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Figure 1: Diagram of data processing and analysis fow in VizML, starting from (1) the original Plotly Community Feed API 
endpoints, proceeding to (2) the deduplicated dataset-visualization pairs, (3a) features describing each individual column, pair 
of columns, and dataset, (3b) design choices extracted from visualizations, (4) task-specifc models trained on these features, 
and (5) potential recommended design choices. 

ABSTRACT 

Visualization recommender systems aim to lower the barrier 
to exploring basic visualizations by automatically generating 
results for analysts to search and select, rather than manu-
ally specify. Here, we demonstrate a novel machine learning-
based approach to visualization recommendation that learns 
visualization design choices from a large corpus of datasets 
and associated visualizations. First, we identify fve key de-
sign choices made by analysts while creating visualizations, 
such as selecting a visualization type and choosing to encode 
a column along the X- or Y-axis. We train models to predict 
these design choices using one million dataset-visualization 
pairs collected from a popular online visualization platform. 
Neural networks predict these design choices with high ac-
curacy compared to baseline models. We report and interpret 
feature importances from one of these baseline models. To 
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evaluate the generalizability and uncertainty of our approach, 
we benchmark with a crowdsourced test set, and show that 
the performance of our model is comparable to human per-
formance when predicting consensus visualization type, and 
exceeds that of other visualization recommender systems. 

CCS CONCEPTS 

• Human-centered computing → Visualization design 
and evaluation methods; Visualization theory, concepts 
and paradigms; • Computing methodologies → Machine 
learning. 
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steep learning curves due to a reliance on manual specifca-
tion through code [7, 68] or clicks [2, 62]. As a result, data 
visualization is often inaccessible to the growing number of 
domain experts who lack the time or background to learn 
sophisticated tools. 
While required to create bespoke visualizations, manual 

specifcation is unnecessary for many common use cases 
such as preliminary data exploration and the creation of 
basic visualizations. To support these use cases in which 
speed and breadth of exploration are more important than 
customizability [63], systems can leverage the fnding that 
the properties of a dataset infuence how it can and should 
be visualized. For example, prior research has shown that 
the accuracy with which visual channels (e.g. position and 
color) encode data depends on the type [5, 15, 67] and distri-
bution [28] of data values. 
Most recommender systems encode these visualization 

guidelines as collection of “if-then” statements, or rules [21], 
to automatically generate visualizations for analysts to search 
and select, rather than manually specify [64]. For example, 
APT [35], BOZ [13], and SAGE [52] generate and rank vi-
sualizations using rules informed by perceptual principles. 
Recent systems such as Voyager [72, 73], Show Me [34], and 
DIVE [23] extend these approaches with support for column 
selection. While efective for certain use cases [72], these 
rule-based approaches face limitations such as costly rule cre-
ation and the combinatorial explosion of possible results [1]. 

In contrast, machine learning (ML)-based systems directly 
learn the relationship between data and visualizations by 
training models on analyst interaction. While recent sys-
tems like DeepEye [33], Data2Vis [17], and Draco-Learn [37] 
are exciting, they do not learn to make visualization design 
choices as an analyst would, which impacts interpretabil-
ity and ease of integration into existing systems. Further-
more, because these systems are trained with annotations 
on rule-generated visualizations in controlled settings, they 
are limited by the quantity and quality of data. 
We introduce VizML, a ML-based approach to visualiza-

tion recommendation using a large corpus of datasets and 
associated visualizations. To begin, we describe visualization 
as a process of making design choices that maximize efec-
tiveness, which depends on dataset, task, and context. Then, 
we formulate visualization recommendation as a problem of 
developing models that learn to make design choices. 

We train and test machine learning models using one mil-
lion unique dataset-visualization pairs from the Plotly Com-
munity Feed [46]. We describe our process of collecting and 
cleaning this corpus, extracting features from each dataset, 
and extracting fve key design choices from corresponding 
visualizations. Our learning task is to optimize models that 
use features of datasets to predict these choices. 

Neural networks trained on 60% of the corpus achieve 
∼ 70 − 95% accuracy at predicting design choices in a sep-
arate 20% test set. This performance exceeds that of four 
simpler baseline models, which themselves out-perform ran-
dom chance. We report feature importances from one of 
these baseline models, interpret the contribution of features 
to a given task, and relate them to existing research. 
We evaluate the generalizability and uncertainty of our 

model by benchmarking against a crowdsourced test set. We 
construct this test set by randomly selecting datasets from 
Plotly, visualizing each as a bar, line, and scatter plot, and 
measuring the consensus of Mechanical Turk workers. Using 
a scoring metric that adjusts for the degree of consensus, we 
fnd that VizML performs comparably to Plotly users and 
Mechanical Turkers, and outperforms two rule-based and 
two ML-based visualization recommendation systems. 

To conclude, we discuss interpretations, applications, and 
limitations of our initial machine learning approach to visu-
alization recommendation. We also suggest directions for fu-
ture research, such as aggregating public training and bench-
marking corpora, integrating separate recommender models 
into an end-to-end system, and refning defnitions of visual-
ization efectiveness. 

