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Figure 1. Snapshots of 35 people with motor impairments articulating stroke-gestures on a tablet. Note the accessibility chal-
lenges and coping strategies. In this work, we analyze 9,681 gestures from 70 people with and without motor impairments. 

ABSTRACT 

We examine the articulation characteristics of stroke-gestures 
produced by people with upper body motor impairments on 
touchscreens as well as the accuracy rates of popular classi-
fcation techniques, such as the $-family, to recognize those 
gestures. Our results on a dataset of 9,681 gestures collected 
from 70 participants reveal that stroke-gestures produced 
by people with motor impairments are recognized less ac-
curately than the same gesture types produced by people 
without impairments, yet still accurately enough (93.0%) for 
practical purposes; are similar in terms of geometrical criteria 
to the gestures produced by people without impairments; but 
take considerably more time to produce (3.4 s vs. 1.7 s) and 
exhibit lower consistency (−49.7%). We outline a research 
roadmap for accessible gesture input on touchscreens for 
users with upper body motor impairments, and we make our 
large gesture dataset publicly available in the community. 
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1 INTRODUCTION 

The prevalence of touchscreen devices, such as smartphones 
and tablets, has led to the adoption of a direct and fast way 
to interact with computers via simple touches, ficks, and 
swipes. Beyond touches and swipes, stroke-gesture input 
enables users with even more fexibility to execute tasks ef-

ciently [34,84] and with low cognitive efort [6,55]. However, 
even the simplest action of a touch or a swipe demands pre-
cise fnger, hand, wrist, and arm movements to implement 
highly-skilled neuromotor action plans that users with no 
functional impairments in those body parts take for granted. 
In fact, touch input poses many challenges to users with 
upper body motor impairments [19,20,43,50], which need to 
adapt to devices and adopt coping strategies to be able to use 
those devices efectively; see Figure 1 for a few examples. 
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To improve the accessibility of touchscreen devices for 
users with motor impairments, the assistive technology com-

munity has documented interaction challenges, coping strate-
gies, and contexts of use [2,25,38,41,42,45], introduced new 
input devices toward more efective touch input [11–13], and 
designed assistive techniques for more accurate touch target 
selection [43,50,86]. However, research on stroke-gesture in-
put for users with upper body motor impairments has been 
practically neglected, being restricted to empirical examina-

tions of simple directional swipes [20,46] or to engineering 
practical solutions that use directional strokes for input, such 
as for text entry [81]. However, the rich potential of stroke-
gesture input, including symbolic gesture shortcuts [34,55], 
has not been examined for users with motor impairments. 
In the context of modern paradigms of inclusive design that 
focus on abilities rather than disabilities [78], the current lack 
of knowledge on how people with motor impairments articulate 
stroke-gestures on touchscreens prevents efective understand-
ing of their gesture input abilities and, thus, efective design of 
assistive technology better matched to those abilities. 
The need for such an understanding is important if we 

want to design inclusive technology for all motor abilities. In 
this work, we perform an in-depth examination of the stroke-
gesture articulation performance of people with upper body 
motor impairments. Our contributions are as follows: 
(1) We conduct the frst analysis in the literature regarding 

the gesture articulation performance of users with upper 
body motor impairments on touchscreens, which we con-
trast to the performance of users without impairments on 
multiple levels of analysis: gesture structure, kinematics, 
shape geometry, and gesture articulation consistency. 

(2) We conduct the frst evaluation of the recognition ac-
curacy rates of stroke-gestures produced by users with 
motor impairments and report results for a wide palette 
of popular gesture recognizers, such as the $-family. 

(3) Informed by our empirical results, we outline a research 
roadmap for accessible stroke-gesture input on touch-
screens for people with upper body motor impairments. 

(4) To foster advances in the directions set in our roadmap, 
we release our dataset of 9,681 stroke-gestures collected 
from 70 people, of which 35 with motor impairments. To 
this date and to the best of our knowledge, our dataset 
is the frst and only publicly available data on gestures 
produced by people with upper body motor impairments. 

2 RELATED WORK 

We review in this section prior work on accessible touch 
input for people with motor impairments. We also discuss 
generic gesture recognition and analysis techniques that we 
use in this work to examine stroke-gestures produced by 
users with upper body motor impairments on touchscreens. 

Assistive Touch for Users with Motor Impairments 
Studies conducted to understand interaction challenges [2, 
19,26,28,38] have led to more efective touch UI designs, in-
cluding new input devices and techniques. For example, Plau-
mann et al. [50] proposed a method to correct touch input 
afected by hand tremor by analyzing device motion, which 
led to 40% fewer missed targets. Martez et al. [43] introduced 
“Smart Touch,” a technique based on point-cloud match-

ing [67] to increase the accuracy of touch target selection for 
people with motor impairments; Smart Touch predicted the 
coordinates of the intended targets three times more accu-
rately than conventional approaches. New input devices were 
also invented. For example, Carrington et al. [12] introduced 
“Gest-Rest,” an input device featuring a pressure-sensitive sur-
face that fts over a standard power wheelchair armrest. Gest-
Rest detects taps, directional swipes, and pressure-based ges-
tures, such as squeezing. The “Gest-Rest family” [11] is a suite 
of extended “chairable” designs [13] for power wheelchairs. 

Stroke-Gesture Input for Motor Impairments 
Very few works have addressed stroke-gesture input for users 
with motor impairments. Probably the most notable contribu-
tion is “EdgeWrite” [81], a unistroke text entry method and 
alphabet [76] consisting of symbols made up of straight lines. 
To assure the physical stability of motion, EdgeWrite requires 
an assisting piece of hardware to guide stroke input, such as a 
joystick, a trackball, or a touchpad with prominent edges [80]. 
As physical edges are the raison d’être of EdgeWrite, try-
ing to extend EdgeWrite gestures to smartphones without 
prominent edges [75] would make little sense. Unfortunately, 
research on unconstrained stroke-gesture input for motor 
impairments is lacking. Only two recent studies [63,64] pub-
lished preliminary results, yet adopting a diferent perspec-
tive than ours and on smaller datasets (7 and 10 participants, 
respectively). In those studies, the authors were interested in 
the “quality” of gestures produced by people with motor im-

pairments from the perspective of the Kinematic Theory [49]. 
No prior work has examined in detail the articulation char-

acteristics of stroke-gestures, including symbolic gestures, 
produced by users with motor impairments. In this work, we 
address this aspect by relying on techniques from the gesture 
recognition and analysis literature, which we overview next. 

