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Abstract
Shoulder-surfing is the act of spying on an authorized user
of a computer system with the malicious intent of gain-
ing unauthorized access. Current solutions to address
shoulder-surfing such as graphical passwords, gaze input,
tactile interfaces, and so on are limited by low accuracy,
lack of precise gaze-input, and susceptibility to video anal-
ysis attack. We present an intelligent gaze gesture-based
system that authenticates users from their unique gaze
patterns onto moving geometric shapes. The system au-
thenticates the user by comparing their scan-path with each
shapes’ paths and recognizing the closest path. In a study
with 15 users, authentication accuracy was found to be 99%
with true calibration and 96% with disturbed calibration.
Also, our system is 40% less susceptible and nearly nine
times more time-consuming to video analysis attacks com-
pared to a gaze- and PIN-based authentication system.

Author Keywords
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ACM Classification Keywords
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Introduction
Shoulder-surfing is a significant issue for user authentica-
tion, due to its nature of attackers looking over a victim’s
shoulder to extract confidential information, and contin-
ues to be a growing problem [1, 10, 27]. These attacks
are not only prevalent in crowded places [16, 18, 25], but
can be further exploited with vision-enhancing devices
(e.g., long-range binoculars). Previous works have tried
to address shoulder-surfing with approaches like graphical
passwords [12, 28], PIN entry methods through cognitive
trapdoor games [23], PIN entry method based on vibration
and visual information [17], and gaze-assisted authentica-
tion [2, 4, 6, 16]. However, most of these solutions rely on
gaze input for PIN entry, fixation on certain points on an im-
age, or making specific gestures; also, they need decent
calibration for precise gaze input [3, 7, 11, 16].

Figure 1: Gaze Gesture-Based
Authentication System: A user is
authenticating by following the
three shape gaze password. [1 -
Camera, 2 - Authentication
interface, 3 - Eye tracker].

Figure 2: Gaze gesture-based
authentication interface with 36
shapes. Each shape has a fixed
starting and ending points, and
traverses along a predefined path.

We present a gaze-based user authentication system that
combines gaze with gesture recognition. The interface com-
prises of 36 moving shapes (Figure 2), and to authenticate,
the user has to follow three shapes, one on each frame, on
three consecutive frames. A frame is a five-second dura-
tion where all the shapes simultaneously move from their
source location to destination location. Three secretly se-
lected shapes constitute a user’s password. For successful
authentication, the scan-paths of the user’s gaze should
match with the traversed paths of the correct shapes in the
three frames. Also, of the 36 shapes only 12 shapes can
be selected for a password, and the remaining 24 are fake
shapes. Our approach is similar to the idea of pursuit-based
authentication presented by Vidal et al. [24]. However, we
use gesture recognition principles for scan-path matching,
and this method supports high accuracy even with a large
number of shapes and complex traversal paths. In addition,
fake shapes introduce randomness to frustrate potential
attackers from unauthorized access through guess work.

Prior Work
Kumar et al. [16], presented “EyePassword," a system that
can mitigate shoulder-surfing by using gaze-based input
methods. The results show that gaze-based password entry
performs as efficiently as keyboard-based input. Bulling et
al. [3], presented a novel gaze-based authentication system
that makes use of cued-recall graphical passwords on a sin-
gle image. Luca et al. [6], presented an authentication sys-
tem that is used in public terminals. The authors use an au-
thentication method “Eye-Pass-Shapes," that uses eye ges-
tures to significantly increase security while being easy to
use. Best et al. [2], presented a rotary dial for gaze-based
PIN entry that eliminates dwell time. The solution relies
on a weighted voting scheme of numerals whose bound-
aries are crossed by the streaming gaze points. Khamis et
al. [15], presented “GazeTouchPass," a multimodal gaze-
and touch-based authentication system for mobiles devices.
Cymek et al. [4], presented an authentication method, sim-
ilar to [24], where the user follows the digits moving in verti-
cal and horizontal directions to authenticate.