2 PROBLEM FORMULATION 

Data visualization communicates information by represent-
ing data with visual elements. These representations are 
specifed using encodings that map from data to the retinal 
properties (e.g. position, length, or color) of graphical marks 
(e.g. points, lines, or rectangles) [5, 12]. 

Concretely, consider a dataset that describes 406 automo-
biles (rows) with eight attributes (columns) such as miles 
per gallon (MPG), horsepower (Hp), and weight in pounds 
(Wgt) [50]. To create a scatterplot showing the relationship 
between MPG and Hp, an analyst encodes each pair of data 
points with the position of a circle on a 2D plane, while also 
specifying other retinal properties such as size and color: 
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tools. But a scatterplot is specifed with the Vega-lite [55] 
grammar by selecting a mark type and felds to be encoded 
along the x- and y-axes, and in Tableau [62] by placing the 
two columns onto the respective column and row shelves. 

That is, to create basic visualizations in many grammars or 
tools, an analyst specifes higher-level design choices, which 
we defne as statements that compactly and uniquely specify 
a bundle of lower-level encodings. Equivalently, each gram-
mar or tool afords a design space of visualizations, which a 
user constrains by making choices. 
We formulate basic visualization of a dataset d as a set 

of interrelated design choices C = {c}. However, not all de-
sign choices result in valid visualizations – some choices are 
incompatible with each other. For instance, encoding a cate-
gorical column with the Y position of a line mark is invalid. 
Therefore, the set of choices that result in valid visualizations 
is a subset of the space of all possible choices. 

The efectiveness of a visualization can be defned by infor-
mational measures such as efciency, accuracy, and memora-
bility [6, 74], or emotive measures like engagement [19, 27]. 
Prior research also shows that efectiveness is informed by 
low-level perceptual principles [15, 22, 31, 51] and dataset 
properties [28, 54], in addition to contextual factors such as 
task [3, 28, 53], aesthetics [14], domain [24], audience [60], 
and medium [36, 57]. In other words, an analyst makes de-
sign choices Cmax that maximize visualization efectiveness 
given a dataset and contextual factors. 

But making design choices can be expensive. A goal of vi-
sualization recommendation is to reduce the cost of creating 
visualizations by automatically suggesting a subset of design 
choices Cr ec ⊆ C that maximize efectiveness. Trained with 
a corpus of datasets {d} and corresponding design choices 
{C}, ML-based recommender systems treat recommendation 
as an optimization problem, such that predicted Cr ec ∼ Cmax . 
A more detailed formulation of the learning task is included 
in the Supplementary Material (SM) Section S1. 

3 RELATED WORK 

We relate and compare our work to existing Rule-based Visu-
alization Recommender Systems and ML-based Visualization 
Recommender Systems. 

Rule-based Visualization Recommender Systems 
Visualization recommender systems either suggest data queries 
(selecting what data to visualize) or visual encodings (how 
to visualize selected data) [71]. Data query recommenders 
vary widely in their approaches [59, 69], with recent systems 
optimizing statistical “utility” functions [18, 65]. Though 
specifying data queries is crucial to visualization, it is a dis-
tinct task from design choice recommendation. 
Most visual encoding recommenders implement guide-

lines informed the seminal work of Bertin [5] and Cleveland 

and McGill [15]. This approach is exemplifed by Mackin-
lay’s APT [35] – the ur-recommender system – which enu-
merates, flters, and scores visualizations using expressive-
ness and perceptual efectiveness criteria. The closely related 
SAGE [52], BOZ [13], and Show Me [34] support more data, 
encoding, and task types. Recently, hybrid systems such 
as Voyager [71–73], Explore in Google Sheets [20, 66], 
VizDeck [43], and DIVE [23] combine visual encoding rules 
with the recommendation of visualizations that include non-
selected columns. 

Though efective for many use cases, these systems sufer 
from three major limitations. First, visualization is a complex 
process that may require modelling non-linear relationships 
that are difcult to capture with simple rules. Second, craft-
ing rule sets is a costly process that relies on expert judgment. 
Lastly, as the dimension of input data increases, the com-
binatorial nature of rules result in an explosion of possible 
recommendations. 

ML-based Visualization Recommender Systems 
The guidelines encoded by rule-based systems often derive 
from experimental fndings and expert experience. Therefore, 
an indirect manner, heuristics distill best practices learned 
from another analyst’s experience of creating and consuming 
visualizations. Instead of aggregating best practices learned 
from data and representing them in a system with rules, 
ML-based systems propose to train models that learn di-
rectly from data and can be embedded into systems as-is. 
A schematic comparison of ML-based visualization recom-
mender systems can be found in the SM Section S2. 
DeepEye [33] combines rule-based visualization gener-

ation with models trained to 1) classify a visualization as 
“good” or “bad” and 2) rank lists of visualizations. The Deep-
Eye corpus consists of 33,412 bivariate visualizations of columns 
drawn from 42 public datasets. 100 students annotated these 
visualizations as good/bad, and compared 285,236 pairs. These 
annotations, combined with 14 features for each column pair, 
train a decision tree for classifcation and a ranking neural 
network [10] for the “learning to rank” task. 
Data2Vis [17] uses a neural machine translation approach 

