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ABSTRACT

Machine Learning services are integrated into various as-
pects of everyday life. Their underlying processes are typ-
ically black-boxed to increase ease-of-use. Consequently,
children lack the opportunity to explore such processes and
develop essential mental models. We present a gesture recog-
nition research platform, designed to support learning from
experience by uncovering Machine Learning building blocks:
Data Labeling and Evaluation. Children used the platform
to perform physical gestures, iterating between sampling
and evaluation. Their understanding was tested in a pre/post
experimental design, in three conditions: learning activity
uncovering Data Labeling only, Evaluation only, or both. Our
findings show that both building blocks are imperative to
enhance children’s understanding of basic Machine Learning
concepts. Children were able to apply their new knowledge
to everyday life context, including personally meaningful
applications. We conclude that children’s interaction with
uncovered black boxes of Machine Learning contributes to a
better understanding of the world around them.
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1 INTRODUCTION

Machine Learning (ML) processes are integrated into prod-
ucts and services that influence our everyday lives, changing
the way people interact with technology. ML allows com-
puting systems to learn directly from examples, data, and
experiences, and has the potential to become a transforma-
tive technology [33]. However, the underlying processes
of ML are rarely exposed to users and are not intuitively
understood. The vast development of ML in industry and
academia is expected to further expand ML products integra-
tion, while novices lack opportunities to acquire accurate ML
mental models. ML learning activities are still scarce, unlike
other computational concepts that are introduced to novices
through coding classes and making activities. ML processes
are not similar to the standard set of computational concepts
novices are exposed to when learning coding, and require
a dedicated learning activity. Hence, understanding basic
ML concepts is becoming important for people of all ages,
including children, who are growing up in an environment
that integrates ML products more than ever before.
Children constantly learn from experience by interacting
with the physical world around them [7, 28, 39]. This direct
exploration contributes to the construction of mental mod-
els, which are conceptual and operational representations
of phenomena and processes in the world [18]. Direct ex-
ploration is limited when processes are "black-boxed" (i.e.
hidden from the user), making it harder to construct accu-
rate mental models [3]. Commercial digital services are often
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Figure 1: A girl training the ML system using the input de-
vice (child photographed with permission).

designed to black-box complex processes, in an attempt to
increase the product’s ease of use and consumers’ adop-
tion [15]. Children’s interaction with black-boxed processes
may lead to the development of inaccurate or oversimplified
mental models [16]. Once formed, these inaccurate models
become difficult to overcome. Therefore, exposing children
to non-black-boxed processes is imperative to the formation
of accurate mental models [15]. The effect of uncovering
black boxes in the context of ML was demonstrated with
adults useres, showing better understanding of ML when
black boxed processes were uncovered [23]. This has yet
to be tested with children. It is important to note, however,
that uncovering too many processes can interfere with the
learning process as a novice learner may be overwhelmed
[31, 32]. Therefore, striking the balance between black-boxed
processes and uncovered processes is of great importance.
Today many children interact with ML products and services
such as natural language processing (Amazon Echo, Google
Home) [24] or face recognition (Snapchat filters) but are not
exposed to their underlying processes. Such black-boxed ex-
periences may lead to inaccurate or oversimplified mental
models of ML.

In this work we focused on supervised ML, one of the
three key branches of machine learning, where a system is
trained with labelled data [33]. There are several approaches
to define the underlying processes of supervised ML [22].
As this paper is aimed at introducing ML processes to chil-
dren, we focus on classification problems, that are relatively
less complex and are common in real world applications. In
these problems, examples are labeled into classes, and are
then used to train a model that is able to classify new ex-
amples [1]. This type of supervised ML can be defined as a
pipeline consisting of four building blocks [26]: Data Label-
ing, Feature Extraction, Model Selection and Validation, and
Evaluation. (1) Data Labeling (or Gathering): collecting data
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points and the classification of each one to a dedicated cate-
gory. The training process requires sufficient amount of data
for a ML model to recognize patterns, a clear classification
of what is considered a positive example for the class and
negative examples for the class (examples not included in
the class), and a sufficient variety of data that represents the
different examples within the class, including instances close
to the boundary between positive and negative examples [1].
For the purpose of this paper, we term these requirements
as "Data Labeling Aspects” and simplify their definition to:
Sample Size (sufficient amount of data); Sample Versatility
(sufficient variety of positive examples within a class); and
Negative Examples (inclusion of examples that do not belong
to a class). (2) Feature Extraction: Preprocessing the data in
order to simplify classification and speed up computation.
This includes finding the useful features that are fast to com-
pute rather than feeding the raw data to the algorithm [5].
(3) Model Selection and Validation: The consideration and
testing of different model types (and their parameters) in
order to find the best one for a particular application [5]. (4)
Evaluation: testing the trained ML model with new data to
evaluate the quality of the chosen model [1].

