 
more likely to miss important details. Their answers also 
showed partial and shallower understanding of the learning 
materials.  

Detecting Divided Attention 

Considering the negative impact of divided attention on 
learning in MOOCs, we explored the use of PPG signals 
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implicitly captured by OneMind during the study to predict 
whether a learner has divided attention, as well as its type 
and intensity while they watched each video. 

OneMind collected four PPG signal sequences from each 
participant (72 PPG signal sequences in total), one for each 
condition (FA, EDA, LIDA, HIDA). The PPG signal 
sequences were first resampled at 20Hz before going 
through a second-order Butterworth filter with a cutoff 
frequency of [0.75, 3.3] Hz to reduce noises. 

Classification Task Accuracy Precision Recall Kappa 

FA vs. EDA 72.2% 0.75 0.67 0.44 

FA vs. LIDA 75.0% 0.71 0.83 0.50 

FA vs. HIDA 83.3% 0.80 0.89 0.67 

FA + EDA vs. LIDA 
+ HIDA 83.3% 0.90 0.75 0.67 

FA vs. LIDA vs. 
HIDA 63.0% 0.67 0.63 0.44 

FA vs.  EDA vs. 
LIDA vs. HIDA 50.0% 0.52 0.50 0.33 

Table 1. Performance of the RBF-SVM classifiers.  

We used the LivePulse algorithm [6] to extract RR-intervals 
(i.e., the cardiac interval between two adjacent heart beats) 
from each PPG signal sequence. Outliers of the RR-
intervals are removed using the same heuristics in [17]. 
Eleven dimensions of heart rate variability (HRV, variation 
in the time interval between heart beat) features were 
extracted from each signal sequence: 1) AVNN (average 
RR-intervals); 2) SDNN (standard deviation of the RR-
intervals); 3) rMSSD (square root of the mean of the 
squares of difference between adjacent RR-intervals); 4-7) 
pNN5, pNN10, pNN20, pNN50 (percentage of adjacent 
RR-intervals with a difference longer than 5ms, 10ms, 
20ms, and 50ms); 8) MAD (median absolute deviation of 
all RR-intervals); 9) SDANN (standard deviation of AVNN 
in all k segments of a sequence), 10) SDNNIDX (mean of 
SDNN in all k segments of a sequence), and 11) 
rMSSD/SDNNIDX. These features were common short-
term time domain HRV features [12, 14].  

We used Weka to build classifiers which used the extracted 
HRV features to predict a learner’s attentional states during 
the time of a given PPG signal sequence. We used leave-
one-subject-out evaluation to train different classifiers. 
Therefore, our classifiers were user-independent. SVM with 
a RBF kernel yielded the best overall performance. Table 1 
lists the classification performance achieved by the RBF-
SVM classifier for various classification tasks (For 
example, FA vs. EDA means distinguishing between the 
FA samples and the EDA samples). The chance level 
accuracy for classification tasks in Table 1 were 50.0%, 
50.0%, 50.0%, 50.0%, 33.3% and 25% respectively 
(kappa=0). It is expected that the detection accuracy of 
HIDA is higher than LIDA and EDA, considering that 

HIDA may cause stronger changes in physiological arousal 
due to the higher level of divided attention.  

Both the accuracy and Kappa score of our classifiers were 
far-above chance, indicating the feasibility of using 
OneMind to infer the presence, type and intensity of 
divided attention in a user-independent fashion. We believe 
that higher accuracies could be achieved by training 
personalized, user-dependent classifiers. Moreover, given a 
moderate degree of recognition accuracy, we can focus on 
developing less intrusive, fail-soft attention-aware 
interventions (e.g. polite reminders or content review 
requests) that do no harm if delivered incorrectly.  

We also ran a linear regression analysis to gain further 
insights on the relationship between HRV features and 
different attentional states. We found that for FA vs. EDA 
classification, the important features were MAD (p = 
0.0167) and pNN5 (p = 0.0258); while important features 
for FA vs. IDA classification were MAD (p = 0.0054), 
SDNN (p = 0.0158), and SDANN (p = 0.0326). For FA vs. 
EDA vs. LIDA vs. HIDA classification, the only important 
feature was MAD (p = 0.0325). These results suggested that 
MAD was the most important features for predicting 
divided attention in MOOCs.  

DISCUSSIONS 

The automatically detected information on DA can be 
leveraged to improve mobile MOOC learning in at least 
two ways. First, since different types of learning activities 
have different demands for attention, the system could 
switch to less attention-demanding learning activities, such 
as discussion forums, when consistent DA is detected; 
Second, proper intervention technologies could be 
introduced to directly address DA. For example, a system 
can use visual and tactile feedback to remind learners to 
focus on the video when DA is detected.  

Since OneMind does not require dedicated physiological 
sensing devices, it has the potential to reach millions of 
learners on today’s MOOC platforms. However, it is worth 
noticing that the OneMind algorithm can also work on 
signals collected from dedicated physiological sensors or 
wearable devices. Moreover, other than its application in 
education, the idea of implicit PPG signal sensing and 
divided attention detection could be adopted in areas such 
as usability evaluation, adjusting the difficulty of games, 
and evaluating the quality of advertising.  

CONCLUSIONS AND FUTURE WORK 
We proposed OneMind, a novel system for detecting the 
presence of divided attention during mobile MOOC 
learning via implicit heart rate monitoring on today’s 
smartphones without any hardware modification. In an 18-
participant study, we observed negative impacts of divided 
attention on students’ learning outcomes. Additionally, we 
systemically studied the use of PPG signals implicitly 
collected by OneMind during the learning process to predict 
the existence, type, and intensity of divided attention.   
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