Stroke-Gesture Recognition and Analysis 
Prior work has introduced many techniques to recognize 
stroke-gestures. These include generic machine learning ap-
proaches borrowed from the pattern recognition community 
and applied to gesture data, such as Hidden Markov Mod-

els [58] and neural networks [14], but also new approaches, 
developed inside and for the HCI community to assist UI 
designers to readily deploy gesture recognition on any plat-
form. Techniques from the later category have been known 
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as the “$-family” gesture recognizers to denote that they 
are easy to understand and implement even by novice pro-
grammers [82]. The canonical members of the $-family [77] 
include $1 [82], $N [4], $P [67], and $Q [70], designed to rec-
ognize stroke-gestures with high accuracy. Other approaches 
include $P+[66], a variant of $P for gestures produced by 
people with low vision, speed-ups Protractor [35] and Penny 
Pincher [60], or the modality-agnostic Jackknife [62]. 

Prior work in gesture analysis introduced a variety of tech-
niques and tools to evaluate user performance. For example, 
Vatavu et al. [68] introduced “relative accuracy measures” to 
evaluate the articulation accuracy of stroke-gestures with 
respect to canonical forms; Anthony et al. [3] introduced the 
“Gesture Clustering Toolkit” to report users’ consistency of 
gesture articulation; and the “Gesture Heatmaps Toolkit” [69] 
renders gesture visualizations that highlight the variation in 
articulation localized on the gesture path. These tools have 
been applied to evaluate gestures produced by children [59], 
people with low vision [66,71], blind people [9], and to vali-
date gesture synthesis approaches [31,61]. We use these tools 
to report on the articulation characteristics of stroke-gestures 
produced by people with upper body motor impairments. 

3 EXPERIMENT 

We conducted an experiment to collect stroke-gestures from 
people with and without upper body motor impairments. 

Participants 
Seventy (70) participants were involved in the experiment, of 
which 35 with various motor impairments; see Table 1. The 
age range was 14−67 years (M = 30.6, SD = 11.0 years), and 
20 participants were females (28.5%). Four participants (less 
than 18 years old) had their guardian’s consent to participate. 

Apparatus 
A custom Android application was developed to implement 
the experiment design and to collect stroke-gestures; see 
Figure 1 on the frst page. Gestures were collected in two 
locations with the same app running on two 10-point multi-

touch ASUS tablets (Nexus 7 and MeMO Pad 7) with the same 
7-inch diagonal size and 323 and 169 dpi, respectively. All 
pixel-based measurements were converted to centimeters. 

Design 

The design was mixed with two independent variables: 

(1) Motor-Impairment, nominal, two conditions: yes, no. 
(2) Gesture, nominal, 16 conditions: four directional swipes 

(left, right, up, and down) and twelve symbols, in alpha-
betical order: Greek letter “alpha”, checkmark, the “energy” 
symbol, the “Euro” symbol, heart, letters “M” and “R”, paper 
clip, Greek “pi”, six-point star, spiral, and “X” ; see Figure 2. 

Figure 2. Stroke-gesture types used in our experiment. Num-
bers next to each gesture quantify its shape complexity [22], 
the minimum number of strokes to produce the gesture, 
and an estimated rank of the gesture’s articulation dif-
culty [72]; larger values denote more complexity/difculty. 

We put considerable thought into the design of our ges-
ture set. Gestures were chosen to be representative of let-
ters, symbols, and generic geometric shapes, commonly used 
for stroke input and similar to the gesture types employed 
in other studies [5,66,72,82]. We also wanted gestures that 
could be articulated with as few touch up/down actions as 
possible and, thus, the majority of our gesture types require 
one stroke only, but we included four multi-stroke gestures as 
well. Gestures were also chosen for their diferent shape com-

plexities, evaluated between 1 and 7 according to Isokoski’s 
defnition [22],1 

as well as for their diferent difculty levels, 
from 1 to 16, estimated using the ranking rule2 

of Vatavu et 
al. [72] (p. 101). Figure 2 shows numbers next to each gesture 
type that show these characteristics. 

Task 

The gesture to produce was displayed at the bottom of the 
screen (with the tablet in portrait mode) and participants 
could draw on the upper side of the screen. After each trial, 
two actions became available: “Next” to advance to the next 
trial and “Undo,” in case participants noticed an error from 
their part and wished to redo the gesture. There were no 
constraints with respect to how stroke-gestures had to be 
produced in terms of stroke count, stroke order, stroke direc-
tion, or the fnger(s) touching the screen. In total, 16 (gesture 
types) × 9 (repetitions) = 144 articulations were expected 
from each participant. The order of Gesture was random-

ized across participants. A training phase preceded the ex-
periment and consisted in entering each gesture type twice. 
On average, the experiment lasted 8.0 minutes (SD=1.9) for 
participants without motor impairments and 15.6 minutes 
(SD=7.1) for participants with motor impairments. 

1
The Isokoski complexity of a shape represents the minimum number of 
lines to which the shape can be reduced, yet still be recognizable by a 
human observer [22]; e.g., the complexity of Greek letter “alpha” is 3. 

