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Figure 1: Overview of four shoe design projects that together created a loop of iterative personalization. These shoes were
digitally fabricated with parametric data and worn as everyday shoes. From left to right we see an example of each project.
The shoes started as a generic sizes and progressed to personalized shoes that created data for subsequent shoes while in use.

ABSTRACT
Data is changing how we design consumer products. Shoe produc-
tion is a prime example of this; foot size, footstep pressure and
personal preferences can be used to design personalized shoes. Re-
search done around metamaterials, programming materials and
computational composites illustrate the possibilities of creating
complex data & material relationships. These new relationships
allow us to look at future products almost like software apps, be-
coming a kind of product service systems, where the focus is on
its iterative personalized improvement over time. Can we create
systems of such data driven objects that in turn allow us to design
new objects that are informed by the data trail? In this paper we
report on four RtD project iterations that explore this challenge and
provide a set of insights on how to close this new iterative loop.
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1 INTRODUCTION
The relationship of data and materials has long fascinated inter-
action design and HCI as seen in tangible bits [28]. More than
a decade ago, computational composites [54] addressed making
things with data. More recent research about the materiality of data
by Dourish et al. [14] , personalization using data by Benford et. al.
[6], and iterative design by researchers at Autodesk [40] opens up
new design spaces. Additionally, Vallgårda et al [55] have shown
the importance of time in design. Thinking about time and access
to complex data allows to design the behavior of things thanks to
advances in metamaterials [26], material programming [53], and
data science.

Many makers, designers and design researchers have adopted
these materials in a form of hybrid craft that enables new kinds
of personalized objects. This can be seen in the work of Benford
et al, [5] Devendorf and Ryokai [12], Efrat et al. [15] and Magrisso
et al. [36]. At the same time, we have seen our understanding of
design change in the form of research products [42], design with
time [41] and data-enabled design [9]. We need to only look around
to find objects creating data about our everyday life. Moreover,
digital fabrication allows new opportunities for encoding data into
materials. When placed in the context of iterative personalization,
things rarely dreamed of outside bespoke tailoring or science fiction
become possible. In order to deeply understand these new data and
material relationships we chose shoes as our context of application
and research through design as our research method.

There are three reasons why shoes are a good artifact to research
iterative personalization: 1) human movement is rich with data [47],
2) there is a long history of bespoke shoe personalization [1, 21], and
3) most people go through many shoes in a year [56]. Additionally,
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Figure 2: Adaptation of the Ultra Personalized Products and
Services (UPPS) system model describing the loop of itera-
tive personalization used for our shoe design projects.

many companies including Nike, Adidas, Feetz, Ecco, Under Armor,
and United Nude are exploring data driven, digitally fabricated,
personalized shoes. Their (and our) current challenge is to create a
system where the shoes themselves create a data trail for the next
pair of shoes. To tackle this challenge, we used a research through
design method. We created our own bespoke shoes by developing
tools and techniques that explore data & material relationships in
personalized shoe design. We used a theoretical model of Ultra
Personalized Products and Services (UPPS) [49] to build on our
understanding of iterative personalization. Four projects based on
the phases of UPPS model, fig. 2, allowed us to complete a loop
where shoes are not only personalized by parameters, but also
generate data for the next pair of shoes (fig 1D). Focus was given
to encoding materials (creating shoes for the form, movements
and behavior of the foot) and encoding data (recording form and
pressure over time) to generate increasingly personalized shoe
iterations.

We clearly did not have the resources to invest in an entire shoe-
making factory. Instead, we digitally fabricated a series of shoes
using 3D printing, laser cutting, digital embroidery and hand con-
struction. This hybrid craft [12] process was inspired by bespoke
shoemaking (bespoke is considered one step above tailored, com-
parable to ‘engineered to order’). Being fitted for a pair of bespoke
shoes goes beyond the length and width of a foot. The artisan shoe-
maker looks at current shoes for traces of use. They observe how a
person walks for signs of behavior. They feel the foot to understand
the bones, ligaments and soft tissue of the foot. They converse
about pain and lack of sensation. Detailed notes and past experi-
ence lead to tiny adjustments of the last (base form of the foot to
create a personalized shoe) that adjusts the shoe to the movement
and behavior of the wearer. Only then an artisan shoemaker crafts
a shoe using a signature style.

This research unpacks the first-hand challenges and learnings
we experienced in making the first full shoes. This research also
shows the potential of ultra-personalized research products, and

invites design researchers to join us in encoding materials and data
for iterative personalization.

2 BACKGROUND & RELATEDWORK
More than a decade has passed since Vallgårda and Redström [54]
showed the possibility of computational composites, expanding
on the work on “Computational Things” by Hallnäs and Redström
[23]. Examples in the past decade such as hand knitting [45], hy-
brid craft [58], wearing screens [11], personal fabrication [3], and
metamaterials [27] help to demonstrate the potential of crafting
using hybrid data and material in design.

There is a significant interest in materials that can be digitally
fabricated with specific behavior. The arrival of flexible materials
in desktop 3D printing (such as TPE & TPU) has changed how we
look at the infill (inside) structures of 3D printing as described in
“The Design Space of 3D Printable Interactivity” [2] or “Design and
fabrication of materials with desired deformation behavior” [7].
Moreover, Ion et al. have shown the aesthetic properties of these
materials in “Metamaterial Textures” [26], the possibility of behav-
ior in “Metamaterial Mechanisms” [24] and computation in “Digital
Mechanical Metamaterials” [27]. These materials geometries have
even been used to make shape changing shoe treads [25].