Some of these ML building blocks are more accessible than
others. Feature Extraction and Model Selection are more
complex and harder to understand for novices, while Data
Labeling and Evaluation have been suggested to be more
accessible [38]. Therefore, in this work we uncover Data
Labeling and Evaluation building blocks and black-box the
other two. It is, however, not clear whether children are
able to comprehend even the more accessible concepts of
ML. It was previously believed that children need to reach
certain maturity in order to comprehend complex concepts
[6]. However, there are consistent indications for children’s
ability to understand complex concepts through iterative
experimentation of trial and error [27] in several domains,
including probability [42], systems thinking [43], kinematics
[34], and AI [8, 9].

To test if direct experience with accessible ML building
blocks contribute to the understanding of core ML concepts
we designed an interactive learning system and evaluated
it with 30 children. The system provides an opportunity for
learning through direct experience and iterative exploration
of the Data Labeling and Evaluation ML building blocks (see
Figure 1). We assessed children’s ability to understand ML
concepts, apply their understanding to a new context, and
generate accurate examples for new ML applications relevant
to their daily lives.

Previous work includes systems designed to promote chil-
dren’s hands-on experience with ML processes, and systems
designed to promote children’s learning of other complex
concepts.
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Several projects have introduced systems for hands-on
experience with ML concepts without evaluating their ef-
fect on ML understanding. Snap! are Al visual programming
blocks for children [19], enabling creation of ML applications
using pre-existing models. In industry, Google introduced
two projects, the AIY kit encourage children to build a home-
made smart speaker, however the underlying ML processes
are black-boxed; the Teachable Machine is an image recogni-
tion system for a computer vision algorithm that evaluates
the system’s ability to identify new examples.

Systems designed for children’s learning of complex con-
cepts, but not ML processes, involve hands-on experiences
and promote iterations. Within the tangible interface re-
search community, Flow Blocks are an example for a sys-
tem designed to promote the understanding of complex sys-
tems [42]. Through direct experience children gain an un-
derstanding of probability and dynamic behavior. Within
the construction kit research community, kits were designed
to develop children’s understanding of abstract concepts in
mathematics, science, and engineering, including roBlocks
for kinematics and distributed control [34]; WayMaker for
map topology; and DemBones for balance in motion [36].

The Learning By Design (LBD) approach [21, 32] argue
that being engaged in design and modeling enhances the
learning of complex systems through systematic exploration.
Hmelo-Silver (2000) showed that when children design arti-
ficial lungs and build partial working models of the system,
they develop an understanding of the human’s respiratory
system [16].

Only a few studies addressed learning of complex pro-
cesses in the ML and Al domain. Druga et al. (2018) evaluated
children’s perception of a robot’s capabilities [9], suggesting
that hands-on experience of navigating a robot may refine
children’s understanding of the the robot’s Al processes that
control navigation. Woodward et al. (2018) conducted a co-
design study with children, showing that participation in the
co-design process of a new intelligent user interfaces enabled
children to conceptualize and propose ideas for complex tech-
nical systems that require artificial intelligence processes
[41].

Our recent Work-in-progress looked more specifically into
children’s learning of ML concepts [14]. In that preliminary
work, we conducted a Wizard-of-Oz experience designed to
give children feedback when "training” a device. Our initial
findings showed that a direct experience with accessible
ML building blocks have the potential to enhance children’s
understanding of basic ML concepts.

We extend prior work by implementing a ML gesture
recognition system that uncovers the more accessible ML
building blocks of Data Labeling and Evaluation, using a
physical input device with an embedded acceleration sen-
sor. The ML system was specifically structured to promote
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Figure 2: The system’s interface Data Labeling screen, en-
abling children to record new data samples, delete them, la-
bel the samples, create new class, and apply the labeled sam-
ples towards training the Model.

children’s learning through design, based on principles previ-
ously indicated as an effective learning method for complex
concepts [21]. Our learning system enabled children to col-
lect data, design a ML model, and revise the model based on
feedback.

2 SYSTEM DESIGN AND IMPLEMENTATION

We implemented 'Gest’, a ML gesture recognition system, to
be used as a research platform for studying children’s learn-
ing of ML concepts. The choice of hand gesture recognition
was grounded in the "noisy" nature of physical hand gestures,
that are rarely similar to one another. The "noisy data" sam-
ple requires a thorough training process involving frequent
iterations, making the sampling processes similar to real-
world "noisy" data collection processes. In addition, physical
hand gestures are common in children’s physical play activi-
ties and involve a hands-on experience, previously shown to
increase motivation, interest, and engagement [17, 29].