The previous systems are limited by low accuracy even with
true calibration. In [8] that evaluates 3 well-known gaze-
authentication methods, including [6], the least error was
9.5% and the highest error was 23.8%. Also in [2], the
authentication accuracy was 71.16% (PIN interface) and
64.20% (Rotatory interface). Furthermore, gaze-authentication
is susceptible to video analysis attacks [3, 6]. Though the
work presented in [4] recognized 97.57% of the digits en-
tered, the authors did not study password recovery through
video analysis attacks, this is important since the digits
move in vertical and horizontal trajectories only. Lastly, so-
lutions like [3, 6] need the user to remember the gestures
or multiple locations on an image, which may become diffi-
cult with a large number of passwords. We will discuss our
goals in the hypotheses section.
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Design Motivation
Prior research by Wendy et al. [19], Hoanca et al. [13],
Davis et al. [5], has shown that graphical passwords such
as static images or user-drawn gestures are easier to re-
member than PIN passwords. User-drawn passwords in-
volve two processes: 1) visual recall of the drawn pass-
word, and 2) recall of the temporal order [20]. Primarily,
we wanted to liberate the user from remembering complex
gestures and the order of strokes that constitute a gesture.
Thus, we made the interface such that the user is only re-
quired to remember the shapes that constitute the pass-
word but not required to remember the gestures and their
constituent strokes.

Figure 3: User’s scan-path when
following the traversed path of the
Square shape (red - path of
square, yellow - user’s scan-path).
The scan-path is shown here for
representation, but the user does
not see this.

Figure 4: User’s scan-path when
following the path of the Star
shape.

Figure 5: User’s scan-path when
following the path of the Pie shape.

Hypotheses
Considering the limitations with prior research and design
motivations for our system, we form the following hypothe-
ses: a) the gaze gesture-based authentication system
achieves high accuracy and is robust to calibration errors,
b) users commit fewer or no errors when entering pass-
words with successively repeated shapes (like pie, pie, cir-
cle) on our system, and c) our system is less susceptible
and more time consuming to video analysis attacks than
gaze- and PIN-based password entry systems.

System Architecture and Implementation
The gaze gesture-based authentication system (Figure 1)
consists of two main modules: 1) Gaze Tracking Module,
and 2) Authentication Engine.

Gaze Tracking Module: This module uses a table-mounted
“The Eye Tribe" eye tracker that provides (X,Y) gaze coordi-
nates. We position users at 45-75 cm in front of the monitor
and the eye tracker error is 0.5◦-1◦ of visual angle.

Authentication Engine: This is the central module that
runs on the computer and receives the eye tracker’s gaze

coordinates. Primarily, it implements the scan-path match-
ing algorithm to authenticate the user.

Authentication Procedure
Password Selection
To choose a password, a user selects three shapes from a
password selection interface that lists the 12 true shapes.
The first shape selected is followed on the first frame, the
second on the next frame, and so on.

Authentication Interface
The authentication interface is shown in Figure 2. The inter-
face is a canvas with 36 shapes placed at different locations
on the screen: 12 are true shapes available for password
selection, and the remaining 24 are fake shapes not con-
sidered during password selection. Each shape is assigned
a predefined starting and ending points, and a path along
which it traverses. Hence, the user is not required to search
for password shapes once their initial locations are known.

For each true shape, there are two fake shapes placed at
different quadrants on the screen which perform similar
transitions as the true shapes. We introduced fake shapes
for two reasons: 1) in brute force attacks, an attacker with-
out knowledge of the fake shapes must assume a password
complexity of 36 × 36 × 36 = 46, 656, whereas the true
complexity is 12 × 12 × 12 = 1728, and 2) in video analysis
attacks, fake shapes introduce enough randomness in the
system that it becomes hard or time-consuming to recog-
nize the exact shape through guesswork.

Authentication in Action
To control the interface, the user presses a set of hot-keys:
’A’ to initiate movement of shapes and record gaze data,
’Z’ to recover from user mistakes (blink, sneeze, losing the
path) and discard recorded gaze data, and ’M’ to submit the
password after following 3 shapes. We minimize authen-
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tication failures since users have direct control over each
frame. For example, if a user selected Square-Star-Pie as a
password, then the user is authenticated by following each
shapes’ paths in their respective frames, as shown in the
sequence of Figures 3, 4, 5. The user does not receive any
feedback, since the gaze point and scan-path are hidden.

Figure 6: User’s scan-path with
~300 points, scaled down to N = 64
points in the sampling stage.
Sampling converts the scan-path to
candidate path.

Figure 7: Template matching
algorithm finding the Euclidean
distance between each point on
the candidate path (scan-path) to a
corresponding point on the
template path.

Recognition System
We match the user’s scan-path against a shape’s traversed
path through “Template Matching" algorithm, where we
compute the root-mean-square distance of the candidate
path (user’s scan-path) from all the template paths (shapes’
traversed paths). The template path of a shape that is at
a least distance from the candidate path is chosen as the
shape followed by the user. Our template matching algo-
rithm is similar to $1 [26], but we perform only sampling,
and calculate the average distance between the two paths.