Around the same time Dourish has shown data to be a material
[14]. Researchers at Autodesk used data from EKG scans of a car
driver to generate several iterations of a car chassis [40]. This form
of iterative design created several objects from a single analysis
session. This is not the only case, we see other examples of data
being used as a material for design in data enabled baby bottles
[8], personalized greeting cards [6] and facial makeup [30]. En-
gineering has approached data as a twinning process where the
physical object and it’s digital twin are mirrored [50]. In HCI many
shoe projects have also shown ways to generate data from shoes:
“Energy scavenging with shoe-mounted piezoelectrics” [48] creates
not only electricity but data about when it was created. “Shoe me
the way” [46] show the shoe as a computer and output device. “The
development of methods and procedures to determine the dynamic
and functional properties of sports shoes” [56] describes how to
record data from feet inside of shoes.

Our research built upon the possibilities of materials and data but
is situated in the following work: “Being the Machine” [12]. Deven-
dorf and Ryokai have shown the value of hybrid craft, and through
their examples present a form of bespoke personalization between
the maker and the machine. We used the idea of hybrid craft to
join computational materials with data, resulting in the program-
ming of an object’s form, aesthetic and/or behavior like “Towards
Ultra-Personalized 4D Printed shoes” [39]. “Research Prototypes
to Research Products” [42] highlights the everyday experience of
an object and how it can record data when constructed to have the
qualities of an object in use. We created fully functional shoes that
create data through actual use as a research product. Finally, an
ultra-personalized products and services [51] point of view, helped
us to open how HCI looks at the object, and also consider the
services and systems associated with that object over a lifetime.



Figure 3: Timeline of the four projects and team members needed to complete a loop of iterative personaliztion.

3 RESEARCH METHODOLOGY
We engaged in this research from a Research through Design (RtD)
perspective as a way of creating “conceptually rich artifacts” [20].
We emphasized the material and data relationships of our designs,
especially how to encode data and materials. To share our under-
standing of ‘encoding’ we use a methodology inspired by “Tangible
Products” [13] to describe the design process. Themethod illustrates
the evolution between projects by describing each project’s chal-
lenges and developed learnings that connect with the next project.
First Person descriptions are important because they unravel the
complexity of a design project and unlock the perceptions and
understanding of the designer. Recent design research including
“Living In A Prototype” [10], “Productive Frictions” [57], and “Can
I Wear This?” [35] use autoethnographic techniques that include
first person descriptions and observations of the context and the
design itself, as described in “Designing for, with or within” [52].
Moreover, we see this as a form of annotated portfolio like “The
Tuning of Materials” [31], “Attention to detail” [29] and “Annotated
portfolios” [19].

Our methodology was informed by research products [42]. Re-
search products are high quality artifacts used as research tools that
can be deployed in a natural setting. Research products hold four
interdependent qualities; inquiry-driven, finish, fit, and indepen-
dent [42]. Our research products took the form of everyday shoes.
It is like a product that is often personalized and can be created in
a small digital fabrication setting such as a fab lab. Testing a full
system of encoding data/materials for iterative ultra-personalized
shoes could easily require an industrial process and assembly line.
Yet hybrid craft and a research product methodology allowed us to
synthetically engage with a system much like a bespoke shoemaker,
instead of a large corporate producer.

Several personalization models could have been used for engag-
ing in this research. “Digital Footprint” [4] describes data enabled
personalization based upon the Design, Manufacture and Use of an
object. Models like “Plantar Foot pressure to estimate foot behavior”
[22] concentrate on the analysis of the footstep. It was important
for the loop of iterative personalization that the use and making
phases were equally represented to account for a research product.
We needed more space for analysis alongside design, manufacture,
and use leading us to the theoretical model of Ultra Personalized
Products and Services [49]. UPPS gave equal balance to the four

phases and we adapted it to shoes in a system of personalization as
seen in fig 2.

Over two years, four projects were cumulatively undertaken at
the Wearable Senses Lab of the Eindhoven University of Eindhoven
in order to close the loop of iterative personalization. Many tools,
techniques, and materials in the process were created as part of the
bespoke shoemaking experience including: making/modifying 3D
printers, creating pressure scanners, hacking filament sensors and
creating a web architecture.We even tried tomake our own filament
but failed as flexible materials require large scale infrastructure.
Each project required bringing together experts to help develop
new machines, new software and integrate it together as shown in
fig 3.

We hope that the challenges uncovered and learnings developed
during these 4 projects will help to spark a deeper understanding
in how iterative ultra-personalization could become an everyday
reality. Do we need to return to a reality of bespoke shoemaking,
or could technology, scaffold together with craft, produce a new
system of designing and producing shoes?