The Gest system consists of three components (see Fig-
ure 3): our previously published hardware device with an
embedded acceleration sensor for data collection [13]; a soft-
ware module for data analysis that uses GRT (an open source
gesture recognition toolkit); and a simple interface for con-
trol and feedback. The input device is used for Data Labeling
by collecting hand gesture samples. Data Labeling was done
using the interface, that was also used to transfer the la-
beled samples to the GRT module for algorithm training
(see Figure 2). The Evaluation building block was applied
by a recognition evaluation process: new gesture samples
were classified by the model and real-time feedback was pre-
sented using the interface, allowing users to quickly assess
recognition accuracy. In addition, the system was designed
to facilitate easy transition between the Data Labeling and
Evaluation phases.
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Figure 3: The system components include an Input Device
with embedded accelerometer, a GRT software module for
data training and analysis, and an interface to provide con-
trol and feedback to the user.

Design principles for Gest: a ML learning
environment for children

Based on prior work in the constructivism school of thought
and in cognitive psychology, we identified a set of principles
for guiding children’s learning.

Design Principle 1: Low Floor. Construction kit literature em-
phasizes the Low Floor principle to encourage learning by
doing. Low Floor is defined as a learning experience that
does not require any prior formal knowledge and allows
immediate exploration. This can be achieved by implement-
ing a small number of features, that are simple and specific,
promoting quick understanding that empower children to
explore the system without barriers [32].

Design Principle 2: Uncovering black-boxes. Uncovering black
boxes can promote direct experience with underlying pro-
cesses, but may also introduce complexity that will limit
learning. Prior work suggested to carefully choose which
black-boxes to uncover [32] in order to strike the right bal-
ance between promoting learning of selected processes (by
uncovering the black boxes of these specific processes) and
maintaining an accessible and understandable experience
(by keeping other processes black-boxed).

Design Principle 3: Promote Iterations. Researchers from the
constructivist school of thought suggest that iterations, de-
bugging, real-time feedback, and reflection promote learn-
ing [11, 37, 40]. They emphasize that learning is commonly
formed when the course of action is modified or changed
based on continuous cycles of trial and error that involves
reflection [40]. Reflection is thought to initiate a debugging
cycle that involves thinking on the problem and generating
possible solutions [37].

Design Principle 4: Promote Self-generated Knowledge. This
principle is based on the Generation Effect from cognitive
psychology literature, indicating that learning processes that
provide learners with the opportunity to generate knowledge
based on their own experience, strengthen memory traces of
the gained knowledge and facilitate information recall [12].
This type of learning, defined as the Generation Effect, was
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shown to create stronger, long lasting knowledge in compari-
son to learning based on information that is presented to the
learner in a passive manner, including reading, listening to a
source of information, or even memorizing by mere repeti-
tion [4, 35]. This effect is explained by the deeper cognitive
processing required for information generation [25]. In ad-
dition, constructivist research suggests that when there is a
conflict between new self-generated knowledge and previous
knowledge, the resolution of such cognitive conflict leads to
increased understanding [20]. Learning systems can leverage
this robust phenomenon through design, and increase the
opportunities for self-generation of information.

Building on these four principles, the Gest system was
designed as follows:

e To create a "Low Floor" experience we developed a
system with a limited set of features, that are simple
and specific, enabling users with no prior knowledge
to immediately explore it.

e For Uncovering black-boxes, we focused on two ML
building blocks that are considered more accessible
than others, keeping Feature Extraction and Model Se-
lection building blocks as black-boxes, and uncovering
Data Labeling and Evaluation building blocks.

e To promote iterations we implemented a simple one-
button interface for children to move back-and-forth
between the Evaluation and Data Labeling phases, al-
lowing children to effortlessly revise their data based
on evaluation feedback.

e To promote self-generation of information we refrained
from an explicit explanation of the ML processes. In-
stead we designed a system for direct experience with
the uncovered ML building blocks. The children, we
provided with a system allowing to perform Data La-
beling by themselves. The system was accompanied by
three structured learning tasks that promoted cycles
of trial-and-error related to different Data Labeling
Aspects (see Figure 4).

Technical Implementation

The Gest system consists of three components: an input
device, a software module, and an interface (see Figure 3).

The hardware device we used is a previously-published
stick-like digital device, designed specifically for children,
with a plastic case that affords holding [13]. We extended
the existing input device with Arduino code that transmitted
the desired sensor data via Bluetooth to the data analysis
software on a nearby laptop. Python code received the data,
processed it and transferred it for gesture recognition using
ML analysis (training or classification). For gesture recogni-
tion, we used the open-source Gesture Recognition Toolkit
(GRT), developed by Gillian and Paradiso [10].
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Figure 4: Illustration of the three learning tasks. Train the
device to recognize: 'no movement’; ’a circle’; ’a circle and a
square’ (from left to right).

