
Word Clarity as a Metric in Sampling Keyboard Test Sets

Xin Yi1, Chun Yu1†, Weinan Shi1, Xiaojun Bi2, Yuanchun Shi1

1Key Laboratory of Pervasive Computing, Ministry of Education
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
2Department of Computer Science, Stony Brook University, Stony Brook, NY, United States
{yix15,swn16}@mails.tsinghua.edu.cn {chunyu,shiyc}@tsinghua.edu.cn xjunbi@gmail.com

ABSTRACT
Test sets play an essential role in evaluating text entry tech-
niques. In this paper, we argue that in addition to the widely
adopted metric of bigram representativeness and memorabil-
ity, word clarity should also be considered as a metric when
creating test sets from the target dataset. Word clarity quanti-
fies the extent to which a word is likely to confuse with other
words on a keyboard. We formally define word clarity, derive
equations calculating it, and both theoretically and empirically
show that word clarity has a significant effect on text entry
performance: it can yield up to 26.4% difference in error rate,
and 25% difference in input speed. We later propose a Pareto
optimization method for sampling test sets with different sizes,
which optimizes the word clarity and bigram representative-
ness, and memorability of the test set. The obtained test sets
are published on the Internet.
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INTRODUCTION
Due to the “fat-finger problem” [35] and lack of tactile feed-
back, text entry has long been a challenge for touchscreen
devices [2]. So far, a considerable amount of effort has been
taken to address this problem. As with any mature research
field, establishing a sound evaluation methodology plays a key
role in advancing the status quo. In text entry, a well-accepted
evaluation methodology is conducting user studies, in which
participants are instructed to transcribe a set of phrases while
the speed and error rate are measured.

One core component of a user study is the test set. As we will
see in this paper, in a typical study, an average of 28 phrases
are tested for each condition and participant. Corresponding
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to the trade-off between internal validity and external validity,
there exist two major approaches for selecting these phrases:
1) randomly pick different phrases for different participants
and 2) sample some phrases from well-known datasets (e.g.
Mackenzie and Soukoreff dataset [25], EnronMobile dataset
[39]), and use them for all participants. Focusing on the second
approach, researchers have proposed several criteria to ensure
that the sampled test sets truly represent the target language.
For example, the bigram probability of the test set should
be representative of that of the target dataset [31], and its
memorability should also be maximized [23].

Besides the two metrics mentioned above, we argue that word
clarity of the target dataset should also be represented in the
test set. Word clarity quantifies the extent to which a word is
likely to confuse with other words on a keyboard, or in other
words, the difficulty to correctly enter a word on a keyboard.
For example, “in” is often mistyped as “on”, because the letter
‘i’ and ‘o’ are close to each other and both “in” and “on” are
very common words. On the contrary, “plus” is easy to enter
because it has no strong distractors.

In literature, the concept of word clarity has been noticed by
some researchers [10, 21, 37]. However, none of them has ex-
plained the probabilistic interpretation of their calculation, nor
have they formally investigated the effect of word clarity on
text entry measurements. As a result, there is little quantitative
result about word clarity beyond the “intuitiveness”, and it is
difficult for researchers to leverage the knowledge to improve
the methodology of text entry evaluation.

In this paper, we defined word clarity and investigated its effect
on input speed and error rate. Based on the results, we pro-
posed a Pareto optimization approach to include word clarity
in test set sampling. Specifically, we have made the following
two contributions: 1) We formally defined word clarity, and
derived equations calculating it from probabilistic theory. We
theoretically and empirically showed that word clarity of the
test words has a significant effect on the measured text entry
speed and error rate: it can yield up to 25% difference in input
speed, and 26.4% difference in error rate; 2) We proposed
a Pareto optimization method for sampling test sets, which
optimizes the word clarity and bigram representativeness, as
well as memorability of the test sets. We have applied the
proposed method to obtain test sets from the Mackenzie and
Soukoreff phrase set [25], and published them on the Internet
[3] to immediately benefit text entry researchers.
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RELATED WORK

Smart Touch Keyboards
The classical statistical decoding algorithm of input correction
was proposed by Goodman et al. [16], which calculates the
likelihood of a word W within a pre-defined dictionary given
an input sequence I as:

P(W |I)∝P(I|W )×P(W ) (1)

where P(I|W ) describes the noise in users’ typing behavior,
and P(W ) corresponds to the frequency of the word. After that,
numerous smart keyboards have been proposed for various
scenarios (e.g. tablet [11, 21], phone [14, 41], and smartwatch
[40]). Noticeably, QWERTY still stands as one of the most
popular layouts for smart keyboards. Therefore, we focus our
review on smart keyboards with QWERTY layout.

Based on the classical statistical decoding algorithm, Findlater
et al. [11] adapted the underlying key-press classification mod-
els to improve the ten-finger typing performance. Vertanen
et al. proposed VelociTap [40], a decoder that incorporates
a probabilistic keyboard model, a character language model
and a word language model. Kristensson et al. [21] proposed
a keyboard that uses geometric pattern matching to perform
word-level correction. Some smart keyboards have leveraged
additional information. Goel et al. [14] used accelerometer
data to correct typing errors resulting from walking. Later,
Goel et al. proposed ContextType [15], which combines users’
posture-specific touch pattern information with a language
model to classify users’ touch events as pressed keys. Weir et
al. [41] combined pressure information and Gaussian Progress
regression within a probabilistic decoder.

The algorithm of smart keyboards works by searching for le-
gal words within a predefined dictionary that most like the
input. Therefore, input correction is in essence a classification
problem. This inspired us to take word clarity, which quanti-
fies the “similarity” between the word and other words, into
consideration when evaluating smart keyboards.

Word Clarity
When evaluating smart keyboards, word clarity is an important
factor that has been noticed by several researchers [10, 21,
37]. Generally, word clarity describes the extent to which a
word is likely to confuse with other words. Kristensson et al.
[21] noticed that the “difficulty” of the task words affects the
performance of the keyboard. However, they did not further
investigate this effect. Dunlop et al. [10] and Smith et al. [37]
used word clarity in optimizing keyboard layout for touch and
gesture typing respectively.