4 ANALYZING THE FOUR PROJECTS
ENCODING DATA AND MATERIALS

From the four projects carried out we formed an understanding of
the complex system of encoding data and encoding materials that
were needed to close the loop of iterative personalization. Each
project was built on the previous one to result in a full loop of itera-
tive personalization. (The projects were actually iterations building
upon each other, but we refer to them as ‘projects’ to avoid confu-
sion with “iterative personalizaion”.) Project 1 developed a 4D foot
scanner to encode a footstep into parameters related to size and
flexibility. Project 2 took the footstep parameters and negotiated
them with the design considerations from bespoke shoemaking in
code using no 3d models other than gCode simulation. Project 3
moved all of the software to the web to encode the data obtained
over time, thus allowing the creation of data trails for one or mul-
tiple shoes. Nonetheless, it required significant software rewrites.
Project 4 redesigned the shoe to encode use data for future shoes.
What follows is a detailed description of how the challenges and
learnings developed in each project. In order to make the knowl-
edge gathered understandable and transferable, the main highlights
are summarized as challenges and learnings in table 1.



Table 1: A summary of the challenges and learnings developed over four RtD projects encoding data andmaterials for iterative
personalization.

4.1 Project 1: Encoding a Footstep as Data
The aim of project 1 was to encode a footstep as analysis data.
We considered using commercially scanners like those of RS Scan
which dynamically analyze footstep data [18] Instead, we fabricated
our own as a hybrid craft project. Making our own allowed us to
see the idiosyncrasies of each footstep and experience the encoding
of data from scanning first hand. Commercial solutions abstract the
raw data from the sensors and it was important that we experience
that raw data and make our own visualization. Consulting with a
podiatrist, the team used a digital embroidery machine to create an
8 x 16 matrix of capacitive sensors using a Cypress CY8CKIT-050
5LP to read the data at 20hz per second. The software was written
in Octave in order to allow calibration and visualization in real
time. Beyond the difficulties of a reliable calibration of capacitive
sensing, a number of important challenges and learnings arose as
we deployed the sensor at a public design exhibition and scanned
over 400 feet (see figure 3). We wanted to analyze many foot sizes,
from children to adults. We included children because of the public
exhibition setting but theywere not part of our target group because
their rapid growth is a particularly difficult case.

4.1.1 Challenge 1: Reading the body. Determining the precision of
the scanner to be suitable for general use was difficult. People have
very different kinds of feet. Multiple outliers such as high arches,
long toes and very thin feet were misinterpreted by our scanning
software. Many of them needed special attention in the software
to encode the footstep into a digital representation. Some of them,
the ones that could not be solved by software, needed sensors
with different pressure ranges in specific areas of the foot. However,
adjusting for one foot wouldmake another less precise. After testing
a series of samples, we decided on a spacing of 14 cm over 8 vertical
capacitive TX lines and 1.8 cm over 16 horizontal capacitive RX
lines. This was a negotiation between size and accuracy. We faced
the same precision issues in relation to weight as we expected users
weighing from 20kg to 130kg. Theway the capacitive sensor worked
was by measuring how far the foot sank into the sensor pad. We
tested industrial spacer fabrics and ended up laser cutting holes in
a grid pattern for better compression under different weights. This
was important as the four smaller toes of the foot apply relatively
little pressure and they need to be measured. The outcome was an

image of the foot’s pressure where we could even see 4mm 3D of
the curve of the foot.

4.1.2 Learning 1: A general purpose sensor is not personalized. The
level of imprecision often seen in current scanning systems seems
to be dictated by the need to make the scanner work for the general
public. Personalized sensors would allow for the encoding of data
to be more precise for each user. A system of iterative personaliza-
tion must accept that the first iteration can only achieve a level of
personalization dictated by the general purpose sensor. Fixing a
problem in the sensor could only be taken to a certain precision
before it would cause problems to other users. We learned to accept
that the level of precision available from the general sensor could
work as a starting point but more precise sensing means would be
needed after each personalized iteration of the shoe. The solution
would be to personalize the sensor too.

4.1.3 Challenge 2 Understanding the behavior f ootstep. Mass cus-
tomization in shoes looked for ways to offer users control over
color, shape and size [44]. Programming materials with digital fab-
rication allowed us to create something far more nuanced in terms
of behavior. Different areas of the foot apply pressure differently
over multiple footsteps. For example, the heel, talon and big toe at
times support the whole weight of the body. The smaller toes and
arch rarely support significant weight. The second challenge was
dealing with a footstep over time. We needed to shift the weight
from the heel to the toe to understand the pressure of the foot
over the footstep multiple times. Commercial systems often use
a pad that can record three footsteps and a technician selects the
“best” step. We had to adapt our software to record the size and
pressure over that footstep. Dealing with static shape was already
difficult, but movement was far more complex. Designing for hu-
man locomotion is complicated as many researchers have noted
[7, 33, 34].

4.1.4 Learning 2 Temporal composite. We learned that it was im-
portant to deal with time and design based on movement, not just a
single static moment. Instead having the data of someone standing
on the sensor, the data needed was a “temporal composite” [32] of
the footstep. Constructing this temporal composite was prone to
errors as many people walk differently. The encoded data would



Figure 4: The SoleScan pressure pad and software recorded
footstep size and pressure. Photo by Bart van Overbeeke

serve as the parameters to generate the size, shape, flexibility and
density of the shoe, making each shoe personal to the footstep.
To do this we looked at the areas of the foot that generated each
tread cell on the bottom of the shoe. The maximum impact value
was translated to a density parameter for the tread and comfort in
the insole. The change in pressure was used to create a flexibility
parameter.