ML Process as Black Box 1: Feature Extraction. The input de-
vice sensors included three types of movement sensing with
3 DoF each: accelerometer, gyroscope and magnetometer.
Therefore, the sensor data stream had 9 features. We tested
and analyzed many subsets of these 9 features in order to
find the most appropriate set for the hand gesture recog-
nition tasks in our study. We empirically evaluated many
different combinations of sensing features, and found that
the gyroscope’s Angular Velocity had the best recognition
accuracy.

ML Process as Black Box 2: Model Selection and Validation.
For the classification task, we used the Dynamic Time Warp-
ing (DTW) algorithm. The DTW is a time series analysis
algorithm that compares two sequences. The DTW identifies
the class with the highest probability, meaning it will always
classify a series in one of the possible classes. While the GRT
enabled some parameter tuning such as Warping Radius,
once we isolated the Angular Velocity features we learned
that the default setting of 0.2 Warping Radius provided the
best results.

3 USERSTUDY

We tested whether a learning experience with the Gest sys-
tem promotes children’s understanding of ML concepts. Specif-
ically, we evaluated whether children who trained the input
device to identify gestures, understood the Data Labeling
Aspects: Sample Size, Sample Versatility, and Negative Exam-
ples. We compared children’s learning in three conditions: a
Full System, uncovering both Data Labeling and Evaluation
building blocks, a Partial System uncovering only Data La-
beling, and Partial System uncovering only Evaluation. This
comparison allowed to assess if uncovering both building
blocks is essential for learning ML concepts, or if one of them
is sufficient. While the baseline conditions do not simulate
everyday interaction with ML, they allow to evaluate which
building blocks are essential for learning.

To provide further insight towards the extent of the learn-
ing effect with the full system, we conducted an additional
evaluation. At the end of the learning experience children
in the Full System condition were asked to apply the ML
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concepts they learned to everyday situations, and to gener-
ate new ideas involving ML processes in the context of their
daily lives.

Method

Participants. 30 children participated in the study (20 boys
and 10 girls, age range 10-13, M = 11.59 SD = 0.97), re-
cruited from a local children coding event (Scratch event)
and through personal acquaintances with the researchers.
Participant’s experience in technology varied from basic
(smartphone apps and gaming) to advanced (experienced
with coding). We followed ethics guidelines including IRB,
parental consent, children consent, and parental approval for
pictures and videos. In addition, we followed Read’s (2015)
guidelines for research with children [30]. All children that
participated in the research were invited to a guided tour in
the author’s research lab, followed by a 3D printing activity.

Experimental design. We applied a mixed experimental de-
sign that included a within-participant pretest vs. posttest
evaluation of ML concepts understanding, and a between-
participant comparison of three conditions, each with differ-
ent ML building blocks: both Data Labeling and Evaluation;
only Data Labeling; and only Evaluation (see Figure 5).

Dependent measures. To evaluate understanding of ML con-
cepts, children were given examples for ML applications and
were asked to explain the underlying processes. We assessed
two types of ML applications: (1) Tennis gestures recognition:
new ML examples in a context similar to the learning expe-
rience (hand gestures context), one example in the pretest
and one in the posttest; and (2) Real-life ML application: ML
examples in a context different than the learning experience,
one in the pretest and one in the posttest. The examples were
counterbalanced (pretest/posttest) between participants.
Same context examples (Tennis Gestures test): The system
was trained by the researcher to identify a Forehand and
Backhand tennis gestures. In the test, children were asked

Full System

Pretest - Posttest
Real-Life Scenario test ’ Data Labeling Real-Life Scenario test
Tennis-Gesture test Eval:ation Tennis-Gesture test
e o 9 A
° L Partial System ° °

® . » Data Labeling . L
° L4 °
° °
° . °
° . Partial System °
[ Evaluation o ©

Figure 5: The mixed experimental design included a within-
participant pretest vs. posttest of ML concepts understand-
ing, and a between participant comparison of three condi-
tions.
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to perform the gestures by themselves with the input de-
vice, observe the system’s feedback and explain the gesture
recognition process (i.e "How does it work?"). Children’s
explanations allowed us to assess their understanding. Fore-
hand and Backhand gestures were counterbalanced between
participants (pretest/posttest).

Different context examples (Real-life Application Scenar-
ios test): Two scenarios of Real-Life ML applications were
presented. A "smart speaker with speech recognition” and,
an "autonomous car image recognition”. In the test, children
were asked to explain the recognition process (i.e "How does
it work?"). The scenarios were counterbalanced between
participants.

o Smart speaker with speech recognition: "A family bought
a new internet-enabled system and placed it in the liv-
ing room. When one of the family members wanted to
hear a song, they would say the word Song’ and the
system would recognize the person’s voice and play
that family member’s favorite song."

e Autonomous car image recognition: "Dan bought a
new autonomous car. The car can drive and navigate
independently. The car can recognize road signs and
obstacles on the road and respond accordingly. For
instance, in the event that a child suddenly crosses
the road, the car can detect it and stop immediately,
however if the car detects a traffic light with a green
light, it will continue driving."