In existing works, researchers tended to calculate word clarity
using the location and shape of the word on the keyboard
layout. Kristensson et al. [21] did not explicitly quantify
word clarity. However, they noticed that some word pairs are
difficult to distinguish because they are close neighbors on the
keyboard. Dunlop et al. [10] calculated the “tap ambiguity”
based on “badgrams” to quantify the clarity of a word. Smith
et al. [37] defined gesture clarity as the pairwise Manhattan
distance between sampled points on each gesture.

We see two limitations in existing works: 1) the calculation
of word clarity was not derived from principled probabilistic
theory. Consequently, the calculation of word clarity varied
among researchers; 2) there lacks a formal investigation of the
effect of word clarity on text entry measurements.

Phrase Sets for Text Entry Experiments
In early days, there was no widely agreed upon standard on
the selection of appropriate phrases for transcription tasks.
Therefore, researchers have used texts from a wide range of re-
sources (e.g. western novel [18], Linux operating system [17],
and news [43]). In order to improve this situation, Mackenzie
et al. [25] proposed a standard phrase set that contains 500
phrases. And Vertanen et al. [39] proposed the EnronMobile
phrase set, which was optimized in terms of both memorability
and bigram probability.

Due to the limited number of task phrases in experiments,
researchers usually use a randomly sampled subset of the
mainstream phrase sets (e.g. [40, 41]). Some researchers also
added pangrams to the task phrases to ensure the coverage
of all letters (e.g. [11, 15, 21]). To minimize sampling er-
ror, researchers have proposed advanced methods to generate
better phrase sets. Paek et al. [31] proposed a procedure
that can choose the best phrase set from a number of random-
ly generated samples based on relative entropy. Leiva et al.
[23] emphasized the memorability of phrases, and proposed
a method for sampling memorable and representative phrase
sets based on a multiple regression model.

Some researchers have compared the performance of different
phrase sets and sampling methods. Kristensson et al. [20]
compared five publicly-available phrase sets and two task p-
resentation styles. They found that different phrase sets yield
statistically significant differences in terms of both entry and
error rates. Later, Sanchis et al. [33] compared three automat-
ed phrase sampling methods in ten languages, and found that
MEMREP [23] outperforms RANDOM and NGRAM [31].

WORD CLARITY OF INDIVIDUAL WORD
Although it is agreed that word clarity describes the extent
to which a word is to confuse with others, the calculation of
word clarity in existing works varies. In this section, we first
introduce the calculation of word clarity and its probabilistic
interpretation. We then investigate the effect of word clarity
on the measured error rate through simulation.

Calculating Word Clarity
A key concept in calculating word clarity is the “distance”
between words. In existing works, it is usually calculated
according to the spatial distance between words on the key-
board layout (e.g. [37]). Similarly, we calculated the distance
between two words as:

dis(A,B) =
1

S2
key
×

n

∑
i=1
‖Ai−Bi‖2

2 (2)

In Equation 2, A and B are two words whose length are both n.
Ai and Bi are the 2D key centers of the ith character in A and
B respectively, and || · ||2 denotes the Euclidian norm. Skey is
the size of each key used for normalization. We assume that
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users can input the correct number of points when entering the
target word, hence we only consider word pairs with identical
lengths. The smaller dis(A,B) is, the more similar A and B
are, and it is more likely that the two words may confuse with
each other.

Given the distance between word pairs, we then define the
clarity of a word W in the same way as existing works [37]:

clarity(W ) = min
X∈L(n)−W

dis(W,X) (3)

where n corresponds to the length of W , L(n) denotes the
set of all words in the dictionary whose lengths are n. In
Equation 3, clarity(W ) can be interpreted as the minimum
distance between W and all other words in the dictionary with
identical lengths. The lower the clarity is, the more likely W
may be to confuse with other words. Particularly, we define
clarity(W ) to be infinity if W is the only word in L(n), because
there are no other words that can be confused with W .

Probabilistic Interpretation
Note that Smith et al. [37] also presented a formula for calcu-
lating word distance:

dis(A,B) =
1
n
×

n

∑
i=1
‖Ai−Bi‖2 (4)

However, there are two major differences between Equation 2
and Equation 4: 1) Instead of using the Euclidian norm, we
use the squared Euclidian norm. Accordingly, we use S2

key
to normalize the result with regard to keyboard size; 2) We
do not normalize the result with regard to the length of the
word (n). We now prove this modification is helpful to make
the calculation result more interpretable. We denote λ as the
probability that a user intends to enter word A, but generates
the input that corresponds to word B. We can calculate λ as:

λ =
n

∏
i=1

P(Bi|Ai) (5)

where n is the length of both A and B. It is widely accepted
that the touch endpoint on touchscreen keyboards follows a
2D Gaussian distribution (e.g. [4, 13, 16]). For simplicity,
we assume the standard deviation in x and y dimensions are
identical, therefore

P(Bi|Ai) =
1

2πσ2 exp{− 1
2σ2 [(Bix−Aix)

2 +(Biy−Aiy)
2]} (6)

Combining Equation 5 and Equation 6, we have

λ = (
1

2πσ2 )
n exp(− 1

2σ2 ‖Ai−Bi‖2
2) (7)

Comparing Equation 2 and Equation 7, we can see that by
using the squared Euclidian norm, our definition of “distance”
is indicative of the probability that users generate ambiguous
input. Essentially, this square form reflects the 2D Gaussian
noise in users’ input. According to symmetry, this is also
true when A and B are exchanged with each other. Finally,
we normalize the distance metric according to keyboard size
by dividing the S2

key term, which makes the result consistent
across different sizes of keyboards.