4.1.5 Challenge 3 Comparing data. While looking at the over 400
encoded foot scans, commonalities and specific differences emerged
which are key to iterative personalization. When we scanned our
own feet, we could see a difference between a morning scan and
an evening scan. We consulted a podiatrist who explained us that
the foot expands during the day with the pressure of the body. We
found other commonalities such as the curvature of the side of the
foot was softer in older than in younger people. Older people lose
soft tissue with use and the feet become squarer. If we could slow
the scan down (not as easy as it may seem) we would see the soft
material of the foot spreading during the impact and raising of the
foot.

4.1.6 Learning 3 Designers need data. We learned that designers
need to look at data from multiple scans, shoe iterations and users.
Designing a shoe that is generated to each user means understand-
ing the user population intimately. Being present and scanning the
feet at the exhibition taught us to look at how people walk and how
that data appeared within the software. It was important for the
next project (encoding a material shoe) that we understood inti-
mately how the data was entering the system through the scanner.
Our first-hand experience with the data allowed us to gain a com-
mon understanding for redesigning the algorithms that generated
the shoes. It was part of our developed hybrid craft to understand
the data, the extremes seen in collecting it, and how that encoded
data related to the real footstep. In order to differentiate and error
from an outlier, and a small problem from a critical issue.

4.2 Project 2: Encoding a Material Shoe
To generate a shoe from parametric data, we started with our pre-
vious work on algorithmic methods for generating 3D printed shoe
soles [17] and added parameters for some of the design considera-
tions identified in “Towards 4D Printed Ultra Personalized Shoes”
[39]. Significant advances were made to our software [16] to make
the algorithms generate the shoe soles with encoded parametric
data and adapt the comfort, balance (flexibility), and robustness to
the user. Two digital fabrication specialists worked with a computer
scientist to allow changing the density of each tread and the space
between those treads of the sole independently. A tread is a single
area of a sole, much like a tire tread. No off the shelf software or 3D
modeling was used. Instead we made our own software to generate
3D printer gCode, laser cutting .svg’s and computerized embroidery
DST files. Our previous first hand hybrid craft experience drove us
to create code [17] that controlled the digital fabrication technolo-
gies used whenever possible. For example, we built and modified
several Prusa i3 3D printers to achieve full shoe size while using
commercially available 3D printers to understand the subtleties
of printing flexible materials and make structures that behaved in
specific ways (see fig 4). More than 270 samples were created to
achieve wearable shoes like those seen in figure 1B,C,D.

4.2.1 Challenge 1 Adapting generative algorithms. We rewrote our
previous software [16] to integrate contour and pressure data from
project 1 to generate the shoe. Previously, the shape of the shoe
was created from the contour of the foot. Programming this into
software was no easy task. We found areas where two design con-
siderations were implementing different geometry in the same
physical space. These negotiated design characteristics required
crafting hybrid geometries that could combine, give precedence to
or move one of the considerations. Additionally, advice from an
expert French last maker taught us to slightly rub the big toe (bring
the toe of the shoe in 5mm) to give a point of reference to the feet.
Finding ways to make the software understand these techniques
was difficult and time consuming. The new software transformed
the temporal composite and footbed outline parameters from the
project 1 in a .json wrapper. A new function was added to generate
laser cutting files for the shoe uppers from the parameters. Beyond
the tread, the sidewall was challenging. The side walls needed to
be robust yet flexible enough to support hundreds of thousands of
foot flexures, especially at the talon of the foot . Keeping the sole
flexible and sturdy at the same time was challenging. All shoes suf-
fer this problem (look at any old pair of sneakers), but approaching
the challenge from an algorithmic perspective changed how we
understood at the shoe.

4.2.2 Learning 1 Negotiation of design considerations. As one can
imagine, a deep understanding of bothmaterial and datawas needed
to create the required geometries. Negotiating behavior geometries
went beyond the multidisciplinary mindset of the team stakeholders
and resulted in transdisciplinary understanding. We found at least
five areas that needed special negotiation in the algorithm. One
was a sole tread needed to be soft for comfort and hard for balance.
This required shifting the soft area to footbed and away from the
tread. Another, as mentioned before, was the sidewalls, which was
required to be flexible and sturdy. We had to negotiate these two



Figure 5: 4D pritnting personailzed shoe soles using direct
gCode in the SoleMaker software and data from project 1.
Photo by Bart van Overbeeke

design considerations so that the shoe was comfortable yet robust
enough. The sidewall required a tiny zigzag of two 3D printed
lines to make the wall soft and flexible while adding strength. The
amount of zigzag needed to be driven by the footstep scan data.

4.2.3 Challenge 2 Standardizing programmed material behavior .
Beyond the basic issues of printing with a flexible material and
using 3D printer specific gCode flavors, we ran into several chal-
lenges that were specific to encoding a material structure. There is
a complexity to the materials, machines and techniques used. Prior
research shows how the shoe deforms under the weight of the body,
directly affecting the balance and gait of the body’s movement
[18]. We originally intended to use selective buckling structures,
but negotiating design considerations required new techniques.
We developed a layered structure that easily could be adapted in
density like the textile structures described in [39]. We created an
algorithm that assigned the seed points to the existing Voronoi
tread algorithm based upon the pressure centers of the moving foot.
The flexibility of the shoe was determined by the distance between
the treads. Determining the densities required testing and trials. We
made our own pair and wore them for a week. After wearing the
shoes (in fig. 1, image 2), maximum and minimum densities were
added based upon the area of tread. We also set a minimum dis-
tance between seed points and a maximum number of seed points
to ensure the support of the food during movement.