Participants in all groups performed three phases: (1) a
pretest to assess their understanding prior to the learning
experience; (2) the learning experience with the system ac-
cording to their condition; and (3) a posttest to assess their
understanding after the experience. Participants in the Full
System condition also participated in a semi-structured in-
terview to assess general understanding of ML concepts (see
Figure 5).

Participants were told they are helping the research team
test a new product. The study started with a general question
about the children’s prior knowledge of ML and Artificial
Intelligence (AI) - "Have you ever heard the term ML or AI"?,
"Can you share what you already know about ML and AI"?
All children stated they are not familiar with ML or AL After
this initial assessment, the pretest began.

The pretest was followed by the learning experience with
the system in one of the three conditions. Children were pre-
sented with the input devices and informed that it includes
a movement sensor. In the Full System condition, children
were told that the system can detect their movement and
that after performing each gesture they should classify it
into a category they define using the interface (see Figure 2).
The researcher did not provide any verbal explanation re-
garding Data Labeling Aspects. Children were also informed
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that when they believe the sample is sufficient they should
progress to the Evaluation phase by pressing the "apply”
button. In the Evaluation phase, children were able to test
the system’s recognition accuracy with new gestures, and if
they wanted to they could click a button and return to the
Data Labeling phase to improve the training.

Learning Tasks. The learning experience was guided by three
learning tasks designed to provide children with the oppor-
tunity to generate their own understanding of the three Data
Labeling Aspects (Sample Size, Negative Examples, Exam-
ples Versatility). Each learning task involved two phases:
first, children were asked to sample and label gestures un-
til they believe the sample is sufficient. Children were then
invited to observe the system’s real-time feedback when
performing new gestures. Children were notified that an
accurate recognition means the feedback presented corre-
sponds with the gesture performed by the child. The three
learning tasks instructions were: "Train the device to recog-
nize a ‘'no movement’ gesture"; Train the device to recognize
a ’Circle gesture’; Train the device to recognize a ’Circle and
Square’ gesture (see Figure 4). In the No movement learning
task children were requested to train the system to recognize
states in which the input device is not moving. To accom-
plish this task, children had to understand the need to create
a group consisting of examples where the device does not
move. During this process, children learned that they also
need to create a group consisting of examples where the
device is moving. In the Circle task children were asked to
train the system to recognize a circle movement. To accom-
plish this task, children had to figure out that they need to
sample several examples of circle gestures and label them as
belonging to the circle class, and to create a negative class for
no-gesture or gestures that are not a circle. In the Circle and
Square task children were asked to recognize both square
and circle. To accomplish this task, children had to figure out
that they need to give examples for different types of circles
and different types of squares, as well as negative examples.

At the end of the learning experience children were asked
to explain the process they went through. They were asked:
"How would you explain the activity to a friend ?". Following
that question, children performed the posttest that included
the "same context" and "different context" tests. Following
the posttest, children in the Full System condition were asked
two further questions about their perception of ML in their
daily lives. The first question was general: "How would you
use ML technology in your daily life?"; and the second was
an ethical question, regarding possible risks of ML: "Are
there cases where we should not use ML?". All sessions were
documented using a video camera for further analysis.

The two Partial System conditions were identical to the
Full System condition, apart from the exclusion of either Data
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Labeling or Evaluation phases. In the Data Labeling only con-
dition children were not asked to evaluate the accuracy of
their training and did not receive feedback. In the Evaluation
only condition children were notified that we trained the
device to recognize certain movements: a circle gesture, a
square gesture, and "no movement". They were asked to eval-
uate the system’s recognition accuracy but were not asked to
sample and label gestures. In line with the ethics guidelines
for research with children, after completing the experiment,
children in both Partial System conditions performed the
Full System activity [2].

Researcher’s structured support. To support children that had
significant challenges progressing in the learning experience,
the researcher provided pre-defined structured support that
was applied in two specific cases: if the child did not under-
stand the system’s functions, or if the child misinterpreted
the system’s feedback. Specific sentences were selected to
support each case. For the first case: "The system works ex-
actly according to how you taught it in the training phase.’;
"The device knows only what you trained it to know." For the
second case: "Are you sure that the system has recognized
the movement correctly?"; "What would you do to check
if the system isn’t working correctly?" Beyond these pre-
defined sentences, the researcher was not involved in the
children’s self-learning process.