Keyboard Layout and Language Model
Equation 2 and Equation 3 suggest that the value of word
clarity is specific to a particular keyboard layout and a dictio-
nary. In order to maximize the external validity of our result,
in this paper, we calculated word clarity using the standard
QWERTY keyboard layout, which is common across most
Android keyboards (e.g. Nexus 5) and in existing works [13,
37]. The width and the height of individual keys is 6.16mm
and 9.42mm respectively, with no margin between keys.

Meanwhile, we used the Enron Corpus [19] as our dictionary.
The Enron Corpus is a large set of emails that were generated
by the employees of the Enron Corporation, which consists of
over 600,000 messages from 1999 to 2002. In the field of text
entry, the Enron Corpus has been adopted as language model
by many researchers [13, 31, 39]. We chose it for two reasons:
1) it consists of text that are generated in real world human
communication without privacy problem; 2) it consists of a
relatively large body of text, which is essential to fit the huge
body of the English language.

Unfortunately, the Enron Corpus was inadequate in its raw
form. Therefore, we performed preprocessing to get clean
text that is generated by human (rather than generated by
the machine), and to filter out words that are illegal. Our
progressively preprocessing of the Enron Corpus contains de-
duplication, removing attached text, email address, URLs and
all non-alphabetical characters, etc.

As addressed by Fowler et al. [13], extracting clean, human-
generated text from the Enron Corpus is not easy. We therefore
verified our results with Mackenzie et al.’s work [25]. In the
final corpus, there are totally 53,226,381 words, 253,165,481
characters, with 148,565 distinct words. The mean length of
word is 4.76. Table 1 shows the most frequent letters and
words in our processed corpus. Not surprisingly, “e” is the
most frequent letter, and “the” is the most frequent word. The
correlation with English using AnalysePhrase.java [25] was
0.942. According to these results, we believe our processed
corpus is representative of the English language.

Letter Frequency Probability
e 30,958,000 0.1223
t 22,245,950 0.0879
a 20,856,668 0.0824
o 19,735,975 0.0780
n 18,723,388 0.0740

(a)

Word Frequency Probability
the 2,485,564 0.0467
to 1,600,379 0.0301

and 1,131,430 0.0212
of 1,046,738 0.0197
a 888,908 0.0167

(b)

Table 1: Most frequent letters and words with their frequencies
in our processed corpus.

Distribution of Word Clarity
Figure 1a shows the Cumulative Distribution Function (CDF)
of the clarity of all words in the corpus. Of all 148,565 distinct
words, most words yield a relatively small clarity. The mean
clarity is 11.2 (SD = 17.0), and 77.5% of the words have a
clarity below 15.0. On the other hand, there are also some
words with very high clarity, yielding an overall range from
1.0 to 234.5.
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(a) (b)

Figure 1: (a) CDF of the clarity of all words in the corpus; (b)
Linear fitting of word clarity to word length, black bar shows
one standard deviation.

Figure 1b shows the clarity of words with different lengths.
Generally, longer words tend to have higher clarity. A linear
fitting between word length and average clarity yield an R2

of 0.91. On the other hand, the R2 value fitted on all words
dropped to 0.49, suggesting that word length per se is not
sufficient to model word clarity.

EFFECT OF WORD CLARITY ON ERROR RATE
The task of smart keyboards is to find the word in a dictionary
that is “most like” the input. Therefore, even under the same
level of input noise, words with higher clarity may still yield
higher accuracy than those with lower clarity. However, to
our knowledge, the effect of word clarity on accuracy has
never been verified. In this section, we verify through simula-
tion whether the clarity of the target word indeed affects the
accuracy of smart keyboards. Additionally, as the keyboard
size varies significantly across platforms (e.g. smartphone and
smartwatch), we also investigate the effect of keyboard size.

Simulation Design
The basic workflow of our simulation procedure is to gener-
ate simulated keyboard taps for words with different clarity,
use a smart keyboard algorithm to recognize the target word
according to the noisy input, then evaluate the output.

We used the same keyboard layout as existing works [13,
37]. Three levels of keyboard sizes were tested, with the
key widths being 6.16mm, 4.8mm and 2.4mm respective-
ly. These sizes approximate the size of keyboards on smart-
phones [4, 6] and smartwatches [22]. For each keyboard size,
we tested all distinct words in the Mackenzie and Soukor-
eff phrase set [25], as it is one of the most widely-adopted
phrase sets in current studies. And for each word, we ran
1,000 independent iterations of simulation. Totally, we tested
3 sizes×1163 words×1000 iterations = 3489000 iterations.

We modelled the distribution of touch location using 2D Gaus-
sian distribution [13]. The mean of the distribution was set
at the center of each key, which is a model simplification
for general typing tasks without biasing towards a particular
touch finger or angle. Previous work [4] also found that the
magnitude of the offset in general is small (∼0.5mm) and the
average offset across all the conditions are close to the target
center. The x and y standard deviation in the big size was set
to be 1.97mm and 1.88mm respectively based on Azenkot et
al.’s results [4]. For the middle and small sizes, the standard

deviations were set to be 1.88 and 1.68mm in both dimensions
according to Bi et al.’s findings [6]. These values yielded a
per-tap error rate of 61.9%, 24.2% and 12.9% for increasing
sizes respectively. Note that we have normalized dis(w1,w2)
according to the key size, therefore this would not affect the
result of word clarity. We used the classical Bayesian model
as the keyboard algorithm (see Equation 1). P(I|W ) was cal-
culated using the Gaussian distribution described above, and
P(W ) was from our language model.

Results
Considering that character-level metrics are not suitable for
smart keyboards, which work at the word level rather than
literally output every letter typed, some researchers have pro-
posed word-level metrics that are helpful in smart keyboard
evaluation (e.g. word score [5]). Here, for simplicity, we refer
to the word-level error rate as:

Error Rate = (1− Ncorrect

Ntotal
)×100% (8)

where Ncorrect and Ntotal denotes the number of correct words
and the total number of the transcribed words respectively.