4.2.4 Learning 2 Ranges of quality and precision. We learned the
importance of standardizing programmed material behavior. Some
areas needed selective buckling [43], such as inside the footbed.
Other areas needed rectilinear textile like structures where we could
adjust the spacing between rows and columns to create sponge like
result, as in the treads of fig. 6. Some regions were very complex
and important to the behavior. We found the 3D printer had dif-
ficulties with certain structures in certain colors on certain days.
We experienced under extrusion leaving areas soft and flimsy, and
over extrusion making areas hard and rigid. Having no solution at

that moment for imprecisions in printing, we had to accept to work
within ranges of quality in the materials structures. Although, we
would later find part of the cause (as described in the next section),
this issue also showed us that a hybrid craft requires working with
the qualities of the materials available.

4.2.5 Challenge 3 Manufacturing misinterpretation. Once we de-
veloped control over the quality and behavior of the tread, footbed,
and sidewalls we had another challenge. As explained in learn-
ing 2, our standardized programmed material behavior fluctuated
over days, and by the filament’s color. While negotiating design
considerations like the balance and temperature of the shoe, we en-
countered a problem with the back pressure in the nozzle of the 3D
printer. Pressure built up in the nozzle and shifted the programmed
extrusion by as much as 8mm when the material exited from the
nozzle. Moreover, with certain geometries, not enough material
was sometimes deposited creating stringy and sometimes broken
filament extrusions.

Several tricks were invented and taught to us by the 3D printer
maker Ultimaker to alleviate these problems, but the final product
was not exactly what we programmed. We ran a series material
tests using an experimental filament flow sensor. These tests al-
lowed us to see exactly how much material was travelling into the
print head and helped us to create a better understanding of how
gCode was translated by the machine. We found that certain geome-
tries deposited as little as 72% of the material the code requested.
Software changes helped alleviate some of the problems found in
certain geometries. Slowing the speed or combing (retracing) the
printed line on important areas allowed the back pressure in the
nozzle to refill areas. This was applied after sharp direction changes,
especially on curves.

4.2.6 Learning 3 Limits of the current technology. There are limits
to the technologies and materials we are working with. To design
material behavior these limits must be accepted or improved upon.
Dourish has shown how “some data is more important than others”
and used an example of a post script compiler [14]. 3D printing
technology is far from WYSIWYG (what you see is what you get).
The quality of the material structures had a level of precision that
was similar to the early days of graphic design. We found that
certain geometries were far more critical and requiredmore delicacy
(slower speeds and more detail in gCode). To design we not only
had to understand the quality and precision, we had to understand
where the important areas were and take measures such to increase
precision. Iterative personalization required us to adapt our tools
and techniques alongside the software in a dynamic way.

4.3 Project 3: Encoding a Data Structure
With our understanding of the need for machine learning and with
the complexity of the system growing we needed a place to save
and store foot scans, temporal composite .json files, design files and
digital fabrication files. Iterative personalization required a data
trail structure to store that data between iterations. Project 3 was a
web platform that created a web interface and a database to profile
the shoe analysis, design, manufacture and use. The web platform
was built with Docker modules that supported all the other code:
the pressure pad scanning software, the sole tread software, and



Figure 6: Screenshot of the web interface of the online ver-
sion of project 3. Data from project 1 is imposed under the
design software from project 2

the uppers generator software alongside social log-ins, a QR code
generator and database system (see figure 5).

4.3.1 Challenge 1 Saving and storing the data trail. While attaching
the pressure pad scanning module data to shoe design software we
realized how complex the data gathered to the generate the shoes
could be for a single user. Developing the web platform in project 3
taught us how to encode data and store it for multiple iterations and
multiple users. The web platform provided a place to save and store
the information together enabling the profiling and comparison of
data. This data included: 1) The pressure pad scanning temporal
composite as a .json file. 2) The raw stream of data with as much
as 100mb per scan. 3) The data from the sole software and the shoe
upper generator stored as a .json containing the contour array, and
tread Voronoi seed point array. 4) The machine code as a .gCode
file, .svg and instruction manual. 5) A field in the database for the
filament flow sensor (for future documenting ranges of quality in
material structure). This was connected to a social login module
was added to allow users to integrate Facebook, Twitter, LinkedIn,
GitHub, QR code or email.

4.3.2 Learning 1 Ideal vs actual. Applying the idea of digital twin-
ing is difficult in an everyday context. Digital/physical twins may
be born identical, but they grow into unique individuals. As we
started to look at profiling and use data, we learned that there was
an opportunity to track the differences between the ideal and actual
shoe. Storing all this data allowed a quality check from the material
production cycle and could be used instead of rigorous physical
testing of the manufactured shoe. If we consider that 3D printing
implies a distributed co-manufacturing [38] system of many people
with printers in many locations, this type of data becomes vital.
The comparison between ideal and actual seemed to be true across
multiple iteration of shoes as well. The past data could be used to
not only to control and generate the next pair of shoes, but a whole
closet of shoes for different users’ needs and desires. It was also
important to understand the distinction between the ideal designed
version and the actual manufactured version of the shoe. The actual
version of the shoes is not identical to the ideal version.