4 DATA ANALYSIS

Data analysis included video coding, interview transcrip-
tions, and a two-way ANOVA analysis. A primary coder
coded all videos and interviews per participant and a second
coder coded 50% of the videos and interviews independently.
Interrater reliability was found to be high (Kappa = 92%).
Children’s explanations of the ML applications in the pretest
and posttest were analyzed to evaluate understanding of ML
concepts. We assessed whether children did or did not use
the different Data Labeling Aspects in their explanations. For
example, a child mentioning that the device should be trained
with multiple examples, was considered as understanding
the need for a large Sample Size. A child mentioning that the
device needs to be trained with various examples, was an
indication for understanding the need for Sample Versatility.
A child mentioning that the device needs to be trained with
different examples than the target examples, was considered
as understanding the need for Negative Examples. After this
analysis process, we calculated the differences between the
number of Data Labeling Aspects children understood in
the posttest (range of 0-3) and the number of Data Labeling
Aspects they understood in the pretest (range of 0-3). The
difference was used to evaluate children’s general learning
effect. This analysis was performed twice for the two de-
pendent measures: (1) tennis gestures - explanations of ML
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applications in a similar context to the learning context, and
(2) real-life scenarios - explanations of ML applications in
a different context. We performed the two-way ANOVA to
evaluate the influence of the type of interaction with the
system (Full System and the two Partial System conditions)
on the number of Data Labeling Aspects understood in the
learning experience (Number of Data Labeling Aspects un-
derstood in the pretest vs. the Number of Data Labeling
Aspects understood in the posttest). During the final inter-
view, children gave examples for applying ML in their daily
lives. We analyzed their answers and categorized them into
three predefined themes: accurate ML examples (examples
that require ML process for a successful operation, e.g. data
collection is required to develop a model to identify a situa-
tion); non-ML examples (Examples that do not require ML
process for a successful operation, but require other (possi-
bly simpler) computational processes, for example a sensor
controlled with a simple if/else condition); and fictional exam-
ples (Examples that require highly complex or non-existing
technologies for successful operation, for example remotely
detecting electricity patterns in the human body).

5 FINDINGS

Findings include children’s explanations for the Data Label-
ing Aspects in the learning experience, two-way ANOVA

comparisons, and a qualitative analysis of children’s responses
in the pretest and posttest (see Table 1 for the number of
children who understood each principle during the learning

experience). In addition we present a qualitative analysis

of the interviews, which includes examples of children’s

ideas for new ML applications. All children’s quotes were

translated to English from their original language.

Data Labeling Aspects: in the learning experience

The analysis of children’s answers to the question at the end
of the learning experience ("How would you explain to a
friend what you did?") revealed that all the children in the
Full System condition understood the Data Labeling Aspects
in the context of the learning experience. Children explained
that they had to provide the system with a large sample
(verifying Sample Size): "I showed many many examples of
circles, and then it learned, learned from me" (p.16). They
stated that the examples had to be versatile (verifying Sample
Versatility): "T've shown it examples which are different than
what I would typically do, like larger ones, smaller ones (cir-
cles)... to give it more opportunities to learn" (p.6). Children
also explained the need for Negative Examples: "I wanted to
show the device what is moving as opposed to not moving"

(p-25).
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Data Labeling Aspects: in the Same Context

A two-way ANOVA revealed that the type of interaction
with the system (Full System and the two Partial System
conditions) significantly influenced the number of Data La-
beling Aspects children were able to understand during the
learning experience, as indicated by the significant interac-
tion between the system conditions and pretest vs. posttest
principles’ understanding [F(2,27)=16.19, p<0.01]. Post-hoc
multiple comparisons using Scheffe’s method on the sys-
tem conditions revealed that the Full System condition was
the only condition that resulted in improved understanding
[i.e. an increase in the number of Data Labeling Aspects
used by the children in the posttest compared to the pretest;
t(1,27)=5.07, p=0.008; t(1,27)=4.76, p<0.001]. No difference
was found between the two Partial System conditions (see
Figurehe)pretest, most of the explanations children gave for
the Same Context (tennis-gesture) application were inaccu-
rate in all conditions, and rarely included any relation to the

Tennis-Gesture Application test
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Figure 6: Difference between children’s understanding of
Data Labeling Aspects before and after the learning experi-
ence (Pretest subtracted from Posttest) in the same context
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Figure 7: Difference between children’s understanding of
Data Labeling Aspects before and after the learning experi-
ence (Pretest subtracted from Posttest) in the different con-
text test.