There are totally 1,163 distinct words in the Mackenzie and
Soukoreff phrase set [25], with clarity ranging from 1.0 to
49.9. We evenly split the range of word clarity into 5 bins, and
calculated the average word-level error rate of the words in
each bin (Figure 2a). Noticeably, 91.3% of the words has a
clarity less than 15.0. Therefore, we also performed the same
analysis for these words separately (Figure 2b). We did not
control the number of words in each bin to be equal, as there
are a large amount of words that has identical word clarity.
For example, in Figure 2b, 1584/3186 words has a clarity of 1,
which makes them inseparable.

(a) (b)

Figure 2: Word-level error rate for each clarity bin and key-
board size. (a) all 1,163 words; (b) words with clarity less than
15.0.

Figure 2 shows the word-level error rate for each clarity bin
and keyboard size. For all sizes, the word-level error rate drops
monotonously with increasing word clarity, implying that even
under the same level of input noise, words with higher clarity
will indeed yield higher accuracy. Besides, the effect of clarity
on error rate becomes more pronounced when keyboard size
becomes smaller (3.1% to 0.0% for the big size, while 26.4%
to 0.0% for the small size). Note that the level of input noise
also becomes greater compared with the keyboard size for
smaller keyboards, this results thus highlights the need for
considering word clarity for imprecise input scenarios.
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Meanwhile, the effect of word clarity seems more significant
when clarity is relatively low. In Figure 2a, even for small size,
the average error rates of bin2 to bin5 are close. However,
in Figure 2b, there is an obvious trend that error rate dropps
monotonously with increasing clarity. It is worth mention-
ing that most of the words (77.5% in the whole corpus and
91.3% in the Mackenzie and Soukoreff phrase set [25]) have
a relatively low clarity (< 15.0), therefore we consider this
“small-scale effect” important.

TYPING PERFORMANCE ON DIFFERENT PHRASE SETS
The results in the previous section highlight the need for con-
sidering the clarity of task words when measuring the word-
level accuracy of smart keyboards, especially when the level
of input noise is relatively large compared with the keyboard
size (e.g. on smartwatches). In this section, we carried out a
user study where participants completed real text entry tasks.
Our goal is to verify whether testing phrase sets with different
word clarity would really bias the measured speed and accura-
cy. Similar as the previous study, we tested two different sizes
of keyboards: phone-sized and watch-sized.

Participants
We recruited 12 participants from the campus (8 male, 4 fe-
male), with an average age of 21.8 (SD = 2.3). All participants
regularly used a QWERTY keyboard on their smartphones.
Each participant was compensated $20.

Apparatus
As we were interested in users’ typing performance on dif-
ferent sizes of keyboards, we used two kinds of apparatus: A
Nexus 6P phone for the phone-sized keyboard, and a MOTO
360 smartwatch for watch-sized keyboard. The Nexus 6P
phone has a 5.7 inch screen, with a ppi of 515. The MOTO
360 smartwatch has a 1.56 inch round screen, with a ppi of
205. Both apparatus report the location in pixel level and
timestamp when a touch event occurs (e.g. down, move, up).

Experiment Design
We used a two-factor within-subjects design. We tested two
keyboard sizes: phone-sized and watch-sized. For the phone-
sized keyboard, we used the big size layout in the previous
section. For the watch-sized keyboard, in pilot study, uses com-
mented that 2.4mm keys was too small for typing. Therefore,
we set the keys to be 3mm×3mm, with no margin between
keys. The keyboard algorithm was the same as the big size
and small size keyboard in the previous section respectively.
The only difference is that for real time performance, we only
used the top 15,000 words in the dictionary as the language
model. As noted by Nation et al. [29], this was sufficient to
cover about 97.8% of daily English words.

We manually chose three phrase sets from a number of subsets
randomly sampled from the Mackenzie and Soukoreff phrase
set [25], denoted as Easy, Medium and Hard. Each phrase
set has 20 distinct phrases. The average word clarity of all
words in Easy, Medium and Hard was 9.96, 6.02 and 1.08
respectively. We expected that Easy would yield the highest
text entry speed with lowest error rate, while Hard would led
to the lowest text entry speed with highest error rate.

Procedure
Participants completed two sessions of text entry tasks, each
corresponding to a keyboard size. In each session, they com-
pleted three blocks of text entry tasks, corresponding to Easy,
Medium and Hard respectively. The order of sessions and
blocks were counterbalanced. Participants were seated dur-
ing the experiment. After a three-minute warm-up, they were
asked to type “as quickly and as accurately as possible”. As our
goal is to investigate the relative performance across different
conditions, we asked all participants to type with their index
finger to avoid bias that arise from different typing postures.
During typing, the keyboard shows three candidate words (see
Figure 3). Upon selection, the keyboard automatically ap-
pends a space to the word. Users can also press backspace or
swipe left to correct the entered text. A two-minute break was
enforced between each block.

(a) Smartwatch interface (b) Phone interface

Figure 3: Experiment platform.

Results
Text Entry Speed
We calculated the text entry speed following Mackenzie [1]:

WPM =
|T |−1

S
×60× 1

5
(9)

where T is the target string and S is the elapsed time in seconds
from the first to the last touch in the sentence. Figure 4 shows
the average text entry speed for each condition.

Figure 4: Text entry speed for each keyboard size and phrase
set, black bar shows one standard deviation.

For phone-sized keyboard, the speed for Easy, Medium and
Hard was 33.3 WPM (SD = 5.8), 32.2 WPM (SD = 5.4) and

Innovative Text Entry Systems CHI 2017, May 6–11, 2017, Denver, CO, USA

4220



30.0 WPM (SD = 4.2) respectively. Generally, this speed
is consistent with the index-finger text entry speed on smart
phones [4]. Interestingly, average text entry speed increased
monotonously with word clarity, with the speed of Easy being
11% faster than that of Hard. RM-ANOVA found a significant
effect of clarity (F2,22 = 13.1, p < .001), confirming that task
clarity has effect on the measured text entry speed.