2
Gesture A is likely to be perceived more difcult to produce than gesture 
B if the production time of A is greater than that of B [72]. 
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Participant Condition Since Finger used to enter stroke-gestures Completion 
P1 (37 yrs., male) 
P2 (37 yrs., male) 
P3 (53 yrs., male) 
P4 (40 yrs., male) 
P5 (34 yrs., male) 
P6 (28 yrs., male) 
P7 (44 yrs., male) 
P8 (34 yrs., male) 
P9 (34 yrs., male) 
P10 (14 yrs., male) 
P11 (54 yrs., male) 
P12 (48 yrs., male) 
P13 (37 yrs., female) 
P14 (45 yrs., male) 
P15 (14 yrs., male) 
P16 (14 yrs., male) 
P17 (42 yrs., male) 
P18 (15 yrs., female) 
P19 (28 yrs., male) 
P20 (22 yrs., male) 
P21 (26 yrs., male) 
P22 (29 yrs., male) 
P23 (42 yrs., male) 
P24 (43 yrs., male) 
P25 (23 yrs., male) 
P26 (22 yrs., female) 
P27 (21 yrs., male) 
P28 (32 yrs., male) 
P29 (42 yrs., male) 
P30 (30 yrs., male) 
P31 (31 yrs., male) 
P32 (22 yrs., female) 
P33 (34 yrs., male) 
P34 (67 yrs., male) 
P35 (23 yrs., male) 

Spinal Cord Injury (C6)† 

Spinal Cord Injury (C6) 
Spinal Cord Injury (C7) 
Cerebral Palsy 
Spinal Cord Injury (C5) 
Spinal Cord Injury (C6) 
Spinal Cord Injury (C6) 
Cerebral Palsy 
Spinal Cord Injury (C6) 
Spinal Cord Injury (C5) 
Spinal Cord Injury (C5) 
Spinal Cord Injury (C5) 
Meningitis 
Spinal Cord Injury (C6) 
Spinal Cord Injury (C5) 
Spinal Cord Injury (C5) 
Spinal Cord Injury (C4-C5) 
Spinal Cord Injury (C6) 
Spinal Cord Injury (C7) 
Spinal Cord Injury (C5) 
Spinal Cord Injury (C7) 
Spinal Cord Injury (C5) 
Spinal Cord Injury (C6) 
Spinal Cord Injury (C6) 
Phocomelia 
Cerebral Palsy 
Spastic Tetraparesis 
Spastic Tetraparesis 
Spinal Cord Injury (C5) 
Spinal muscular atrophy (Kugelberg Welander type III) 
Spinal Cord Injury (C5) 
Muscular Dystrophy (Limb-girdle) 
Muscular Dystrophy (Duchenne) 
Parkinson’s disease 
Spastic Tetraparesis 

2003 
2002 
1997 
1996 
2000 
2017 
1994 
1983 
2015 
2017 
2017 
2017 
1980 
2013 
2016 
2016 
1996 
2015 
2006 
2017 
2018 
2016 
1995 
2003 
1995 
1996 
1997 
1986 
2006 
1990 
2010 
2004 
1996 
2014 
1995 

Little fnger (knuckle); cannot move fngers 
Thumb; other fngers fxed to the physical edges of the device 
Middle fnger (knuckle) 
Index fnger (fngertip) 
Little fnger (knuckle); no wrist control, wears a hand strap 
Index fnger (fngertip); cannot move fngers, wears a hand strap 
Thumb; cannot move fngers; fngers fxed to the device edges 
Index fnger (fngertip) 
Little fnger (knuckle); no fnger control, wrist gets tired quickly 
Little fnger (knuckle); weak or absent wrist movement 
Little fnger (knuckle); weak or absent wrist movement 
Index fnger (fngertip); weak or absent wrist movement 
Index fnger (fngertip) 
Thumb; cannot move fngers 
Middle fnger (fngertip); weak or absent wrist movement 
Little fnger (knuckle); weak or absent wrist movement 
Index fnger (fngertip) of a rigid hand moved from the shoulder 
Index fnger (fngertip); cannot move fngers 
Index fnger (fngertip) 
Uses a pen attached to the palm with a hand strip 
Index fnger (fngertip) 
Little fnger (knuckle); weak or absent wrist movement 
Thumb; cannot move fngers 
Index fnger (fngertip) blocked by hand in fxed position 
Middle fnger (fngertip) 
Index fnger (fngertip) 
Index fnger (fngertip) 
Index fnger (fngertip) 
Thumb; weak or absent wrist movement 
Index fnger (fngertip) 
Thumb; weak or absent wrist movement 
Index fnger (fngertip) 
n/a (video recording lost) 
Index fnger (fngertip) 
Index fnger (fngertip) 

100% 
100% 
97.9% 
99.3% 
100% 
97.9% 
99.3% 
21.5% 
99.3% 
100% 
64.6% 
91.0% 
99.3% 
100% 
100% 
100% 
93.8% 
100% 
100% 
28.5% 
100% 
100% 
100% 
100% 
100% 
88.9% 
93.8% 
88.2% 
100% 
100% 
100% 
87.5% 
100% 
87.5% 
99.3% 

† 
The code following in the parentheses denotes the afected vertebra(e), e.g., “(C6)” refers to traumatic injury at the 6th cervical vertebra. 

Table 1. Demographic description of the 35 participants with upper body motor impairments and their completion rates. 

4 RESULTS: STROKE-GESTURE ARTICULATION 
PERFORMANCE 

We collected a total number of 9,681 valid stroke-gestures (of 
the expected 10,080), of which 4,662 from people with motor 
impairments. The completion rate was 92.5% for participants 
with motor impairments

3 
and 99.6% for participants without 

impairments. The causes for the incomplete/invalid trials 
were fatigue and inability to produce certain gesture types; 
see Table 1 for completion rates for each participant with 
motor impairments, which varied from 21.5% (P8) to 100% (18 
participants). In this section, we are interested in diferences 
in gesture articulation between people with and without 
motor impairments, which we report on several levels. 

Evaluation Procedure, Measures, and Statistical Tests 
Before reporting results, we present our evaluation approach. 
We are interested in the efect of Motor-Impairment on 
various performance measures of stroke-gesture articulation 
to answer questions such as do people with motor impair-
ments need more time to produce stroke-gestures than people 
without impairments?, or are people with motor impairments 

3
4,662 valid gestures collected from 35 (participants with motor impair-

ments) × 16 (distinct gesture types) × 9 (repetitions) = 4,662/5,040 = 92.5%. 

less consistent in their gesture articulations?, etc. We are not 
specifcally interested in the efect of the Gesture variable, 
which we treat as a random efect and aggregate our perfor-
mance measures over all the gesture types. We defne our 
dependent variables in the corresponding subsections where 
we discuss their efects, and we make distinction between 
absolute and relative measures. An absolute measure can 
be computed for each gesture independently, such as path 
length or production time. A relative measure evaluates a 
gesture with respect to some reference, such as the absolute 
deviation of a gesture’s production time from the average 
production time of all the other gestures of the same type. 