Paper 415

CHI 2019, May 4-9, 2019, Glasgow, Scotland, UK

Data Labeling Aspects. Some of the answers included non
ML-related technical explanations for gesture recognition:
"It detects it according to the strength of the swing" (p.24);
"It can recognize when it moves up or down" (p.8). Other
answers were inaccurate or fictional: "I think it can recognize
the air that goes inside and can calculate the speed” (p.18).
Some children stated they cannot explain the processes as
they do not have enough knowledge. Only three children
gave valid explanations in the Same Context pretest: "You
have a movement sensor inside, and they showed the device
many times how a forehand looks like and the system just
learned" (p.16). In the posttest, more children were able to
provide accurate explanations. This change was significant
only in the Full System condition: "They showed the device
multiple examples of backhand, and multiple examples of
‘not moving’, or of doing things which are not backhand,
but, if you do a forehand it might detect that you are not
moving or doing backhand, this is why you have to record
many different examples" (p.16); "The device was given many
examples of backhand, but also examples of not moving, and
other gestures too. You have to show a variety of backhands
so it could get it right" (p.6); "I suppose it’s the same as
I did in the activity, you recorded many backhands" (p.8).
In the two Partial System conditions, most children strug-
gled with providing an accurate explanation, in a similar
way to the pretest: "[The device] works with electricity and
sensors"(p.4); "[The device] has a GPS inside to detect its
location" (p.29).

Data Labeling Aspects: in a Different Context

A two-way ANOVA revealed that the type of interaction
with the system (Full System and the two Partial System
conditions) significantly influenced the number of Data La-
beling Aspects children were able to understand during the
learning experience, as indicated by the significant interac-
tion between the system conditions and pretest vs. posttest
principles’ understanding [F(2,27)=8.46, p<0.001]. Post-hoc
multiple comparisons using Scheffe’s method on the system
conditions revealed that only the Full System condition re-
sulted in improved understanding [i.e. an increase in the
number of Data Labeling Aspects used by the children in
the posttest compared to the pretest; t(1,27)=3.38, p=0.008;
t(1,27)=3.72, p=0.005]. No difference was found between the
two Partial System conditions (see Figure 7).

In the pretest, most of the explanations to the Different
Context application (real-life scenarios: Autonomous car or
Smart speaker) were inaccurate in all conditions, and rarely
included any relation to the Data Labeling Aspects. Some
children suggested non-ML technical explanations for the
scenarios: "The car has lasers that recognize if there is some-
thing in front of the car, if the laser hits something, the car
stops” (p.18). Other children provided explanations that were
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Table 1: Number of children who stated each data labeling aspect in their explanation

Real life scenario ML application test | Tennis-gesture application test
pretest | posttest pretest | posttest
Full System 3 6 1 7
Sample Size Partial System: Data Labeling | 0 1 0 0
Partial System: Evaluation 1 1 2 1
Full system 0 5 0 6
Sample Versatility | Partial System: Data Labeling | 0 0 0 0
Partial System: Evaluation 0 0 1 1
Full system 0 3 0 3
Negative Examples | Partial System: Data Labeling | 0 0 0 0
Partial System: Evaluation 0 0 0 0

inaccurate or fictional: "The car can detect the electricity
in the human body and respond accordingly” (p.21). Some
children declared that they do not know how to explain the
processes. Only two children provided an accurate explana-
tion during the pretest: "The car has 360 degrees cameras,
and you give it many examples of children and than you
kind of keep doing the same thing" (p.16); "The car has huge
databases of photos that somebody inserted, then the car
checks what it sees compared to the database" (p.19).

In the posttest, children that participated in the Full System
condition gave more accurate explanations: "People from the
family had to speak to the device, saying the same word
many times, in different tones" (p.14); "When creating the
car you have to define for it multiple and different examples
of children" (p.7). The learning experience with the Partial
System did not lead to improved understanding and most
children provided inaccurate explanation: "It probably has
lasers that can detect the height of the person standing in
front of the car" (p.27); "The car has a sensor and it was
programmed to detect things like DNA and photosynthesis"

(p-30).

Interview analysis: daily life ML applications

80% of children that participated in the Full System condition
generated at least one accurate example of ML application
relevant to their daily lives: "I take swimming classes. I could
use it for counting, I will teach it to recognize only specific
movements so it could follow the different swimming styles
I do in the pool. I would also want something that could
monitor my concentration level in class, according to my
facial expressions” (p.7); "It could be used in supermarkets,
so the cashier could recognize Broccoli without scanning
a barcode" (p.1); "I am watching a dog for a while now, I
would really like something that could tell me about her
needs, maybe according to her movements, like when she
wants to go for a walk or when she is hungry" (p.6). The
two children that did not generate an accurate example, gave
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sensor-related examples that do not leverage ML processes
"I would like something that could help me feed my bird,
maybe when it feels that the bowl is empty, something that
can recognize the weight of the bowl" (p.14); one example
was fictional: "a robot that will come every morning to fix
my bag for school and make me breakfast" (p.8). When asked
if there are areas where ML should not be used, 50% of the
children described relevant scenarios. They mentioned safety
issues: "Computers will always make mistakes, you can’t
trust them entirely, it’s like when I trained the device and
it did not recognize square or circle perfectly” (p,16); Some
children mentioned intimacy and privacy issues: "It may
interfere when trying to express yourself, you should not
have technology such as this when trying to express yourself.
Think about a situation where you want to tell a friend a
secret and the robot just sits there, interfering, you just can’t
do it (express yourself)" (p.25).