to create a sequence-to-sequence model that maps JSON-
encoded datasets to Vega-lite visualization specifcations. 
The model is trained using 4,300 automatically generated 
Vega-Lite examples, consisting of 1-3 variables, generated 
from 11 distinct datasets. Model predictions are qualitatively 
validated by examining the visualizations generated from 24 
common datasets. 
Draco-Learn [37] learns trade-ofs between constraints 

in Draco, a formal model that represents 1) visualizations 
as logical facts and 2) design guidelines as hard and soft 
constraints. Constraint weights are learned using a ranking 
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support vector machine trained on ranked pairs of visualiza-
tions harvested from graphical perception studies [28, 53]. 
Draco then recommends visualizations that satisfy these con-
straints by solving a combinatorial optimization problem. 
VizML difers from these systems in three major respects. 

In terms of the learning task, DeepEye learns to classify and 
rank visualizations, Data2Vis learns an end-to-end genera-
tion model, and Draco-Learn learns soft constraints weights. 
By learning to predict design choices, VizML models are eas-
ier to quantitatively validate, provide interpretable measures 
of feature importance, and can be more easily integrated into 
visualization systems. 

In terms of data quantity, the VizML training corpus is or-
ders of magnitude larger than that of DeepEye and Data2Vis. 
The size of our corpus permits the use of 1) large feature sets 
that capture many aspects of a dataset and 2) high-capacity 
models such as deep neural networks. 
The third major diference is one of data quality. In con-

trast to the few datasets used to train the three existing sys-
tems, the datasets used to train VizML models are extremely 
diverse in shape, structure, and distribution. Furthermore, the 
visualizations used by other ML-based recommender systems 
are generated by rule-based systems and evaluated under 
controlled settings. The corpus used by VizML is the result 
of real visual analysis by analysts on their own datasets. 

However, VizML faces two major limitations. First, these 
three ML-based systems recommend both data queries and 
visual encodings, while VizML only recommends the latter. 
Second, in this paper, we do not create an application that 
employs our visualization model. Design considerations for 
user-facing systems that productively and properly employ 
ML-based visualization recommendation are important, but 
beyond the scope of this paper. 

4 DATA 

We describe our process for extracting features and design 
choices from the processed Plotly data. These are steps 1, 
2 and 3 in Figure 1. In the SM Section S3, we describe our 
process for collecting and cleaning the corpus of 2.3 million 
dataset-visualization pairs from the Plotly Community Feed 
[44, 46] and provide a description of the data. This paper is 
the frst time the Plotly corpus, generated by 143,007 unique 
users, is used to train visualization recommender systems. 
The corpus along with analysis scripts is publicly available 
at https://vizml.media.mit.edu. 

Feature Extraction 

We map each dataset to 841 features, mapped from 81 single-
column features and 30 pairwise-column features using 16 
aggregation functions. Detail on each of the features is found 
in Table S2 in the SM Section S4. 
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Figure 3: Extracting design choices from a dual-axis scatter-
plot visualizing three columns of the MPG dataset. 

Each column is described by 81 single-column features 
across four categories. The Dimensions (D) feature is the 
number of rows in a column. Types (T) features capture 
whether a column is categorical, temporal, or quantitative. 
Values (V) features describe the statistical and structural 
properties of the values within a column. Names (N) features 
describe the column name. We distinguish between these 
feature categories for three reasons. First, these categories 
let us organize how we create and interpret features. Second, 
we can observe the contribution of diferent types of features. 
Third, some categories of features may be less generalizable 
than others. We order these categories (D → T → V → N) 
by how biased we expect those features to be towards the 
Plotly corpus. 

We describe each pair of columns with 30 pairwise-column 
features. These features fall into two categories: Values and 
Names. Note that many pairwise-column features depend 
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on the individual column types determined through single-
column feature extraction. For instance, the Pearson corre-
lation coefcient requires two numeric columns, and the 
“number of shared values” feature requires two categorical 
columns. 
We create 841 dataset-level features by aggregating 

these single- and pairwise-column features using the 16 ag-
gregation functions shown in Table S2c in SM Section S4. 
These aggregation functions convert single-column features 
(across all columns) and pairwise-column features (across 
all pairs of columns) into scalar values. For example, given a 
dataset, we can count the number of columns, describe the 
percent of columns that are categorical, and compute the 
mean correlation between all pairs of quantitative columns. 
Two other approaches to incorporating single-column fea-
tures are to train separate models per number of columns, or 
to include column features with padding. Neither approach 
yielded a signifcant improvement over the results reported 
in Section 6. 

Design Choice Extraction 

Each visualization in Plotly consists of traces that associate 
collections of data with visual elements. Therefore, we ex-
tract an analyst’s design choices by parsing these traces. 
Examples of encoding-level design choices include mark 
type, such as scatter, line, bar; and X or Y column encoding, 
which specifes which column is represented on which axis; 
and whether or not an X or Y column is the single column 
represented along that axis. For example, the visualization 
in Figure 3 consists of two scatter traces, both of which have 
the same column encoded on the X axis (Hp), and two distinct 
columns encoded on the Y axis (MPG and Wgt). 
By aggregating these encoding-level design choices, we 

can characterize visualization-level design choices of a 
chart. Within our corpus, over 90% of the visualizations con-
sist of homogeneous mark types. Therefore, we use visual-
ization type to describe the type shared among all traces, and 
also determined whether the visualization has a shared axis. 
The example in Figure 3 has a scatter visualization type and 
a single shared axis (X). 