We employ the t-test for independent groups as the default 
test to evaluate the efect of Motor-Impairment, and use 
Welch’s variant of the t-test when data are normal, but het-
eroscedastic. However, when the normality condition is not 
met, we use Yuen’s robust method for 20%-trimmed means, 
described in Wilcox [74, p. 329] that reports the Ty statistic.

4 

For t-tests, we report the r-value (Rosenthal, 1991), cited 
in Field [18, p. 341], as a measure of efect size, for which 
small, medium, and large efects are interpreted according 
to thresholds .10, .30, and .50. For Yuen’s method, we report 

4
Yuen’s method reduces to Welch with no trimming, but it is trimming and 
Winsorized variances that make it robust to deviations from normality [74]. 
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the heteroscedastic measure ζ [74, p. 381] with limits .15, 
.35, and .50 for small, medium, and large efects, respectively. 

Directional Swipes 
We start our analysis with directional swipes due to their 
prevalence in touch UIs. A total of 1,098 swipes were col-
lected from the participants with upper body motor impair-

ments (completion rate 87.1%) and 1,240 swipes from the 
participants without impairments (98.4%).5 

For swipe ges-
tures, supposed to be simple and fast, we are interested in 
the following measures of performance, for which we also 
state the corresponding research questions (RQ): 
(1) Path-Length represents the physical length of the swipe 

on the screen, defned as the sum of Euclidean distances 
computed between consecutive points on its path. RQ: 
Do motor impairments afect the length of swipes? 

(2) Production-Time is the time required to produce a 
swipe, from the moment when the frst fnger lands on 
the screen and the moment when the last fnger lifts of. 
RQ: Do motor impairments afect the duration of swipes? 

(3) Line-Steadiness evaluates the similarity of the swipe 
path to a straight line as the ratio between Path-Length 
and the length of the line segment defned by the frst 
and last points; unitless, always larger than 1. RQ: Do 
motor impairments afect the shape of swipe gestures? 
Results are shown in Table 2, rows 1-3, including means 

and statistical signifcance tests. We found no signifcant 
efect of Motor-Impairment on Path-Length, but we found 
that participants with motor impairments produced swipes 
that took twice as long (0.9 s vs. 0.4 s) and that deviated 
signifcantly more from a straight line (1.21 vs. 1.09) than the 
swipes produced by participants without impairments. 

Symbolic Gestures 
Participants with motor impairments produced 3,564 sym-

bolic gestures with a completion rate of 94.3%, while the 
completion rate of participants without impairments was 
99.9%. In the following, we report our participants’ gesture 
articulation performance on multiple levels: geometric accu-
racy, kinematics, structure, and articulation consistency. 

Geometric Accuracy. We evaluated the geometric accuracy 
of stroke-gestures using the following absolute and relative 
measures from the gesture literature [8,26,36,56,68,69]: 

(1) Path-Length, absolute measure, defned as before. RQ: 
Do motor impairments afect the length of stroke-gestures? 

(2) Length-Error, relative measure, defned as the absolute 
deviation of a gesture’s path length with respect to the 

5
The 98.4% completion rate for the participants without motor impairments 
was caused by some participants mistaking the direction of the swipes, 
e.g., a left swipe was performed instead of a swipe to the right, etc. 

length of the gesture task axis. The task axis was intro-
duced by Vatavu et al. [68, p. 281] as the centroid of a set 
of gestures of the same type. Depending on whether the 
gestures come from the same participant or not, Length-
Error is measured within or between participants. RQ: 
Do users with motor impairments vary the length of their 
strokes more than users without impairments? 

(3) Size, absolute measure, represents the area size of the 
axis-aligned bounding box of a stroke-gesture. RQ: Do 
motor impairments afect the size of stroke-gestures? 

(4) Size-Error, relative measure, defned as the absolute 
deviation of a gesture size with respect to the size of 
the task axis [68, p. 281]. Just like Length-Error, Size-
Error is evaluated both within and between participants. 
RQ: Do users with motor impairments vary the size of their 
strokes more than users without impairments? 

(5) Total-Turning-Angle, absolute measure, is the sum of 
absolute turning angles on the gesture path, refecting 
the total amount of bending required to produce the 
geometric shape of the gesture. RQ: Do motor impairments 
afect the shape of stroke-gestures during articulation? 

(6) Bending-Error, relative measure, defned as the abso-
lute average of the diferences between corresponding 
turning angles at each point on the gesture and the task 
axis [68, p. 281]. As any relative measure, Bending-
Error is evaluated both within and between participants. 
RQ: Do users with motor impairments vary the shape of 
their strokes more than users without impairments? 

Table 2, rows 4-12, shows the efect of Motor-Impairment 
on the geometric accuracy of articulated gestures. Just like for 
swipes, we found no signifcant efect on Path-Length, but 
the between-users Length-Error was signifcantly larger 
for participants with motor impairments (5.6 vs. 3.3 cm). This 
result shows that, although the within-users variations seem 
to be roughly equivalent, participants with motor impair-

ments produced gestures that were more diferent from each 
other compared to the gestures produced by participants 
without impairments. These results were corroborated by 
the Size measures (Table 2, rows 7-9). We also found that ges-
tures produced by participants with motor impairments were 
less smooth, as refected by larger Total-Turning-Angles 
(75.6 vs. 30.9 rad) and by larger variations in shape bending 
compared to participants without impairments (0.65 vs. 0.44 
rad). All the efect sizes were large (ζ ≥ .556, r ≥ 649). 

Kinematic Performance. We evaluated the kinematic aspects 
of the stroke-gestures produced by our participants with the 
following measures from Vatavu et al. [68,69]: 
(1) Production-Time, absolute measure, defned as before. 