6 DISCUSSION

Our findings reveal that children as young as 10-13 years
old are able to understand basic ML concepts. Furthermore,
children were able to apply their understanding to other ML
related situations in the real world, and were able to come
up with their own accurate and meaningful ideas for ML ap-
plications. As children are growing up in an increasingly ML
infused world, an accessible, motivating, direct experience
with underlying ML processes will enhance their ability to
generate accurate ML mental models.

Children’s ability to understand ML processes was evi-
dent only when the learning experience involved iterations
between the Data Labeling and Evaluation building blocks.
Hands-on experience with just one ML building block did
not contribute to children’s understanding. We can therefore
conclude that iterations between labeling and evaluation of
data is needed to support learning. The evaluation should
provide a real-time feedback on the system’s accuracy, in-
dicating if the sampling is sufficient. This type of iterative,
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hands-on experience involves a reflection process previously
shown to be necessary for learning [11, 40]. The Partial Sys-
tem conditions did not result in a smaller learning effect,
but in no learning at all. When children were not provided
with an opportunity to both label data and receive feedback
they could not construct accurate understanding. This im-
plies that black-boxing too many processes can be similar to
black-boxing all processes. In the Partial System conditions,
as well as in the pretest, most children provided inaccurate
explanations for the ML scenarios and did not show any
understanding of ML processes. For example, children ex-
plained how GPS data can help a system recognize tennis
gestures. Such explanations are based on some understand-
ing of technological processes, but are inaccurate. These may
be due to inaccurate or partial mental models that children
construct when not provided with appropriate experiences
to generate understanding, presenting a risk as inaccurate or
partial mental models are difficult to overcome [16]. Future
research should explore this idea and identify the balance
between uncovering carefully selected underlying processes,
while providing a "Low Floor" experience for children [32].
In our system, uncovering two building blocks and keeping
the others black-boxed, balanced the learning experience. It
is possible that more ML building blocks could have been
uncovered without interfering with the learning process.
Future work should test additional conditions.

In sum, ML learning systems for children should allow
for direct experience with sufficient building blocks. Chil-
dren should be able to collect and classify data by them-
selves and evaluate their sampling using feedback of the
system’s accuracy. This process of Data Labeling and Evalu-
ation evokes reflection and iterations that are essential for
learning. We further point out that the learning system we
designed involved structured learning tasks as well as noisy
data generated by the physical input device, both provid-
ing opportunities for self-learning through debugging and
overcoming challenges. The combination of a system that un-
covers specific black-boxes and a learning experience which
involve appropriate challenges, led children to perform cy-
cles of trial-and-error in an effort to improve recognition
accuracy, which contributed to learning and understanding.

7 LIMITATIONS

The present study has several limitations. We chose to focus
on supervised ML and specifically on classification tasks,
considered to be the simplest form of ML [1], future work
should study if children are able to understand more complex
ML processes . The learning process was based on a hands-
on experience with a ML system, and was not compared to
non hands-on learning, future work should evaluate if chil-
dren are able to understand ML processes through additional
learning methods. Participants’ gender wasn’t balanced (20
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boys and 10 girls). We made our best effort to recruit a bal-
anced sample, but faced a gender imbalance in Scratch related
activities, which was reflected in our participants. Taking
this limitation into account, we made sure participants were
balanced between the conditions. Furthermore, we tested
and found there were no gender effects on understanding.

8 CONCLUSION

In this work we showed children are able to understand
ML processes, apply their knowledge in different contexts,
and generate accurate and meaningful new examples for
real-world ML applications. Furthermore, we revealed that a
direct experience with Data Labeling and Evaluation leads to
iterations from assumptions to feedback, which in turn leads
to understanding. We believe this process is instrumental to
the formation of accurate mental models.

Our recommendation for ML product designers is to care-
fully consider the impact of their work on children. Direct
experiences with accessible ML building blocks should be in-
tegrated into products, uncovering black boxes and allowing
children to collect data by themselves, receive feedback on
system’s accuracy, and iterate in a process of trial and error.
In addition, we encourage educators to provide children with
more opportunities for direct experience with ML building
blocks in an iterative process of trial-and-error.
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