5 METHODS 

We describe our feature processing pipeline, the machine 
learning models we use, how we train those models, and 
how we evaluate performance. These are steps 4 and 5 of 
the workfow in Figure 1. 

Feature Processing 

We converted raw features into a form suitable for modeling 
using a fve-stage pipeline. First, we apply one-hot encod-
ing to categorical features. Second, we set numeric values 
above the 99th percentile or below the 1st percentile to those 

respective cut-ofs. Third, we imputed missing categorical 
values using the mode of non-missing values, and missing 
numeric values with the mean of non-missing values. Fourth, 
we removed the mean of numeric felds and scaled to unit 
variance. 

Lastly, we randomly removed datasets that were exact 
deduplicates of each other, resulting in unique 1, 066, 443 
datasets and 2, 884, 437 columns. However, many datasets 
are slight modifcations of each other, uploaded by the same 
user. Therefore, we removed all but one randomly selected 
dataset per user, which also removed bias towards more 
prolifc Plotly users. This aggressive deduplication resulted 
in a fnal corpus of 119,815 datasets and 287,416 columns. 
Results from only exact deduplication result in signifcantly 
higher within-corpus test accuracies, while a soft threshold-
based deduplication results in similar test accuracies. 

Prediction Tasks 
Our task is to train models that use the features described 
in Section 4 to predict the design choices also described in 
Section 4. Two visualization-level prediction tasks use 
dataset-level features to predict visualization-level design 
choices: 

(1) Visualization Type [VT]: 2-, 3-, and 6-class 
Given all traces are the same type, what type is it? 
Scatter Line Bar Box Histogram Pie 
44829 26209 16002 4981 4091 3144 

(2) Has Shared Axis [HSA]: 2-class 
Do the traces all share one axis (either X or Y)? 
False True 
95723 24092 

The three encoding-level prediction tasks use features 
about individual columns to predict how they are visually 
encoded. These prediction tasks consider each column inde-
pendently, instead of alongside other columns in the same 
dataset, which accounts for the efect of column order. 

(1) Mark Type [MT]: 2-, 3-, and 6-class 
What mark type is used to represent this column? 
Scatter Line Bar Box Histo Heatmap 
68931 64726 30023 13125 5163 1032 

(2) Is Shared X-axis or Y-axis [ISA]: 2-class 
Is this column the only column encoded on its axis? 
False True 
275886 11530 

(3) Is on X-axis or Y-axis [XY]: 2-class 
Is this column encoded on the X-axis or the Y-axis? 
False True 
144364 142814 
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For the Visualization Type and Mark Type tasks, the 2-
class task predicts line vs. bar, and the 3-class predicts scatter 
vs. line vs. bar. Though Plotly supports over twenty mark 
types, we limited prediction outcomes to the few types that 
comprise the majority of visualizations within our corpus. 
This heterogeneity of visualization types is consistent with 
the fndings of [4, 38]. 

Neural Network and Baseline Models 
Our primary model is a fully-connected feedforward neural 
network (NN) with 3 hidden layers, each consisting of 1, 000 
neurons with ReLU activation functions and implemented 
using PyTorch [41]. For comparison, we chose four simpler 
baseline models, all implemented using scikit-learn [42] with 
default parameters: naive Bayes (NB), K-nearest neighbors 
(KNN), logistic regression (LR) and random forest (RF). Ran-
domized parameter search for each model did not result in a 
signifcant performance increase over the reported results. 
For all models, we split the data into 60/20/20 

train/validation/test sets and train and test each model fve 
times using 5-fold cross-validation. The reported results are 
thus test results averaged across the fve test sets. We over-
sample the train, validation, and test sets to the size of the 
majority class while ensuring no overlap between the three 
sets. We oversample because of the heterogeneous outcomes, 
naive classifers guessing the base rates would have high 
accuracies. Balanced classes also allow us to report standard 
accuracies (fraction of correct predictions), ideal for inter-
pretability and generalizing results to multi-class cases C > 2, 
in contrast to measures such as the F1 score. 

The neural network was trained with the Adam optimizer 
and a mini-batch size of 200. The learning rate was initial-
ized at 5 × 10−4, and followed a learning rate schedule that 
reduces the learning rate by a factor of 10 upon encountering 
a plateau, defned as 10 epochs during which validation accu-
racy does not increase beyond a threshold of 10−3. Training 
ended after the third decrease in the learning rate, or at 100 
epochs. Weight decay, dropout and batch normalization did 
not signifcantly improve performances. 

In terms of features, we constructed four diferent feature 
sets by incrementally adding the Dimensions (D), Types 
(T), Values (V), and Names (N) categories of features, in 
that order. We refer to these feature sets as D, D+T, D+T+V, 
and D+T+V+N=All. The neural network was trained and 
tested using all four feature sets independently. The four base-
line models only used the full feature set (D+T+V+N=All). 