RQ: Do motor impairments afect gesture duration? 
(2) Time-Error, relative measure, defned as the absolute 

deviation of a gesture’s production time with respect 
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Mean   20%-trimmed Mean   Measure Type Unit Test‡ p-value  Efect§
with MI† no MI with MI no MI 

➊ Directional swipes: Geometric and kinematic measures of performance 
1 Path length absolute cm 5.3 5.4 5.2 5.3 Ty(35.984) = 0.340 p = .736 ζ = .062 
2 Production time absolute s 0.9 0.4 0.6 0.4 Ty(26.314) = 2.892 p = .008 ζ = .681 
3 Line steadiness absolute · 1.21 1.09 1.07 1.01 Ty(20.015) = 3.203 p = .004 ζ = .789 

➋ Symbolic gestures: Geometric measures of performance 
4 Path length absolute cm 16.5 17.1 14.6 16.3 t(68) = 0.624 p = .534 r = .075 
5 Length Error, within relative cm 2.5 1.8 1.8 1.6 Ty(31.562) = 1.923 p = .063 ζ = .363 
6 Length error, between relative cm 5.6 3.3 3.6 2.5 Ty(22.668) = 3.063 p = .006 ζ = .556 

 
7 Size absolute cm

2
23.3 24.5 18.7 21.5 Ty(31.345) = 0.596 p = .596 ζ = .097 

 
8 Size error, within relative cm

2
6.1 4.6 4.3 3.8 Ty(27.866) = 1.925 p = .064 ζ = .449 

 
9 Size error, between relative cm

2
13.6 8.8 12.8 7.3 Ty(25.213) = 3.370 p = .002 ζ = .580 

10 Total turning angle absolute rad 75.6 30.9 60.7 29.8 Ty(25.260) = 4.115 p < .001 ζ = .863 
11 Bending error, within relative rad 0.5 0.3 0.4 0.3 t(37.831) = 5.253 p < .001 r = .649 
12 Bending error, between relative rad 0.65 0.44 0.63 0.44 Ty(23.563) = 6.568 p < .001 ζ = .921 
➌ Symbolic gestures: Kinematic measures of performance 
13 Production time absolute s 3.4 1.7 2.7 1.7 Ty(29.902) = 4.352 p < .001 ζ = .779 
14 Time error, within relative s 1.0 0.4 0.5 0.3 Ty(28.095) = 3.849 p < .001 ζ = .721 
15 Time error, between relative s 2.3 0.7 1.8 0.7 Ty(31.467) = 13.020 p < .001 ζ = .926 
➍ Symbolic gestures: Articulation preference measures 
16 Number of strokes absolute · 2.0 1.7 1.8 1.6 Ty(34.545) = 2.777 p = .008 ζ = .523 
17 Stroke error, within relative · 0.4 0.1 0.3 0.1 Ty(26.573) = 4.700 p < .001 ζ = .757 
18 Stroke error, between relative · 0.5 0.2 0.3 0.2 Ty(31.737) = 2.135 p = .041 ζ = .421 
➎ Symbolic gestures: Articulation consistency 
19 Consistency, within relative · .630 .834 .674 .837 Ty(23.478) = 3.446 p = .002 ζ = .792 
20 Consistency, between relative · .233 .468 .225 .458 t(22) = 3.034 p = .006 r = .543 

† §    MI abbreviates “Motor Impairments”;    pStatistically signifcant diferences (  < .        ζ05) and large and medium efect sizes (  > .   35 or r > .   50) are  highlighted.

Table 2. Performance measures for stroke-gestures articulated by participants with and without motor impairments. 

to the production time of the task axis [68, p. 281]. As larger number of strokes than participants without impair-

any relative measure, Time-Error can be evaluated both ments (2.0 vs. 1.7) and with more variation, both within (0.4 
within and between participants. RQ: Do users with mo- vs. 0.1) and between participants (0.5 vs. 0.2). All the efect 
tor impairments vary the duration of their stroke-gestures sizes were medium to large (ζ ≥ .421). 
more than users without impairments? Articulation Consistency. We measured the consistency of our 

Table ,  2 rows 13-15, shows that stroke-gestures produced 
participants’ gesture articulations using the Gesture Clus-

by participants with motor impairments took twice as long 
tering Toolkit6 

of Anthony et al. [68] that implements the 
to articulate compared to the same gesture types produced 

agreement rate measure of Vatavu and Wobbrock [73]. Partic-
by participants without impairments (3.4 s vs. 1.7 s), and had 

ipants with motor impairments were signifcantly less consis-
signifcantly larger time errors, both within (1.0 s vs. 0.4 s) 

tent in their articulations compared to participants without 
and between participants (2.3 s vs. 0.7 s). All the efect sizes 

impairments (.630 vs. .834 within-users consistency), but 
were large (ζ ≥ .721). 

also in terms of other participants with motor impairments 
Gesture Structure. We evaluated the structure of stroke-gestures (.233 vs. .468 between-users); see Table 2, rows 19-20. 
using the following dependent variables [68]: 

Key Takeaway 
(1) Number-of-Strokes, absolute measure, represents the 

number of strokes that make up a gesture
            articulation. Our empirical results show that people with motor impair-

RQ: Do motor impairments afect the structure of a stroke- ments can produce stroke-gestures on touchscreen devices, 

gesture in of   take considerably mor   terms  its stroke count? yet they e time to produce them, ex-
hibit lower consistency

(2) Stroke-Error, relative measure, defned as the absolute
 in their articulations, and show more         

deviations from the geometric shap
de

 es intended ges-
viation of a gesture’s number

 of the    of strokes with respect 
ture forms, such as in terms of path length, area size, and

to
  the task

             axis [68], within and between participants. 
the bending of strokes within a gesture. In the next section, RQ: Do users with motor impairments vary the number of 
we look at how accurately gestures produced by people with strokes more than users without impairments? 

Table 2, rows 16-18, shows that participants with motor 
impairments produced stroke-gestures with a signifcantly 6

Available at htp://depts.washington.edu/madlab/proj/dollar/gecko.html 
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motor impairments can be recognized using popular clas-
sifcation techniques compared to the same stroke-gesture 
types articulated by people without impairments. 