As expected, the speed on the watch-sized keyboard was slow-
er. The speed for Easy, Medium and Hard was 26.4 WPM
(SD = 4.0), 25.1 WPM (SD = 3.7) and 21.1 WPM (SD = 2.8)
respectively. RM-ANOVA also found a significant effect of
clarity (F2,22 = 57.1, p < .0001). Interestingly, the effect of
clarity was much stronger than phone-sized keyboard, with
the speed for Easy being 25% faster than that for Hard. This
phenomenon is consistent with our simulation result in the
previous section, which may be because of the relatively larger
level of input noise.

Error Rate
We measured error rate using CER [38], which is the mini-
mum string distance between the target string and the final
transcribed string, divided by the length of the target string.
Figure 5 shows the average error rate in each condition. Con-
sistent with existing works, subjects tended to fix most of the
errors and left few in the final submitted string [24, 38, 42].
The error rate of all six conditions were below 0.9%.

Figure 5: Error rate for each keyboard size and phrase set,
black bar shows one standard deviation.

For both phone-sized and watch-sized keyboard, the average
error rate increased monotonously as word clarity drops. And
again, the effect of word clarity was stronger for watch-sized
keyboard than phone-sized keyboard. The average error rate
for Hard was 0.5 times higher than that for Easy in the phone-
sized keyboard, but 4.2 times higher for watch-sized keyboard.
RM-ANOVA found no significant effect of clarity (F2,22 =
0.60, p = .56) for phone-sized keyboard, probably due to the
overall high prediction accuracy. While for the watch-sized
keyboard, a significant effect of clarity was found (F2,22 =
5.27, p < .05).

PHRASE SET SAMPLING PROBLEM
So far, we have showed that the clarity of the chosen task
phrases would have effect on text entry studies in terms of both
the measured speed and accuracy. Therefore, it is necessary to
take word clarity into consideration when sampling phrase sets.
In this section, we formalize the phrase sampling problem,
and introduce the metrics that we consider in sampling proper
phrase sets for text entry experiments.

Phrase Set Sampling Problem
When evaluating the performance of text entry techniques, a
widely adopted way is to recruit participants in a text entry
experiment, in which they are asked to transcribe some task
phrases while input speed and accuracy are measurements.
The advantage of the transcription task is that it strengthens the
internal validity. First, as all participants write the same text,
this removes the variance that might occur due to participants
writing widely varying texts. Second, a transcription task does
not require participants to think of something to write, which
reduces the variance in text entry speed. Third, this allows
results to be reproducible, and facilitates the comparison of
different text entry techniques.

However, the downside of a transcription task is its low exter-
nal validity. That is, due to the limited number of task phrases
used in the experiment, the measured performance of the text
entry methods is hard to be generalized as the performance in
realistic settings. The tradeoff between internal validity and
external validity in text entry experiments has been extensively
discussed by many researchers [20, 23, 25, 33, 39].

In this paper, we focus on optimizing the external validity
of a transcription task by choosing the “right” phrases. We
define the problem of phrase sampling as: Given S as a set
of phrases that are good candidates for conducting text en-
try experiments (in this paper, the Mackenzie and Soukoreff
phrase set [25]), find the optimal subset of S (denoted as Ŝ)
that is most representative of the target language (e.g. English).
In this paper, we used our processed Enron Corpus [19] as
described previously to approximate the characteristics of the
English language (denoted as U).

Optimization Metrics
When sampling phrase sets for text entry experiments, memo-
rability and representativeness are two metrics that have been
widely adopted by researchers [23, 25, 33, 39]. In transcrip-
tion tasks, it is important that phrases should be memorable
in order to minimize the variance of additional cognitive pro-
cessing time. Meanwhile, as speed and accuracy are the most
important measurements in text entry experiments, we hope
that the measured speed and accuracy of a smart keyboard on
Ŝ should be representative of that on U .

In the previous section, we have proved that the clarity of the
task phrases affects the measured speed and accuracy. Mean-
while, bigram probability has been extensively used for both
predicting the text rate [8, 10, 26, 36] and for designing repre-
sentative phrase sets [31, 39]. Researchers usually calculate
the movement efficiency (MT ) as the sum of Fitts’ law [12]
movement time (Ti j) between all pairs of letters (bigrams)
weighted by bigram probabilities Pi j calculated from a lan-
guage corpus:

MT = ∑
i

∑
j

Pi j×Ti j (10)

where

Ti j = a+blog2(
Ai j

Skey
+1) (11)

Ai j is the distance between key i and key j, Skey is the size
of the key, a and b are coefficients. Based on these facts, we

Innovative Text Entry Systems CHI 2017, May 6–11, 2017, Denver, CO, USA

4221



ground the notion of representativeness in terms of word clarity
and bigram probability. Besides, we take the memorability of
the sampled phrases as the third metric. We now discuss the
calculation of the three metrics in detail.

Word Clarity Metric
We measure the similarity between the distribution of word
clarity of Ŝ and that of U based on the Kolmogorov-Smirnov
test (K-S test) [28]. The K-S test is a widely adopted non-
parametric test for comparing the distribution of two samples
in statistics. It makes no assumptions about the probability
distributions of the variables being assessed, making it suitable
for a wide range of applications. We defined D(Ŝ,U) as a new
metric quantifying the difference between the word clarity
distribution of Ŝ and U , which could be calculated as:

D(Ŝ,U) = sup
t
|FŜ(t)−FU (t)| (12)

where

FU (t) =
1
n

n

∑
i=1

1{xi ≤ t} xi ∈U (13)

In Equation 13, n is the size of U , FU (t) is a step function
that describes the cumulative frequency of x. That is, for any
specific value of t, the value of FU (t) indicates the proportion
of individuals in U having measurements less than or equal
to t. In Equation 12, FŜ(t)−FU (t) quantifies the aggregated
word clarity of Ŝ with respect to that of U . The smaller this
value is, the easier Ŝ is compared with U . For example, in the
previous experiment, the value of Easy, Medium and Hard was
-0.29, -0.17 and 0.29 respectively. Accordingly, the D(Ŝ,U) of
the three phrase sets was 0.29, 0.17 and 0.29 respectively.