6 EVALUATING PERFORMANCE 

We report performance of each model on the fve prediction 
tasks in the barplot in Figure ?? and in Table 2 in the SM. 
The neural network consistently outperforms the baseline 
models and model performance generally progressed as NB 

< KNN < LR ≈ RF < NN. That said, the performance of both 
RF and LR is not signifcantly lower than that of the NN in 
some cases. Simpler classifers may be desirable, depending 
on the need for optimized accuracy, and the trade-of with 
other factors such as interpretability and training cost. 

Because the four feature sets are a sequence of supersets (D 
⊂ D+T ⊂ D+T+V ⊂ D+T+V+N), we consider the accuracy of 
each feature set above and beyond the previous. For instance, 
the increase in accuracy of a model trained on D+T+V over 
a model trained on D+T is a measure of the contribution 
of value-based (V) features. These marginal accuracies are 
visualized alongside baseline model accuracies in Figure ?? 
in the SM. 

We note that the value-based feature set (e.g. the statistical 
properties of a column) contribute more to performance 
than the type-based feature set (e.g. whether a column is 
categorical), potentially because there are many more value-
based features than type-based features. Or, because many 
value-based features are dependent on column type, there 
may be overlapping information between value- and type-
based features. 

Interpreting Feature Importances 
Feature importances help relate our results to prior literature 
and inform design guidelines for rule-based systems. Here, 
we determine feature importances for our top performing 
random forest models using the standard mean decrease 
impurity (MDI) measure [8, 32]. We choose this method for 
its interpretability and its stability across runs. The top ten 
features for fve diferent tasks are shown in Table 2a and 
for all other tasks in the SM Table S3. 

We frst note the importance of dimensionality ( ), like 
the length of columns (i.e. the number of rows) or the number 
of columns. For example, the length of a column is the second 
most important feature for predicting whether that column is 
visualized as a line or bar trace. The dependence of mark type 
on number of visual elements is consistent with heuristics 
like “keep the total number of bars under 12” for showing 
individual diferences in a bar chart [61], and not creating pie 
charts with more “more than fve to seven” slices [30]. The 
dependence on number of columns is related to the heuristics 
described by Bertin [5] and encoded in Show Me [34]. 
Features related to column type ( ) are consistently 

important for each prediction task. For example, whether 
a dataset contains a string type column is the ffth most 
important feature for determining two-class visualization 
type. The dependence of visualization type choice on col-
umn data type is consistent with the type-dependency of 
the perceptual properties of visual encodings described by 
Mackinlay [35] and Cleveland and McGill [15]. 
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(a) Prediction accuracies for two visualization-level tasks. (b) Prediction accuracies for three encoding-level tasks. 

Model Features d 

Visua

C=2 

lization 

C=3 

Type 

C=6 

HSA 

C=2 Model Features 

Mark Type ISA XY 

d C=2 C=3 C=6 C=2 C=2 

NN D 
D+T 
D+T+V 
All 

15 
52 
717 
841 

66.3 
75.7 
84.5 
86.0 

50.4 
59.6 
77.2 
79.4 

51.3 
60.8 
87.7 
89.4 

84.1 
86.7 
95.4 
97.3 

NN D 
D+T 
D+T+V 
All 

1 65.2 44.3 30.5 52.1 49.9 
9 68.5 46.8 35.0 70.3 57.3 
66 79.4 59.4 76.0 95.5 67.4 
81 84.9 67.8 82.9 98.3 83.1 

NB 
KNN 
LR 
RF 

All 
All 
All 
All 

841 
841 
841 
841 

63.4 
76.5 
81.8 
81.2 

49.5 
59.9 
64.9 
65.1 

46.2 
53.8 
69.0 
66.6 

72.9 
81.5 
90.2 
90.4 

NB 
KNN 
LR 
RF 

All 
All 
All 
All 

81 57.6 41.1 27.4 81.2 70.0 
81 72.4 51.9 37.8 72.0 65.6 
81 73.6 52.6 43.7 84.8 79.1 
81 78.3 60.1 46.7 74.2 83.4 

Nraw (in 1000s) 42.2 87.0 99.3 119 Nraw (in 1000s) 94.7 163 183 287 287 

Table 1: Design choice prediction accuracies for fve models, averaged over 5-fold cross-validation. The standard error of the 
mean was < 0.1% for all results. Results are reported for the neural network (NN) and four baseline models: naive Bayes 
(NB), K-nearest neighbors (KNN), logistic regression (LR), and random forest (RF). Features are separated into four categories: 
dimensions (D), types (T), values (V), and names (N). Nraw is the size of the training set before resampling, d is the number of 
features, and C is the number of outcome classes. HSA = Has Shared Axis, ISA = Is Shared X-axis or Y-Axis, and XY = Is on 
X-axis or Y-axis. 

(a) Feature importances for two visualization-level tasks. 