5 RESULTS: RECOGNITION ACCURACY RATES 
FOR STROKE-GESTURES 

We report user-independent recognition rates for stroke-
gestures by considering the popular Nearest-Neighbor (NN) 
classifcation approach and a wide palette of gesture dis-
similarity functions commonly employed in the literature, 
such as the Euclidean shape distance [4,29,82], the Angular 
Cosine metric [5,35], or approaches based on matching point-
clouds [52,66,67,70]. These dissimilarity functions constitute 
the basis of popular stroke-gesture, sketch, and shorthand 
writing recognizers, such as $1 [82], $N [4], $P [67], Protrac-
tor [35], $N-Protractor [5], and SHARK2 

[29], to name just a 
few. We also consider Dynamic Time Warping (DTW) due to 
its popularity and efectiveness for generic time series clas-
sifcation [51], including stroke-gestures [51,82]; the Haus-
dorf [57] and the modifed Hausdorf shape distance func-
tions [17], popular in the Computer Vision community for 
matching geometric shapes, while also efective for stroke-
gesture recognition [27]; and two variants of the fexible 
$P point-cloud gesture recognition approach, i.e., $P+ [66], 
a highly accurate recognizer tailored to gestures produced 
by people with visual impairments, and $Q [70], a major 
speed-up of $P with a slight increase in accuracy as well. 

Experiment Design 

For this experiment, we employed three independent vari-
ables in a 2×8×7 mixed design (between-by-within-by-within): 
(1) Motor-Impairment, nominal, 2 conditions: yes and no. 
(2) Recognizer, nominal, 8 conditions, representing a NN 

recognition technique that uses one of the following 
dissimilarity functions: Euclidean ($1), Angular Cosine, 
$P, $P+, $Q, DTW, Hausdorf and modifed Hausdorf. 

(3) P, ordinal, 7 conditions, representing the number of par-
ticipants from which gesture templates are selected for 
training, ranging from 1 to 30 in increments of 5, i.e., 1, 5, 
10, 15, 20, 25, and 30 training participants, respectively. 

Evaluation Procedure and Statistical Tests 
We implemented a full cross-validation procedure for com-

puting user-independent recognition rates [66,67], as follows. 
Each gesture from the dataset was treated as a candidate for 
classifcation. For each candidate, we selected P participants 
at random, diferent from the participant that provided the 
candidate, from which we randomly selected P templates for 
each Gesture type, one from each training participant. We 
computed the accuracy rate of each Recognizer by repeat-
ing the selection procedure for 100 times for each candidate 
and each P value. Overall, we present recognition results for 

7,310 candidates from 69 participants.7 
We also restricted our 

analysis to the twelve symbolic gestures (see Figure 2), be-
cause directional swipes cannot be recognized by dissimilar-

ity functions that were designed to be direction-independent 
in the frst place, such as $P, $P+, $Q, and the two Hausdorf 
shape distances. (Directional swipes were analyzed in a pre-
vious section and they are straightforward to recognize by 
verifying their compliance to straight lines using geometric 
measures, such as Line-Steadiness.) Overall, we report re-
sults from 8 (Recognizers) × 7 (conditions for the number 
of training participants P) × 100 (repetitions for each P) × 
7,310 (candidates) = 4.09 · 107 

classifcation trials. 
Because recognition rates data were not normal (as in-

dicated by Shapiro-Wilk tests) and heteroscedasticity was 
present (according to Levene’s test), we employed a robust 
ANOVA technique for 20%-trimmed means. The technique is 
described in Wilcox [74, p. 561] as an extension of Johansen’s 
method [23] and uses Winsorized covariances and the F dis-
tribution with corrected degrees of freedom.

8 
Post-hoc tests 

were conducted using a robust linear contrasts procedure 
for dependent groups based on the Ψ̂ statistic and the t dis-
tribution with the family-wise error controlled with Rom’s 
method for α = .05; see Wilcox [74, p. 606] for details.9 

Recognition Accuracy Rates 
Figure 3 illustrates the mean recognition rates for each combi-

nation of the three independent variables. On average, there 
was a 12% diference in recognition accuracy between par-
ticipants with and without motor impairments. We found a 
statistically signifcant main efect of Motor-Impairment on 
Recognition-Rate (F(1,0.183)=18.351, p<.001): all recogniz-
ers considered, gestures produced by participants with mo-

tor impairments were recognized less accurately (M=83.7%, 
M .20=88.6%)

10 
than the same gesture types produced by par-

ticipants without impairments (M=95.6%, M .20=98.3%). 
We found a signifcant main efect of Recognizer on 

Recognition-Rate (F(7,0.137)=4.477, p<.001), with the $P+ 
recognizer delivering the highest accuracy for gestures pro-
duced by participants with motor impairments (M=89.5%, 
M .20=94.1%) as well as for participants without impairments 
(M=99.3%, M .20=99.9%). $P+ was followed, in order, by $Q, 
$P, the two Hausdorf shape distances, DTW, the Euclidean 

7
We had to remove participant P20 (spastic tetraparesis, cerebral palsy) 
from this analysis, because their data did not meet the requirement of the 
cross-validation procedure of at least one sample per gesture type. 

8
The test is implemented by the R function bwwtrim(), available from Rand 
Wilcox’s home page, htps://dornsife.usc.edu/labs/rwilcox/sofware/ 
9
The test is implemented by the R function rmmcp(), available from Rand 
Wilcox’s home page, htps://dornsife.usc.edu/labs/rwilcox/sofware/ 
10
Due to the non-normality and heteroscedasticity of the data, we run the 
statistical analysis on 20%-trimmed means, following the robust methods 
described in Wilcox [74]. However, to be as informative as possible, we 
report both the mean (M ) and the 20%-trimmed mean (M .20) in the text. 
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Figure 3. Recognition accuracy rates for stroke-gestures articulated by participants with motor impairments (left) and without 
impairments (middle) under standard training, and recognition rates for participants with motor impairments (right) under 
mixed training (see text for description), function of the number of training participants P. Note: error bars show 95% CIs. 