4.3.3 Challenge 2Quantity and Scaling up. The web platform gave
us away to store hundreds and thousands of feet into the system due
to its modular construction and scalable architecture. The majority
of our modules ran in a browser, saving any risk of the server being
overtaxed. This helped us to address concerns around security as
well. All data about the foot and generated shoe was stored in the
user’s browser until it was uploaded to the web platform at the
end of the process. Users could log in with their social networks or
by email as mentioned in the last section. We also gave them the
possibility of generating a QR code that would link to an anonymous
account.

4.3.4 Learning 2 Profiling the thing (shoe), not (only) the person.
There is an opportunity for integrating more data sources resulting
in better personalized results. An important learning in project 3
was that we could profile the shoe and not necessarily the person.
This allowed a deeper understanding of the material of the shoe.
We realized the iterative personalized process was a shoe to shoe
process. Conversely, we realized that sociometric and psychometric
data on top of our physiometric data could help us make lifestyle
predictions for the fashion of the shoe. This made us more acutely
aware of how we could use machine learning (as explained in
project 1).

4.3.5 Challenge 3 Profiling for predicted use. Simple calculations of
the user’s weight and the physics of the material lifespan allowed a
general prediction of how long the shoe should last. We combined
this with a supposition of our shoe designer on to how long the
styles we developedwould remain in fashion.With this information,
we could estimate how long the shoes would last in terms of steps.
However, we also realized that we did not have information on
how much we expected the person to wear the shoe (just how long
we expected the aesthetics to remain fashionable). These simple
simulations hold much potential for just in time manufacturing,
sustainability and material lifetime coordination.

4.3.6 Learning 3 Potential for self-directed machine learning. With
more than 400 scans in the system, we had enough virtually gen-
erated shoes to begin comparing the resulting files. We learned
that we could predict use and compare it to the actual use across
user populations. While we did not apply it in this research, it is
clear from our understanding of the database that machine learning
techniques could be applied. These techniques have the potential
to enhance the experience of the worn shoe not only in an itera-
tive way, but across entire populations. Moreover, key to iterative
personalization was comparing users to themselves over time and
seeing how others who are slightly older may also relate. It is clear
that machine learning has the potential of becoming a vital tool in
this encoding process.

4.4 Project 4: Encoding Materials that Encode
Data

Project 3 showed us that we could manage data across the shoe
iterations and users, but as seen in project 1, personalization only
improves if the sensing of the individual becomes more precise. Our
final project looked at encoding data from the shoe while it was in
use. We did that by integrating electronics and encoding material
structures to store data about the size, pressure and behavior based



Figure 7: A selection of the several samples developed to cre-
ate electronic andmechanical sensing inside the structure of
the shoe soles.

on criteria established in the first two projects (see figure 6 for an
overview the process followed). Previous work by Autodesk into
iterative generation of car chassis [40] helped guide our process of
generating data in project 4. We worked with a shoe designer to
change the style of the shoe to a moccasin construction to solve the
problem of sewing the sole to the upper. This change, provided a
space for electronics and made it possible to swap the sole. In short,
making the project more sustainable and a better research product.

4.4.1 Challenge 1 Adding electronic sensing to the shoe. Adding
sensing capabilities to a shoe was not easy. We first 3D Printed tex-
tile like structures using conductive PI-ETPU 95 filament to create
sensors in the sole. Electrodes were manually added to the 3D Print-
ing using small gauge wire in the footbed of the shoe. We created a
row/column scanning matrix with a 4 x 10 resolution crossing in
points specifically designed to register pressure in the key areas
identified in project 1. These were connected to an Arduino Teensy
and data was logged at 20hz. The textile structures, previously men-
tioned, were varied so structures previously designed for comfort,
robustness and flexibility would also act as pressure sensors. These
sensors were printed for specific force ranges identified from the
first scans. For example, the heel sensor was made for a much higher
impact force than the four smaller toe sensors.

Changing the filament to conductive ETPU had large impacts on
the comfort and flexibility of the shoe. ETPU was far less flexible.
We had to renegotiate the design considerations of the footbed
to provide comfort to the foot and insulate the electronics. We
developed a new triangular textile weave pattern (warp, weft, &
werf) that created a softer material behavior to counter the stiffness
of the sensor. It also added more flexibility.

4.4.2 Learning 1 Multi-purpose hybrid material geometries. Creat-
ing multi-purpose hybrid geometries that could perform electronic
sensing alongside its material properties was a great discovery.
However, combining its properties with the design considerations

previously encoded in the material was challenging. The new ge-
ometries needed to be significantly different because of the specific
material properties of the conductive filaments. Being aware of how
to negotiate design considerations (leaning 1 in project 2) made
the team ready, and more importantly willing, to deal with the
additional complexity required to create the multi-purpose hybrid
geometries. Engaging in the hybrid crafting process enabled even
greater possibilities as the challenge of adding sensing capabilities
became a new design consideration.

4.4.3 Challenge 2 Mechanical Sensing Material Structures. As an ad-
ditional technique to store the use, we looked at making structures
that would break over time, much like winter tire treads. We learned
in project 1 that generating a shoe with foot data required making
a temporal composite of the footstep. In this project, we explored
if we could encode material structures that changed with use to
create a mechanical temporal composite. We saw an opportunity to
use the material property of breakage with selective buckling [43]
in the shoe tread. This required maintaining the density control
from project 2 and adding small single lines of filament into the
buckling structure every four layers. These layers would stretch
and eventually break. A small sensing system was developed that
would measure if each single line was broken after being used.