# Visualization Type (C=2) Has Shared Axis (C=2) 

1 % Values are Mode std 
2 Min Value Length max 
3 Entropy var 
4 Entropy std 
5 String Type has 
6 Median Length max 
7 Mean Value Length AAD 
8 Entropy mean 
9 Entropy max 
10 Min Value Length AAD 

Number of Cols 
Is Monotonic 
Field Name Length 
# Words In Name 
X In Name 
# Words In Name 
Edit Distance 
Edit Distance 
Length 
Edit Distance 

% 
AAD 
NR 
# 
range 
mean 
max 
std 
NR 

(b) Feature importances for three encoding-level tasks. 

# Mark Type (C=2) Is Shared Axis (C=2) Is X or Y Axis (C=2) 

1 Entropy # Words In Name Y In Name 
2 Length Unique Percent X In Name 
3 Sortedness Field Name Length Field Name Length 
4 % Outliers (1.5IQR) Is Sorted Sortedness 
5 Field Name Length Sortedness Length 
6 Lin Space Seq Coef X In Name Entropy 
7 % Outliers (3IQR) Y In Name Lin Space Seq Coef 
8 Norm. Mean Lin Space Seq Coef Kurtosis 
9 Skewness Min # Uppercase Chars 
10 Norm. Range Length Skewness 

Table 2: Top-10 feature importances determined by mean decrease impurity for the top performing random forest models. The 
second column in the visualization-level importances table describes how each feature was aggregated, using the abbreviations 
in Table S2c. Colors represent diferent feature groupings: dimensions ( ), type ( ), statistical [Q] ( ), statistical [C] ( ), 
sequence ( ), scale of variation ( ), outlier ( ), unique ( 

Statistical features (quantitative: , categorical: ) 
such as Gini, entropy, skewness and kurtosis are impor-
tant across the board. The presence of these higher order 
moments is striking because lower-order moments such as 
mean and variance are low in importance. The importance of 
these moments highlight the potential importance of captur-
ing high-level characteristics of distributional shape. These 
observations support the use of statistical properties in visu-
alization recommendation, like in [59, 70], but also the use 
of higher-order properties such as skewness, kurtosis, and 
entropy in systems such as Foresight [16], VizDeck [43], and 
Draco [37]. 
Measures of orderedness ( ), specifcally sortedness 

and monotonicity, are important for many tasks. Sortedness 

), name ( ), and pairwise-relationship ( ). 

is defned as the element-wise correlation between the sorted 
and unsorted values of a column, that is |corr(Xraw , Xsor ted )|, 
which lies in the range [0, 1]. Monotonicity is determined 
by strictly increasing or decreasing values in Xr aw . The im-
portance of these features could be due to pre-sorting of a 
dataset by an analyst, which may reveal which column is con-
sidered to be the independent or explanatory column, which 
is typically visualized along the X-axis. While intuitive, we 
have not seen orderedness factor into existing systems. 
We also note the importance of the linear or logarith-

mic space sequence coefcients, which are heuristic-based 
features that roughly capture the scale of variation ( ). 
Specifcally, the linear space sequence coefcient is deter-
mined by std(Y )/mean(Y ), where Y = {Xi − Xi−1} with 
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i = (1 + 1)..N for the linear space sequence coefcient, and 
Y = {Xi /Xi−1} with i = (1 + 1)..N for the logarithmic space 
sequence coefcient. A column “is” linear or logarithmic if 
its coefcient ≤ 10−3. Both coefcients are important in all 
four selected encoding-level prediction tasks. We have not 
seen similar measures of scale used in prior systems. 
In sum, the diversity of the features in Table 2a and Ta-

ble S3 in the SM suggest that rule-based recommender sys-
tems should include more features than the current type 
based features most systems rely on (e.g. [34, 73]). Further-
more, the task-specifc ranking of features, as well as the 
non-linear dependencies in the models, make it even harder 
for rule-based systems to perform well across tasks and do-
mains and thus further emphasize the need for ML-based 
recommender systems 

7 BENCHMARKING WITH CROWDSOURCED 
EFFECTIVENESS 

We expand our defnition of efectiveness from a binary to a 
continuous function that can be determined through crowd-
sourced consensus. Then, we describe our experimental pro-
cedure for gathering visualization type evaluations from 
Mechanical Turk workers. We compare diferent models at 
predicting these evaluations using a consensus-based efec-
tiveness score. 

Modeling and Measuring Efectiveness 
As discussed in Section 2, we model data visualization as 
a process of making a set of design choices C = {c} that 
maximize an efectiveness criteria Ef that depends on dataset 
d , task, and context. In Section 6, we predict these design 
choices by training a machine learning model on a corpus of 
dataset-design choice pairs [(d, cd )]. But because each dataset 
was visualized only once by each user, we consider the user 
choices cd to be efective, and each other choice as inefective. 
That is, we consider efectiveness to be binary. 

But prior research suggests that efectiveness is contin-
uous. For example, Saket et al. use time and accuracy pref-
erence to measure task performance [53], Borkin et al. use 
a normalized memorability score [6], and Cleveland and 
McGill use absolute error rates to measure performance on 
elementary perceptual tasks [15]. Discussions by visualiza-
tion experts [25, 29] also suggest that multiple visualizations 
can be equally efective at displaying the same data. 