Figure 6: Illustration of the word clarity metric. Blue and
orange lines correspond to the empirical distribution function
of phrase set S1 and S2 respectively, the length of the black
arrow corresponds to D(S1,S2).

Figure 6 illustrates the calculation of D(S1,S2), which can
be interpreted as the maximum vertical distance between t-
wo empirical distribution functions. It is easy to see that
D(S1,S2) ∈ [0,1]. D(S1,S2) = 0 only when the two distribu-
tions are identical, and D(S1,S2) = 1 only when the range of
the two distributions do not collapse. The more representative
S is with respect to U , the closer D(S,U) will be to zero.

Bigram Probability Metric
The bigram probability table is a 26×26 table describing the
probability of each bigram calculated on a corpus. In order
to quantitatively measure the similarity between the bigram

probability table of Ŝ and U , we adopted the method of Paek
et al. [31], and calculate the representativeness as:

D(Ŝ||U) = ∑
x,y∈χ

pŜ(x,y)log2
pŜ(x,y)
pU (x,y)

(14)

where χ is the set of 26 English characters. pŜ(x,y) and
pU (x,y) is the probability of bigram xy in Ŝ and U respec-
tively. D(Ŝ||U) can be interpreted as the relative entropy, or
the Kullback-Leibler divergence between the two probability
distributions. D(Ŝ||U) is always non-negative and becomes
zero only when the two bigram probability tables are identical.
The more representative Ŝ is with respect to U , the closer the
relative entropy will be to zero.

Memorability Metric
Many researchers have highlighted the necessity of consider-
ing memorability when designing phrase sets [23, 25, 33, 39].
Leiva et al. [23] found that the memorability of a single phrase
Ŝi can be calculated as:

CER(Ŝi) =−11.65+0.83 ·Nw+0.48 ·SDchr+6.94 ·OOV −1.00 ·LProb
(15)

where Nw is the number of words in the phrase, SDchr is the
standard deviation of the number of characters per word. OOV
is the ratio of infrequent words. LProb is the logarithm of the
probability of the phrase calculated on U . We then calculate
the overall memorability of Ŝ as the average memorability of
all phrases in Ŝ:

Mem(Ŝ) =
1
N

N

∑
i=1

CER(Ŝi) (16)

where N is the number of phrases in Ŝ, and Ŝi is the ith phrase
in Ŝ. The smaller Mem(Ŝ) is, the easier it is to remember the
phrases in Ŝ.

Metric Normalization
To weigh the three metrics appropriately, we performed an
optimization to estimate the minimum and maximum possible
values for each metric. We then normalize each of the metric’s
score in a linear fashion so that the worst possible score is
mapped to 0.0 and the best possible score is mapped to 1.0. As
Peak et al. [31] demonstrated that the phrase set size affects the
characteristics of the phrase set, we chose 4 levels of phrase
set size: 20, 40, 80, and 160, and established a normalization
system for different phrase sizes respectively.

We used an optimization method combining simulated anneal-
ing and local neighborhood search. We performed 20 rounds
of optimization for D(Ŝ,U) and D(Ŝ||U) respectively. Each
round starts with a random phrase set, we then ran 2,000 tem-
peratures with 500 iterations in each temperature. For Mem(Ŝ),
it is easy to theoretically calculate the maxima and minima by
choosing the most/least memorable phrases. The results are
shown in Table 2.

The Pareto-Optimization Procedure
We solve the multi-objective optimization problem by per-
forming a Pareto optimization, which has recently been used
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Phrase Set
Size

Clarity Metric Bigram Metric Memorability

min max min max min max

20 0.011 0.435 0.259 1.820 -0.853 4.513
40 0.007 0.392 0.130 1.295 -0.482 4.204
80 0.004 0.321 0.072 0.879 -0.056 3.780

160 0.002 0.260 0.049 0.552 0.427 3.274

Table 2: Range of metrics used for normalization.

to optimize both keyboard layouts [10, 37] and keyboard al-
gorithms [7]. In this approach, we calculate an optimal set of
phrase sets called a Pareto front. Each phrase set on the front
is called Pareto optimal, which means that none of its metrics
can be improved without hurting the other scores. Solutions
that are not Pareto optimal is called dominated, which means
that there exists a Pareto optimal solution which is better than
it in at least one of the criteria and no worse in the others.
Analyzing the Pareto optimal solutions can reveal the tradeoff
between multiple objectives. Additionally, the Pareto set pro-
vides a broad range of optimal solutions, allowing researchers
to choose the one that best matches their preferences.

Our Pareto optimization procedure was similar to that in exist-
ing works [7, 37], which is consisted of three phrases: 1) met-
ric normalization; 2) Pareto front initialization; 3) Pareto front
expansion. In the first phrase, we used the normalization sys-
tem in Table 2 as the minimum and maximum possible values
for each metric. In the second phase, we evenly chose 49 differ-
ent weightings for the linear combination of the three metrics,
with 4 size×20 round×3000 temperature×1000 iteration
in each weighting. In the third phase, we performed 500
rounds of expansion to fill out the Pareto front.

SAMPLING PHRASE SETS FOR TEXT ENTRY STUDIES

Task Phrase Sets in Literature
To have an overview of the phrase sets used in existing works,
we analyzed all published papers in CHI and UIST from 2003
to 2016 that used the Mackenzie and Soukoreff phrase set
[25]. There are totally 44 papers with 63 distinct user studies.
Consistently, all the papers used a randomly sampling strategy
to get phrase sets for testing. We were interested in the aver-
age number of participants in each study, and the number of
phrases for each participant and each condition, which is the
smallest unit in the experiment (e.g. block or session).

(a) (b)

Figure 7: Summarized statistics from published papers. (a)
Number of participants; (b) Number of phrases per condition
and participant.