shape distance, and the Angular Cosine metric; see Figure 3. 
Linear contrasts showed that $P+ was signifcantly more 
accurate than the second-best recognizer, $Q, for both partic-
ipants with motor impairments (Ψ̂ =0.036, t=7.661, p<.001) 
and without impairments (Ψ̂ =0.016, t=9.788, p<.001). Recog-
nizers improved their performance with more templates, as 
indicated by a signifcant main efect of the number of train-
ing participants P on Recognition-Rate (F(6,0.139)=65.239, 
p<.001). For example, the best recognizer, $P+, improved 
its performance for participants with motor impairments 
from 73.8% with one training template per gesture type to 
93.0% when using templates from P=30 participants. Con-
trasts between consecutive P conditions showed signifcant 
improvements from 1 to 5 templates, 5 to 10, 10 to 15, 15 to 
20, 20 to 25, and from 25 to 30 templates (p < .001). 
There was no signifcant interaction between Motor-

Impairment and Recognizer (p=.976), but we found a signif-
icant Motor-Impairment × P interaction (F(6,0.139)=4.291, 
p<.001) indicating that using more templates increases recog-
nition accuracy at diferent rates for gestures articulated by 
people with and without motor impairments; see Figure 3 
for the evolution of Recognition-Rate function of P. 

The Efect of Mixed Training on Accuracy Rates 
So far, we know that stroke-gestures produced by people with 
motor impairments can be recognized with relatively good 
accuracy, i.e., 93.0% using $P+. We want to learn whether the 
accuracy rates would improve if templates came from partic-
ipants without motor impairments. Figure 3, right shows the 
results from 8 (Recognizers) × 7 (conditions for the num-

ber of participants P) × 100 (repetitions for each P) × 4,662 
(candidate gestures from 35 participants11 

with motor impair-

ments) = 2.61 ·107 
classifcation trials. We can compare these 

results with those reported previously by adding a new inde-
pendent variable to our experiment design: Training-Type, 
nominal with two conditions: standard and mixed training. 

11
For this test, P20 can be included as well. 

On average, recognition rates were of similar magnitude 
for the two Training-Type conditions: M=83.7%, M .20=88.6% 
and M=83.5%, M .20=87.1%, respectively. A robust ANOVA 
on 20%-trimmed means did not detect any signifcant efect 
of Training-Type on Recognition-Rate (F(1,0.188)=0.119, 
p=.730) and no interaction between Training-Type and Rec-
ognizer (F(7,0.141)=0.039, p=.999). However, we did fnd a 
signifcant Training-Type × P interaction (F(6,0.143)=2.153, 
p=.045), which can be observed in Figure 3: an increase in 
recognition accuracy for one template per gesture type in 
the mixed condition (e.g., 83.1% for $P+ vs. 73.8% for standard 
training) is accompanied by a decrease in accuracy when 
using more templates (e.g., 91.8% vs. 93.0% for $P+). 

Key Takeaway 

Our empirical results show that stroke-gestures produced 
by people with motor impairments can be recognized with 
relatively good accuracy, i.e., 93.0% using the $P+ recognizer, 
feasible for practical purposes. However, the recognition per-
formance is nevertheless suboptimal given that the same rec-
ognizer delivers 100% for people without impairments. New 
techniques are needed to remove this gap in recognition ac-
curacy between users with and without motor impairments. 

6 DISCUSSION, ROADMAP, AND DATASET 

Our empirical results suggest that stroke-gestures may repre-
sent a viable input modality on touchscreens for users with 
motor impairments. Despite inherent geometric and kine-
matic inaccuracies or inconsistencies in articulation, stroke-
gestures produced by people with upper body motor impair-

ments were recognized efectively by popular classifcation 
algorithms, such as the members of the “$-family” [77], e.g., 
the $P+ recognizer delivered 93% user-independent accuracy. 
These results deliver great promise for accessible gesture 
input for people with upper body motor impairments. 

Our initial plan for this section was to distill the empirical 
results into a set of guidelines for practitioners, a common 
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Figure 4. Sketch of a research roadmap for accessible stroke-gesture input for users with upper body motor impairments. 

practice in our community [2,3,6,20,26,71], to inform the 
design of accessible stroke-gesture input. However, we re-
alized that a much larger goal is at stake and that we could 
deliver a much more signifcant contribution. Given the lack 
of research in stroke-gesture input for people with motor im-

pairments, we inspired from recent initiatives [16,44,87] and 
decided to draw a Research Roadmap for accessible stroke-
gesture input that we hope to foster critical analysis, con-
structive discussion, and shape future research. 

A Research Roadmap for Accessible Stroke-Gesture 
Input for Users with Upper Body Motor Impairments 
Figure 4 presents a visual illustration of the key items of our 
research roadmap, as follows: 
➊ Toward an in-depth understanding of user performance with 
stroke-gesture input with new measures. Our empirical explo-
ration revealed the gesture articulation performance of users 
with motor impairments on many levels, including gesture 
structure, geometry, kinematics, and articulation consistency. 
To this end, we relied on measures and tools representing the 
state-of-the-art in stroke-gesture analysis [2,8,68,69]. How-
ever, we believe that this understanding can be further en-
riched with new measures, more specifc and relevant to 
motor impairments. Studies from the literature (on other 
user groups) can be invoked to support this direction, e.g., 
Kane et al. [26] designed specifc measures to characterize 
gestures articulated by blind people, such as the “form clo-
sure” or the “average angular acceleration” measures; or 
Woodward et al. [83], who analyzed children’s touch input 
with the “input drag” and “holdovers rate” measures. For 
example, measures that look more closely at the steadiness 
of strokes may reveal more diferences between users with 
and without impairments than our line steadiness measure 
(Table 2, row 3). Also, our current understanding of user 
performance needs to be completed with evaluations “in the 
wild” [41], involving users with multiple impairments [25], 
and by addressing situationally-induced impairments [1]. 
➋ More accurate gesture recognition techniques. Although the 

recognition accuracy of gestures produced by people with 
motor impairments was relatively high (max 93%), it was 
lower than the 100% rate reached for people without impair-