Scan-Path Matching and Authentication
The template matching algorithm first samples the input
scan-path to N = 64 points as depicted in Figure 6. We
chose N=64, empirically derived considering the eye track-
ing frequency of 60Hz we used. To compute the average
distance between a candidate path and a template path, as
shown in Figure 7, we use equation 1, where P is a (X,Y)
point on a path, C - candidate path, T - template path, and
∆DT - average distance to template.

∆DT =

N∑
p=1

√
(C[p]x − T [p]x)2 + (C[p]y − T [p]y)2

N
(1)

Template Construction
Our system was trained from traversed paths generated
by seven users. First, each user generated paths for 12

shapes that are used as templates in the recognition phase,
where the user again followed each of the shapes and
the system recognizes the shape followed. For users who
achieved more than 90% accuracy, their templates were re-
tained. We repeatedly added and tested new paths until our
final system achieved 100% accuracy from paths created
by four of those users. Since eye movements involve fixa-
tions, saccades, and regressions [9, 22], we generate tem-
plate paths against which the user’s scan-path is matched,
instead of using line paths of the shapes.

Experiment Design and Results
We tested the system in two phases.

PHASE 1: System Accuracy and Robustness
We recruited 15 participants (12 males and 3 females),
some used vision correction devices like glasses and con-
tact lens. All were either graduate or undergraduate stu-
dents, with ages varying between 20 and 26 (µage = 22.53).
Before each study, the participant was briefed about the
idea of gaze- and sketch-based authentication, given a
small demo of the working system, and calibrated with the
eye tracker on a 1900 × 1200 monitor.

Part 1: Scan-Path Recognition Accuracy
The goal of this study was to determine the recognition ac-
curacy of the user’s scan-path against the actual path of the
shape. Hence, the user follows all 12 true shapes, one on
each frame. After the completion of each frame, the sys-
tem recognizes the shape followed by the user, and the
shape’s name is displayed through a pop-up message. In
this phase, a small circle moves on the screen reflecting the
user’s gaze-point on the screen, and the user’s scan-path is
drawn as the gaze moves. This feedback (scan-path) was
enabled to verify true positives, i.e., the path followed by the
user for a given shape. However, no trial was repeated if
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the user didn’t follow the true path resulting in recognition
failure, as such errors may occur in real-world scenarios.
Table 1 shows the confusion matrix for all the true shapes.
We achieved a scan-path recognition accuracy of 99.44%
at an F-measure of 0.99.

Figure 8: The range of the user’s
eye movements (gestures) when
performing gaze authentication.

Figure 9: Video Analysis Attack: A
user is trying to guess the gaze
password with the help of a video
and authentication interface.

Figure 10: Gaze- and PIN-based
Authentication System

Table 1: Scan-Path Recognition - Confusion Matrix. Key: A -
Circle, B - Open Hexagon, C - Triangle, D - Pie, E - Square, F-
eye, G - Open Square, H - Ring, I - Star, J - Open pentagon, K -
Pentagon, L - Hexagon

A B C D E F G H I J K L
A 1.0
B 1.0
C 1.0
D 0.93 0.07
E 1.0
F 1.0
G 1.0
H 1.0
I 1.0
J 1.0
K 1.0
L 1.0

Part 2: Authentication Accuracy With True Calibration
In this part, the user was allowed to choose a password,
by selecting three shapes from the password selection win-
dow. After selection, the user follows those shapes, one
on each frame, but no feedback (scan-path) was shown.
Providing no feedback simulates the real-world scenario,
as feedback would enable shoulder-surfing attacks. To au-
thenticate, the user should get all the three shapes correct.
The user repeated this authentication procedure for three
different passwords. We also recorded a video of the user’s
eye movements, while entering a password, to use in the
comparative study. Lastly, to test the system’s ability to in-
validate wrong passwords, the experiment facilitator sets
a different password (unknown to user), and the partici-
pant attempts to access the system by guessing the pass-
word; this was also repeated for three different passwords.

This is similar to testing the system with true negatives. We
achieved an authentication accuracy of 99%, and the confu-
sion matrix is shown in Table 2.

Table 2: True Calibration: Confusion Matrix, Authentication
Accuracy, and F-Measure

True Password False Password Accuracy F-Measure
True Password 97% 3% 99% 0.99False Password 100%

Part 3: Authentication Accuracy with Disturbed Calibration
To test robustness to calibration errors, the user was asked
to get up and walk around for a few minutes. Upon return,
the eye tracker was not re-calibrated, leaving the authen-
tication system susceptible to calibation errors. Similar to
part 2 of the study, the participant chooses three new pass-
words and enters them on three different trials. Again, the
facilitator sets three new passwords, and the participant
tries to access the system by guessing the passwords on
three different trials, to test true negatives. We achieved an
authentication accuracy of 96%, and the confusion matrix is
shown in Table 3.