4.4.4 Learning 2 Active vs passive monitoring. There are times to
use active sensing, and times to use passive sensing. During the
testing, we realized it was complicated to read the single line sensors
with a 3D printer-based system as there was a deformation of the
overall material with wear and tear. While it was possible by hand,
it required a lot of time. What we did notice is that in areas of
heavy pressure, the shape of the overall geometry of the tread had
changed due to the breaking of the internal pieces. First seen as a
problem, we rapidly found out inspiration for a way of combining
wear and tear, with an evolving form of the shoe sole.

4.4.5 Challenge 3 Storing and decoding use. Beyond electronic and
material geometry-breaking, we used color change to indicate abra-
sion. We were inspired by wearing a pair of shoes seen in fig 1.
(the third image starting from the left) for many months and notic-
ing abrasion in the material in the talon and heel. For the first
twelve layers of material (2.4 mm in height) we added material
color changes every four layers. Pictures were taken of the soles in
use and using the method of photogrammetry described in [37] we
were able to see how much material had worn off due to abrasion.
As this often indicates when someone walked incorrectly, we were
able to see where a stronger material would be needed.

4.4.6 Learning 3 Understanding temporal composites as material.
We learned that the material itself could store data about use to
be decoded later if designed to do so. Each of the three methods
told the story of use differently by creating different data trails.
Combining all three, they painted a larger picture, but turning the
iterative corner required a deep material/data relationship. Based
on past experiences 3D printing shoes. we had a preconception
that using textile like geometries was superior to selective buck-
ling and metamaterials. We ended up using all three techniques
in project 4 to create the encoded material with negotiated design
characteristics and sensing/storing capabilities.



5 REFLECTION
With project 4, we were able to close the iterative personalization
loop. The data used in project 4 was more precise than the origi-
nal data from project 1. In the previous section, we presented our
challenges and learnings (see table 1). In this section, we try to
summarize them in an effort to make our work transferable to other
researchers interested in ultra-personalization. More specifically
we discuss encoding material, encoding data and the data/material
relationships that developed during the 4 projects.

5.1 Encoding Materials
Encoding materials with form, behavior and sensing required cre-
ating multi-purpose geometries often with multiple materials. We
learned to create these by negotiating design considerations while
programming to make 3D printer gCode. This started simply as
density vs. flexibility. It allowed us to approach sensing as if it were
just another design consideration of the shoe. This was achieved by
many people working together to adapt the generative algorithms
while having a deep understanding of the material (ie. flexible fila-
ment), tools (ie.3D Printer), techniques (ie. gCode commanding the
printer) and data(.json pressure files). It was complex and required
people from several disciplines willing to engage in hybrid craft.
Creating the encoded material required not only new tools and
techniques but also an open attitude and varied skill set.

3D printing flexible materials geometries requires designers to
work in ranges of quality and precision when programming the
materials structures. We worked through the challenge of standard-
izing the programmed material behavior accepting that there are
ranges of quality that are defined by the Technology (3D Printer),
material (the filament, not only the type, but also color) and, as
we learned in the process, the direction of travel in creating the
geometry itself. Part of the discipline of hybrid crafting is a deep
understanding of how digital tools works and how to program
them.

Starting off trying to build an electronic sensor shoe would have
taken us down a very different journey. We arrived at iterative
personalization thanks to the fact that we chose to hybrid craft
a bespoke shoe in a full wearable research product. Wearing the
shoes while making the shoes inspired us to go deeper. Others have
previously integrated off the shelf electronic sensors for iterative
improvement, but our work at a base material level allowed us to
personalize the sensor itself. It may seem obvious that personalized
sensors would create more personalized data, but only by 3D print-
ing electronic sensors we did realize from first-hand experience that
we had several opportunities to gather better data. This exploration
opened the door to mechanical sensing.

Mechanical (non-electronic) wear and tear sensing from encoded
structures could be used in many places, not only in shoes, but in
many other places where wear and tear is important. We were sur-
prised during our research to discover that some snow tires already
use material indicators in the tread. Most interesting from our re-
search was the idea that mechanical sensing could be programmed
to already provide a temporal composite for iterative personaliza-
tion instead of computing one from the electronic sensors.

Designers, makers and researchers often think of 3D printers
to be like paper printers. Our experience was the 3D Printer more

closely resembles a knitting machine. A knitting machine works
with ranges of tensions and yarns. There is a precision to the size
of the stitches in a sweater that lends itself to certain kinds of
patterns and motifs. There are fundamental rules about how far a
single color of yarn can jump before the thread comes loose or how
many stitches can be jumped. There is a quality a knitting machine
can achieve that we see in material structures essential in both
knitting and 3D printing. Our experience in this process was that
new insights informing digital fabrication came from people who
work with textile machinery. There are limits to the technologies,
but experience with tools from other disciplines helps understand
those limits in new ways.

5.2 Encoding Data
Encoding data for iterative personalization needs compressing time
into a temporal composite to provide parameters to the generative
algorithms that encode the material. This temporal composite is in
a way an impressionist painting like Picasso’s 1938 ’Seated Woman’
where the painter combines many moments from many painting
sessions. We condensed the behavior of users footstep in a compu-
tational way of understanding movement over time. This idea of a
paining asks more questions such as how do we capture different
activities that the wearer is engaged in? Can we encode data that
captures enough of a specific behavior that we can understand as
designers it is happening? Do we need to understand or is this a
question of precision and interpretation?