Our efectiveness metric should be continuous and refect 
the ambiguous nature of data visualization, which leads to 
multiple choices receiving a non-zero or even maximal score 
for the same dataset. This is in agreement with measures of 
performance for other machine learning tasks such as the 
BLEU score in language translation [40] and the ROUGE 
metric in text summarization [11], where multiple results 
can be (partly) correct. 

To estimate this efectiveness function, we need to observe 
a dataset d visualized by multiple potential users. Assume 
that a design choice c can take on multiple discrete values 
{v}. For instance, we consider c the choice of Visualization 
Type, which can take on the values {bar, line, scatter}. Using 
nv to denote the number of times v was chosen, we compute 
the probability of making choice v as P̂ c (v) = nv /N , and 
use {P̂ c } to denote the collection of probabilities across all v . 
We normalize the probability of choice v by the maximum

ˆ probability to defne an efectiveness score Ef (v) = P̂ c (v) / c 
max ({P̂ c }). Now, if all N users make the same choice v , only 
c = v will get the maximimum score while every other choice 
c , v will receive a zero score. However, if two choices are 
chosen with an equal probability and are thus both equally 
efective, the normalization will ensure that both receive a 
maximum score. 
Developing this crowdsourced score that refects the am-

biguous nature of making data visualization choices serves 
three main purposes. First, it lets us establish uncertainty 
around our models – in this case, by bootstrap. Second, it 
lets us test whether models trained on the Plotly corpus can 
generalize and if Plotly users are actually making optimal 
choices. Lastly, it lets us benchmark against performance of 
the Plotly users as well as other predictors. 
To generate the crowdsourced evaluation data, we re-

cruited and successfully pre-screened 300 participants through 
Amazon Mechanical Turk. The data preparation and crowd-
sourced evaluation procedures is described in more detail in 
SM Section S6. 

Benchmarking Procedure 

We use four types of predictors in our benchmark: human, 
rule-based model, ML-based model, and baseline. The two 
human predictors are the Plotly predictor, which is the visu-
alization type of the original plot created by the Plotly user, 
and the MTurk predictor is the choice of a single random 
Mechanical Turk participant. When evaluating the perfor-
mance of individual Mechanical Turkers, that individual’s 
vote was excluded from the set of votes used in the mode 
estimation. 
The two rule-based predictors include one commercial 

system and another research system. The frst, Tableau’s 
Show Me feature [34], is based on the expressiveness and ef-
fectiveness criteria of Mackinlay’s APT [35]. The second, the 
CompassQL recommender engine [71], powers the Voyager 
and Voyager 2 systems [72, 73]. 

The two learning-based predictors are DeepEye and Data2Vis. 
In all cases, we tried to make choices that maximize predic-
tion performance, within reason. We uploaded datasets to 
Show Me, DeepEye, and CompassQL as comma-separated 
values (CSV) fles, and to Data2Vis as JSON objects. Unlike 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 128 Page 8



VizML and Data2Vis, DeepEye supports pie, bar, and scatter 
visualization types. We marked both pie and bar recommen-
dations were both bar predictions, and scatter recommenda-
tions as line predictions in the two-type case. 

For all tools, we modifed the data within reason to maxi-
mize the number of valid results. For the remaining errors (4 
for Data2Vis, 14 for DeepEye), and cases without returned 
results (12 for DeepEye and 33 for CompassQL) we assigned 
a random chart prediction. 
Predictor performance is evaluated as the total sum of 

normalized efectiveness scores. This Consensus-Adjusted 
Recommendation Score (CARS) of a predictor is defned as: 

� � 
1 Õ P̂ c ĉpr edictor, d 

CARSpredictor = × 100 (1) 
|D | max ({P̂ c }) d ∈D 

where |D | is the number of datasets (66 for two-class and 
99 for three-class), ĉpr edictor, d is the predicted visualization 
type for dataset d , and P̂ c returns the fraction of Mechanical 
Turker votes for a given visualization type. Note that the 
minimum CARS > 0%. We establish 95% confdence intervals 
around these scores by comparing against 105 bootstrap 
samples of the votes, which can be thought of as synthetic 
votes drawn from the observed probability distribution. 

Benchmarking Results 
We frst measure the degree of consensus using the Gini 
coefcient, the distribution of which is shown in Figure 4. If 
a strong consensus was reached for all visualizations, then 
the Gini distributions would be strongly skewed towards the 
maximum, which is 1/2 for the two-class case, and 2/3 for the 
three-class case. Conversely, a lower Gini implies a weaker 
consensus, indicating an ambiguous ideal visualization type. 
The Gini distributions are not skewed towards either extreme, 
which supports the use of a soft scoring metric such as CARS 
over a hard measure like accuracy. 