Table 3: Disturbed Calibration: Confusion Matrix, Authentication
Accuracy, and F-Measure

True Password False Password Accuracy F-Measure
True Password 92% 8% 96% 0.96False Password 100%

PHASE 2: Robustness against Hacking
Through a preliminary study, similar to previous studies [3,
6], we tested the susceptibility of our system to video anal-
ysis attacks in comparison to a gaze- and PIN-based pass-
word system. During phase 1, we recorded the videos of
participants entering passwords (Figure 8) on both our sys-
tem and a gaze- and PIN-based system (Figure 10) that
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used dwell-based selection. Four users, as shown in Fig-
ure 9, analyzed videos, chosen randomly, of the partici-
pants entering passwords. We found that gaze- and sketch-
based authentication system was 40% less susceptible to
video analysis attacks, and it took significantly more time–
nearly 9 times longer–to guess the password on our system
compared to gaze- and PIN-based authentication system.
Users cracked 3/5 shape and 5/5 pin passwords in 4183
and 478 seconds respectively.

Qualitative Evaluation

Positives: P02: “The nature
of the actual password entry is
really good.. I can’t imagine a
better way.”
P05: “I liked that it’s simple
using shapes and that it’s very
secure that no one can really
track your eye movements.. It’s
very innovative.”
P12: “I like that you can use
this for authentication and
other people can’t really tell
that what you selected as your
password, because they can’t
really follow your eyes.”
P09: “This is definitely some-
thing new.. It addresses the
problem statement pretty
nicely.”
P07: “It was pretty impres-
sive, it was able to distinguish
between all those shapes
when they were colliding with
each other.. I would use it for
everyday jobs.”

Suggestions: P09 : “Some-
one sneezing could be an
issue.. they have to do the
password all over again.”
P05: “The problem would be
if people don’t have concen-
trated eyes.”
P15: “Adjust the eye tracker for
different postures.”

Discussion
In testing our hypotheses from our user studies, we first cor-
rectly hypothesized high accuracy for scan-path matching
and the authentication system with true calibration. Also,
the accuracy remained high even when the calibration was
disturbed. We attribute high accuracy to relaxed precision
on gaze input and unique paths for each shape traversal.
However, we anticipate that multiple shapes with similar
paths would reduce accuracy. Next, since the user follows
a single shape in each frame, we found that the partici-
pants had no difficulty in entering a password with repeated
shapes. Finally, results from video analysis attacks showed
the advantage of fake shapes: although an attacker can
guess the direction of a shape’s movement from the user’s
eyes, they cannot pick the right shape from numerous op-
tions before the system locks out from failed attempts. From
the interviews (side-table), we found that the users consider
this solution innovative, secure, and simple. However, some
expressed that sneezing, lack of attention during password
entry, and so on would lead to incorrect gaze input.

While we expected 100% accuracy, we encountered two
sources of scan-path distortion that affected accuracy. First,
although our system authenticates with five-second shape
movements compared to other gaze authentication systems
that take from 7.5 seconds [2] to 54.0 seconds [8], users

may blink during the shape’s five-second movement and
suggested reducing movement to 3 seconds. Hence, we
hypothesize that reducing the overall authentication time to
less than 10 seconds avoids authentication failure due to
erroneous gaze input. Second, the use of vision correction
devices lead to imprecise gaze input [14, 21].

Future Work
From our current work, we have identified several poten-
tial next steps for improvements and extensions. One next
step is to supplement our strong authentication accuracy
with further reducing authentication time as elaborated in
similar works [2, 8, 16]. Another next step is to investigate
users’ requests, from our conducted interviews, for reduced
attention time through shorter authentication time, similar
to [6, 16]. We also realize that employing fake shapes does
not always prevent but instead delays brute force attacks,
so we will be investigating additional solutions such as ran-
domizing shape traversal paths, and providing each user
with the ability to configure their choice of true and fake
shapes. Furthermore, we will be extending this work as an
accessible authentication system for users with physical im-
pairments, who cannot use input devices like a keyboard.
Lastly, we would like to further scale our system to accom-
modate smaller form-factor devices than the current desk-
top setting.

Conclusion
We presented a gaze gesture-based authentication system
to counter shoulder-surfing attacks. The interface consists
of 36 shapes that move simultaneously on the screen and
the user follows three shapes to authenticate, while an eye
tracker tracks the user’s gaze. We found that our system
can authenticate with over 99% accuracy, and 40% less
susceptible and nearly nine times more time-consuming to
video analysis attacks compared to existing systems.
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