ments. Future work is needed to remove this unnecessary 
gap in recognition accuracy rates between the two groups. 
We expect this to be achieved by a careful analysis of the 
gesture articulations of people with motor impairments to 
inform new recognition approaches or improvements of ex-
isting ones, e.g., similar to Vatavu [66], who achieved a 10% 
increase in the accuracy of the $P recognizer [67] for stroke-
gestures produced by people with visual impairments. 
➌ Understanding users’ preferences for stroke-gestures they 
are able to produce or would like to use. We are currently un-
aware of the preferences of users with motor impairments for 
stroke-gestures they would like to use. Conducting gesture 
elicitation studies [73,79] will not only reveal such prefer-
ences, but also users’ mental models of gesture interaction 
for various applications and contexts of use. For example, 
the fact that signifcantly more strokes were produced by 
our participants with motor impairments compared to par-
ticipants without impairments (Table 2, rows 16-18) likely 
refects their ability to produce stroke-gestures, but this may 
also be a coping strategy disguised as a matter of preference. 
➍ Toward modeling and prediction of user performance. Col-
lecting data from participants with disabilities is not easy, 
takes time and efort. For example, the data reported in this 
work was collected over a period of fve months. Tunning 
generic models of user performance with stroke-gesture in-
put, such as models of production time [10,32,33] or the 
user-perceived difculty of gesture articulation [53,72], or 
creating entirely new models to explain and predict the 
stroke-gesture input performance of people with motor im-

pairments (such as the large production times reported in 
Table 2, row 13) would provide valuable information to de-
signers without the need to run actual experiments. 
➎ Suitable feedback and feedforward for stroke-gesture input. 
The question of how to provide proper feedback during ges-
ture input has been examined in the literature with the goal 
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to teach users new gestures [24] or to help users transition 
from novices to experts [7]. In the accessibility literature, Oh 
et al. [47,48] proposed audio-based feedback techniques, i.e., 
“gesture sonifcation,” for people with visual impairments. 
However, without validation data, it is not clear how these 
techniques will work for users with motor impairments, such 
as to help make their articulations faster (see Table 2, rows 
13-15) or more consistent (rows 19-20). 

➏ New input devices for stroke-gesture input to foster physical 
stability of motion during gesture articulation. Successful 
examples include EdgeWrite [76,81] for gestures made up 
of directional strokes and Gest-Rest [12] for taps, swipes, 
and pressure-based input. New ways to support stable im-

plementers for gesture input with the thumb or the knuckle 
(see Table 1 and Figure 1) should be investigated to provide 
assistance during articulation according to the specifc hand 
pose used to touch the screen, e.g., distinct gesture recogniz-
ers trained with diferent data according to the hand pose. 

➐ Formulation of practical design guidelines and recommenda-
tions for accessible stroke-gesture input. Empirical results and 
observations on how people with upper body motor impair-

ments produce stroke-gestures should be compiled into prac-
tical guidelines to assist practitioners, a common practice in 
our community to create design knowledge [2,3,6,20,26,71]. 
Examples of guidelines include using recognizers that are 
invariant to how users articulate stroke-gestures, because 
of the observed low articulation consistency for users with 
motor impairments (Table 2, rows 19-20), or favoring gesture 
shapes that can be articulated efciently with small produc-
tion times (rows 2 and 13). We also recommend new studies 
to confrm and strengthen such guidelines and inform new 
ones, e.g., by understanding the relationship between gesture 
articulation characteristics, such as path length or produc-
tion time, and recognition rates to inform gesture sets that 
are performed efectively and efciently by users with motor 
impairments, while also recognized with high accuracy. 

➑ Multi-modal interaction including stroke-gesture input. Al-
though research on stroke-gesture input for people with mo-

tor impairments has been scarce, other input modalities, such 
as voice [21,54], eye gaze [30,85], and direct brain-computer 
input [15] have been examined extensively. Combining ges-
ture input with other modalities may lead to better user 
performance and satisfaction, e.g., providing personalized 
feedback for gesture input by analyzing the cognitive and 
emotional state of the user revealed by EEG measurements. 

➒ Stroke-gesture input and multi-device interaction. Recent 
work has started to examine the performance of people with 
motor impairments with the newest input devices, such 
as head-mounted displays [38,39] and wearables [37,40], 
next to traditional studies comparing, e.g., mouse and touch 

input [19]. Wearable gadgets, such as smartbands, smart-

watches, rings, glasses, and earbuds, can be worn and inter-
acted with concurrently and alongside input on smartphones 
and tablets, creating thus the premises for casual multi-device 
input. Given the recent boom in wearables, looking into ac-
cessible stroke-gesture input for multi-device interactions 
is a step that the community will soon have to take. The 
small form factors of these devices and their touch pads may 
demand entirely new gesture recognition approaches than 
those evaluated in this work (see Figure 3) to extract meaning 
from tiny strokes of little dimensionality and cardinality [65]. 

➓ Ability-based design for stroke-gesture input. Last but not 
least, ability-based design [78] touches many of the items 
above. Implications regard customization of gesture sets, pre-
ferred feedback modalities, accessible gesture implementers 
and input devices better matched to the specifc motor abili-
ties of each user, or recognition algorithms tailored to users’ 
motor abilities and specifc ways to produce stroke-gestures, 
e.g., using the thumb or the knuckle; see Table 1 and Figure 1. 
While a core principle of ability-based design is the use of 
commodity hardware to accommodate users’ abilities, we 
believe that this direction should be investigated alongside 
item ➏ (new input devices) as each direction can potentate 
the other, e.g., challenges in operating commodity hardware 
can inform innovations in input devices, while new devices 
present new opportunities for ability-based design. 

Dataset 
We can add one last item to the above list: open data. Advanc-
ing technology for users with motor impairments involves 
testing and evaluations, and having access to data will bene-
ft this endeavor considerably. By releasing our large dataset, 
we make one step in this direction, enabling the community 
to contribute further analyses, invent more accurate recog-
nizers, and distill design requirements for UIs. Our dataset is 
freely available at htp://www.eed.usv.ro/~vatavu. 

7 CONCLUSION 

We examined stroke-gestures produced by people with upper 
body motor impairments and reported that simple recogni-
tion approaches, such as the $-family recognizers, are pow-
erful enough to recognize those gestures with 93% accu-
racy. Our results enabled us to outline a research roadmap 
for accessible stroke-gesture input on touchscreen devices, 
which we hope to foster developments toward more accessi-
ble touch and gesture input for users with all motor abilities. 
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