The Consensus-Adjusted Recommendation Scores for each 
model and task are visualized as a bar chart in Figure 5. 
We frst compare the CARS of VizML (88.96 ± 1.66) against 
that of Mechanical Turkers (86.66 ± 5.38) and Plotly users 
(90.35 ± 1.85) for the two-class case, as shown in Figure 5a. It 
is surprising that VizML performs comparably to the original 
Plotly users, who possess domain knowledge and invested 
time into visualizing their own data. VizML signifcantly 
out-performs Data2Vis (75.61 ± 2.44) and DeepEye (79.12 ± 
4.33). Show Me achieves a CARS of (81.70 ± 2.05), which is 
similar to that of CompassQL (80.98 ± 4.32). While the other 
recommenders were not trained to perform visualization 
type prediction, all perform slightly better than the random 

Gini Coefficient

Two-Type

F
re

q
u
e
n

c
y

Three-Type

Low Consensus (Gini=0.07) High Consensus (Gini=0.41)

Figure 4: Distribution of Gini coefcients 

classifer (74.30 ± 7.09). For this task, the absolute minimum 
score was (48.61 ± 2.95). 
The same results hold for the three-class case shown in 

Figure 5b, in which the CARS of VizML (81.18 ± 2.39) is 
slightly higher, but within error bars, than that of Mechanical 
Turkers (79.28±4.66), and Plotly users (79.58±2.44). Data2Vis 
(64.75 ± 3.13) and DeepEye (68.09 ± 4.11) outperform the 
Random (60.37 ± 6.98) with a larger margin, but still within 
error. CompassQL (68.95 ± 4.48) slightly surpasses Show Me 
(65.37 ± 2.98), also within error. The minimum score was 
(26.93 ± 3.46). 

8 DISCUSSION 

In this paper, we introduce VizML, a machine learning ap-
proach to visualization recommendation using a large corpus 
of datasets and corresponding visualizations. We identify fve 
key prediction tasks and show that neural network classifers 
attain high test accuracies on these tasks, relative to both 
random guessing and simpler classifers. We also benchmark 
with a test set established through crowdsourced consen-
sus, and show that the performance of neural networks is 
comparable that of individual humans. 
Visualization system developers have multiple paths to-

wards incorporating ML-based recommenders such as VizML 
into authoring workfows. Partial specifcation recommenders 
on top of existing manual specifcation tools, such as the 
Show Me [34] feature in Tableau [62], rely on design choice 
suggestions that could be provided by a learned model. Code-
based authoring environments such as the Draco [37] and 
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Figure 5: Consensus-Adjusted Recommendation Score of 
three ML-based, two rule-based, and two human predictors 
when predicting consensus visualization type. Error bars 
show 95% bootstrapped confdence intervals, with 105 boot-
straps. The mean minimum achievable score is the lower 
dashed line, while the highest achieved CARS is the upper 
dotted line. 

Vega-Lite [55] editors, could use partial specifcation rec-
ommenders to power visualization “autocomplete” features, 
which suggest design choices in response to user interaction, 
in real time. Mixed-initiative systems such as Voyager [73] 
and DIVE [23] could leverage Top-N recommendations to 
present a gallery of visualizations for users to search and 
drill-down. Designing interactions with ML-based recom-
menders is an important area of future work. 

In order to develop ML-based recommenders for their own 
systems, developers could begin by identifying user design 
choices and extracting simple features from data. Given suf-
cient volume, those features and design choices can be used 
to train models as we have demonstrated in this paper. Al-
ternatively, developers can overcome the cold-start problem 
by using pre-trained models such as VizML. With models 
in hand, developers can progress further by collecting the 
usage analytics (e.g. measures of engagement such as clicks 
and shares) to establish customized measures of visualization 
efectiveness. 

We acknowledge the limitations of the Plotly corpus and 
our approach. First, despite aggressive deduplication, our 
model is certainly biased towards the Plotly dataset. As a 
web-based platform, Plotly could draw a certain cohort of 
analysts, encourage certain types of plots by interface design 
or defaults, or be more appropriate for specifc types and 
sizes of data. Second, neither the Plotly user nor the Mechan-
ical Turker is an expert in data visualization. Thirdly, we 
acknowledge that this paper was only focused on a subset 
of the tasks usually considered in a visualization recommen-
dation pipeline. 
Promising avenues for future work lie in both data col-

lection and modelling directions. On the data side, there is 
a need for more diverse training data from other tools (e.g. 
Many Eyes and Tableau) and pertaining to adjacent data sci-
ence tasks such as feature selection and data transformation. 
Richer training data allows researchers to investigate the pre-
vious bias concerns, optimize visualization recommenders 
with a task-based (or generally multi-objective) efectiveness 
metric, recommend multiple views of a dataset, study com-
plementary approaches to feature engineering, and integrate 
distinct design choice recommendations using a probabilistic 
graphical model. 

Underlying each ML-based recommender model is a mea-
sure of visualization efectiveness. Determining the param-
eters that inform efectiveness is an open question for the 
visualization community. Machine learning tasks such as 
image annotation or medical diagnosis are often objective, 
in that there exists a clear human-annotated ground truth. 
Other tasks are subjective, such as language translation or 
text summarization tasks, and are benchmarked against hu-
man evaluation or against human-generated results. 

Questions of objective visualization quality point towards 
the role of experts in visualization assessment. Visualization 
experts provide evaluations that are informed by experience 
and knowledge of perceptual studies. But if laypeople are the 
target audience of visualizations, the consensus opinion of 
crowdsourced agents may be a good measure of visualization 
quality. By providing a large training corpus, initial machine 
learning models, and a crowdsourced benchmark, VizML is 
a step forward in addressing these questions. 
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