Figure 7a shows the distribution of number of participants,
and Figure 7b shows the number of phrases per condition
and participant. Both metrics roughly follow a Gaussian dis-
tribution. The average number of participants in a study is
14.1 (SD = 8.5, median = 12). And the average number of
phrases for each condition and participant is 28.3 (SD = 18.0,
median = 24). Besides, these two metrics seems independent
of each other, with linear regression yielding an R2 of 0.01.
Therefore, for pooled-data analysis across all participants,
about 14× 28 = 392 phrases are tested for each condition.
And for user-specific analysis, about 28 phrases are tested for
each condition and participant.

Validity of Random Sampling
To examine the validity of the widely adopted random sam-
pling approach, we randomly sampled a large number of
phrase sets from the Mackenzie and Soukoreff phrase set [25],
and check the metrics of the sampled phrase sets. For each
level of phrase set size, we randomly sampled 1×107 phrase
sets. Table 3 shows the simulation result.

Phrase Set
Size

Clarity Metric Bigram Metric Memorability

mean std dev mean std dev mean std dev

20 0.843 0.066 0.736 0.041 0.498 0.052
40 0.850 0.057 0.755 0.032 0.505 0.041
80 0.833 0.051 0.762 0.026 0.506 0.034
160 0.807 0.042 0.741 0.024 0.504 0.029

Table 3: Metrics of the randomly sampled phrase sets.

As expected, the standard deviation of all three metrics drop
with the increase of phrase set size, suggesting that when
more phrases are included, the stability of random sampling
can be increased. For all four sizes, the mean clarity metric
are between 0.80 and 0.85. However, Table 2 suggested that
sometimes the disparity could be very significant (-0.435 to
0.435). Referring to Figure 4 and Figure 5, this corresponds
to more than 11% and 25% difference in the measured speed,
or 0.5 and 4.2 times difference in the measured error rate, for
phone-size and watch-sized keyboard respectively.

Comparatively, random sampled phrase sets yield worse per-
formance in terms of bigram frequency and memorability. The
average score is about 0.75 for bigram frequency, and about
0.50 for memorability, which is consistent across different
sizes. This suggested that random sampling may not be a good
choice to get appropriate test phrase sets. And therefore, a
more principled method is needed to get optimal test sets for
text entry experiments.

Pareto-Optimized Phrase Sets
Figure 8 shows the outcome of the Pareto optimization, which
consists of the final Pareto fronts of optimized phrase sets for
different sizes. The Pareto front for increasing sizes is consist-
ed of 3,420, 6,973, 21,247 and 57,292 phrase sets respectively,
which are chosen from over 1.1×1010 candidate phrase sets.
Each Pareto front can be seen as a three-dimensional design
space of performance goals that one can choose from for dif-
ferent usage scenarios. Each phrase set on the front is optimal
in some tradeoff of the three metrics, and each single set on the
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front is better than the others in some way. Generally, a phrase
set with higher clarity scores, bigram scores and memorability
scores are more apt to exhibit higher external validity in terms
of speed and accuracy, and are easier to memorize.

(a) Size = 20 (b) Size = 40

(c) Size = 80 (d) Size = 160

Figure 8: 3D Pareto front for different sizes. Gray dots shows
the projection of the points to different planes.

We now highlight phrase sets that serve roughly equal combi-
nations of all the three metrics (those on the 3D Pareto front
that are closest to the 45◦ line through the space). As noted by
Dunlop et al. [10] and Smith et al. [37], choosing the solutions
that serve each goal on a roughly equal basis is a reasonable
approach to get the solutions that can best accommodate a
large variety of preferences. We denote each phrase set as
“T-<size>”, “T” stands for “triple-optimized”, “size” takes
the value of 20, 40, 80 or 160. Table 4 shows the metric scores
of the triple-optimized phrase sets, as well as some optimized
phrase sets in previous works. We have published the phrase
sets as well as other single-optimized and double-optimized
phrase sets online for researchers and designers [3].

Phrase Set Size Word
/ Phrase

Character
/ Word

Clarity
Score

Bigram
Score

Memorability
Score

T-20 20 4.4 4.6 0.888 0.882 0.887
T-40 40 4.5 4.5 0.901 0.900 0.901
T-80 80 4.6 4.5 0.902 0.903 0.904

T-160 160 4.9 4.6 0.891 0.891 0.891
Enron-Mem1 40 5.4 3.9 0.767 0.697 0.710
Enron-Bi40 40 6.2 4.1 0.720 0.824 0.609

Enron-Mem_Bi 40 6.1 3.9 0.705 0.756 0.609

Table 4: Phrase set metric scores comparison. Shaded rows
signify previous phrase sets.

Tradeoff Between Metrics
In Figure 8, the projected points of the Pareto front on three
planes are very close to (1.0, 1.0), indicating that these metrics
are nearly orthogonal to each other. In fact, in Table 4, the
metric scores of the four triple-optimized phrase sets are all

close to 0.90. It is a very encouraging finding, which suggests
that these three metrics can be optimized simultaneously. This
finding remains unchanged as the phrase size varies.

Effect of Phrase Set Size
Interestingly, small-sized triple-optimized phrase sets appears
to be subsets of large-sized triple-optimized phrase sets. Ta-
ble 5 shows the number of identical phrases between each pair
of the phrase sets. Approximately, we have T-20 ⊂ T-40 ⊂
T-80 ⊂ T-160. For example, all 40 phrases in T-40 are also
in T-80, and 77 out of 80 phrases in T-80 are also in T-160.
Therefore, based on our results, one can easily generate triple-
optimized phrase sets with any specified sizes. For example,
in order to get T-50, one can select 50 phrases from T-80 rather
than from all 500 phrases in the raw set.

T-20 /
T-40 17 /
T-80 19 40 /

T-160 20 40 77 /
T-20 T-40 T-80 T-160

Table 5: Number of identical phrases between each pair of the
phrase sets.

Comparison with Other Phrase Sets
To better understand what is possible in the optimization space
of phrase set, we compared our results with the Enron-Mobile
phrase sets [39]. Table 4 shows the performance of mem1,
bi40 and mem_bi phrase sets. These three phrase sets are all
consisted of 40 phrases selected from the Enron corpus, and
are optimized for memorability, bigram probability or both
metrics respectively. As Table 4 shows, our T-40 phrase set
significantly outperforms all these three phrase sets on all the
three metrics. We believe the key reason is that we consid-
ered more factors during optimization, and our optimization
procedure is more exhaustive as well as systematic.

Meanwhile, our optimized phrase sets showed significant ad-
vantage over random sampling. Compared with Table 3, the
triple-optimized phrase sets yielded about 6%, 20% and 80%
higher scores in terms of clarity, bigram frequency and mem-
orability respectively. According to Figure 4, Figure 5 and
previous results [23, 25, 33, 39]), this could yield effect on the
measured speed and error rate in text entry experiments.

DISCUSSION
In this paper, we proposed word clarity as a new metric in
sampling keyboard test sets. Although it has been noticed and
defined by several researchers (e.g. [37]), we are the first to
derive a calculation that has direct probabilistic interpretation.
And we both theoretically and empirically verified that, test
phrases with different word clarity could yield a difference of
26% in error rate, and 25% in text entry speed.

It is worth noticing that the effect of word clarity was more
pronounced on watch-sized keyboard than phone-sized key-
board. We attributed this to the language model in prediction
algorithms. For example, although “out” and “our” were close
neighbors on the keyboard, they were not the same part of
speech. Therefore, they would be easy to distinguish if a pow-
erful language model was employed. In comparison, “in” and
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“on” are still hard to distinguish in this case. On phone-sized
keyboards, the level of input noise was relatively low. There-
fore, language model could compensate most of the input
errors, which covered the effect of word clarity. However, on
watch-sized keyboard, the level of input noise was much high-
er. Therefore, the effect of word clarity was still significant.
This result suggested that on the one hand, existing results
on smart phones are still valid, on the other hand, consider-
ing word clarity is important for new scenarios where input
precision is low (e.g. smartwatch, distant pointing).

In text entry experiments, there are cases where researchers
use the same test phrases for all participants or factor levels
(e.g. testing the upper bound of input speed). Comparing with
using different phrases for different participants, this approach
increased the internal validity of the results. However, there
is no principle on how to select these test phrases. In result,
the measured results may not be generalized to daily use. The
result of this paper can improve the external validity of this
case by providing phrase sets that can better fit the target lan-
guage. And comparing with random sampling, our simulation
results also showed that we can achieve higher metric scores
regarding external validity.

We employed our approach on the well-known Mackenzie
and Soukoreff phrase set [25], and got a set of phrase sets
that outperformed existing data sets and the random sampling
procedure (see Table 3 and Table 4). Systematically verifying
the validity of the method would require users to enter the pro-
posed phrase sets and many phrase sets from existing works
(e.g. [39]) and random sampling. However, this would lead to
huge amount of experimental work with many controlled fac-
tors (word clarity, bigram frequency and memorability), which
is impractical. As bigram frequency and memorability have
been studied in existing works [23, 31], we focus on phrase
sets with different word clarity (see Figure 4 and Figure 5). It
is worth noting that our tested phrase sets in this experimen-
t were chosen from several randomly generated phrase sets.
Therefore, in real text entry experiments, there could be an
even greater difference due to sampling error (see Table 2).

LIMITATIONS AND FUTURE WORK
There are several limitations of this work, which we see as
opportunities of future work. First, our calculation of word
clarity was restricted to words with identical lengths. There
are two reasons for this: 1) Literature [9, 30] shows that the
frequencies of insertion/omission errors are only 1% when
entering text on phones. Therefore it is safe to assume that
most of the time users will input the correct number of touch
points; 2) Word clarity is designed to quantify the spatial
ambiguity of a test set, independent from keyboard decoders.
However, calculating a similar metric for words with unequal
lengths requires knowing the penalties that inserting/omitting
letters would impose. These penalties are usually tuned for
the specific decoder, and vary from keyboard to keyboard.
Considering them turns word clarity decoder-dependent.

Second, according to our results, the value and effect of word
clarity is affected by interaction modality and the keyboard
layout. In this paper, we focus on smart touch keyboards with
QWERTY layout, which is the most widely used technique

currently. However, it is also worthwhile to validate the re-
sults in more scenarios (e.g. smart gesture keyboard [27, 32]
and pointing on large wall display [34]). For example, when
comparing the similarity of two gestures, Smith et al. [37]
proposed the gesture typing word clarity. And one needs to re-
run the optimization procedure if the keyboard layout changes.
Note that our definition of word clarity is independent of lan-
guage model, which brings the advantage that our results can
also be applied to other corpora different from English.

Third, the goal of our phrase set optimization is to optimize the
external validity of the measured results, which assumes that
all participants use the same phrase set in the experiment. This
could remove the variance due to random sampling. However,
in real text entry experiments, this could also bring up carry-
over effects (e.g. learning). To minimize the side effects, one
can combine the advantage of randomization and optimization
by sampling phrase sets from our proposed sets. For example,
split T-160 to four sets with 40 phrases each, and assign them
to different participants.

CONCLUSION
In this paper, we push the problem of phrase sampling a step
further by introducing word clarity, which quantifies how like-
ly a word is to confuse with others. We first derived the
calculation of word clarity from probabilistic theory. We then
investigated the effect of word clarity on measured speed and
accuracy through simulation and user study. Results showed
that when the level of input noise is relatively high, word
clarity could yield a 25% and 26% difference in measured
speed and error rate respectively. Based on these results, we
proposed a Pareto optimization procedure to sample phrase
sets from the Mackenzie and Soukoreff phrase set, which were
optimized in terms of word clarity, bigram frequency and
memorability. We hope this work could encourage text entry
researchers to consider word clarity when evaluating smart
keyboard, and help improving the empirical practice in this
important research field.
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