Personalizing the sensor to the individual results in better data,
but it is not exactly the same format of data. In encoding data for
design, the process used to generate the temporal composite needs
to be rewritten. The designers need data to understand how to create
temporal composites in a way that creates a better shoe. Unlike
current objects that are designed once and mass manufactured,
iterative personalization requires the designer to stay involved in
the product service system to interpret this data and create new
styles. We expect that designers of such system will share our
experience that the temporal composite becomes a design material.
This is especially true as we consider the difference between the
active electronic sensing versus the passive mechanical sensing.

We see many kinds of quality and precision, not only in the
encoded material but also in the encoded data. This includes the
data available, the materialization processes, the system training,
the negotiated algorithmic generation, and challenges with incorpo-
rating new shoes designs into the system. As discussed in encoding
materials, the precision of the encoded material is different than
the encoded data, we see this as a relationship between the ideal,
predicted and actual use. In iterative personalization, we need to be
able to compare each iteration so that the level of personalization
can grow. The data trail of an object is the narrative story that
informs generations to come.

Iterative personalization requires that the system is trained to be
better over each version, just like user statistics improve software in
each version. This is an evolutionary system that requires software
and algorithms to be trained regularly. The iterative personalization
loop is also a feedback loop where we can tell from the data if
our data profile of the shoe is correct. Not only can we compare
shoes, the encoded data from analysis and profiling is ripe for



machine learning. Not only can we compare each shoe version to
the previous one.We can compare similar size and pressure patterns
over time, and the ideal vs actual shoe that was made to name to
name a few. As the database grows with multiple users and multiple
shoe versions, it is clear that self-directed machine learning will
become a key tool in dealing with the complexity of the data.

5.3 The Data/Material Relationship
In working over two years to encode materials and data for iterative
personalization we noted the data & material relationships changed.
In the beginning, the materials we were designing with were the
physical filament fed into the 3D Printer. As we came to be familiar
with the idiosyncrasies of the material (every color of filament is
different, the data from the footscan is a temporal composite), tools
(3D printers are susceptible to ambient temperature, humidity, time
of day, electric line tension...), and techniques something magic
happened. The algorithms used to encode the design characteristics
and sensing became really important. The project members began
to speak of the algorithms as if they were the material. Not using
3D files, but rather generating gCode and seeing it for the first
time on the printer prevented abstraction by a screen. We found
ourselves voraciously adding code libraries to control the data
just slightly differently. We found our team at the white board
rearranging the pressure calculations to make the pressure sensing
slightly more sensitive to high impact pressure for someone who is
running. Several of these instances changed the design language of
the lab we worked in. Hybrid crafting resulted in a new discipline
of designing data and material relationships over time.

The sense of time that iterative personalization changed our role
as designer. Depending upon the moment of the lifetime of the
shoe we found our activities and perceptions changing. Time is
a key element in what we made. The temporal form of the shoe
depended upon where we were at in the UPPS cycle. Sometimes the
’shoe’ was pure data, some times it was material. Developing the
skills to see the shoe as both unlocked the possibilities of iterative
personalization. Data allowed us to move through the temporal
form of the shoe and capture moments of that lifetime.

6 DISCUSSION, CONCLUSIONS AND
FUTUREWORK

In this paper, we reported on four iterative projects that form a
system of iterative personalization. We contribute with lessons
learned and techniques for traversing the encoding of data and
materials. Our exploratory work aims to enrich the possibilities for
makers, designers, engineers and researchers who are developing
data-material relationships, especially as a hybrid craft. We extend
the capabilities of prior work into material programming [53] and
contribute to the understanding of encoding materials designed
with generative algorithms from encoded data. Along the journey,
we show new tools and techniques for computational design emerg-
ing and a trans-disciplinary understanding of data and materials
developing in design.

Iterative personalization is a making something more person-
alized by using a data trail created by previous from generations.
Iterative personalization might be seen as combining the iterative
improvement for design synthesis by Autodesk Research [40] with

Vallgårda et al’s ideas of temporal design [55] as iterations over a
lifetime. This opens up a door to not only our sneakers being in-
creasingly personalized every time they become worn out, but that
these sneakers encode data for all of our shoes including dress shoes,
running shoes, high heels and other sneakers. We look forward to
one day encoding the data and materials for such a closet.

Iterative Personalization shows the potential of Ultra Person-
alization. This research demonstrates that the Ultra-Personalized
Product Service (UPPS) system is beneficial to the design of sys-
tems of iterative personalization. This is achieved by encoding data
and encoding materials in ways that remember how the thing was
made and used. We show how a product service system can support
iterative personalization by subdividing the complexity of the life-
time. Moreover, the collection of data across the lifetime of the shoe
opens up possibilities for post-human concerns such as sustainabil-
ity, not only over the lifetime of a shoe, but in multiple shoe over
multiple lifetimes. The ability to use data as a designer provides
new frontiers for hybrid craft, allowing designers to consider the
why of the object, not just the how.

Iterative personalization also builds on the idea of the research
product[42]. Not only does each shoe become a research product
for successive shoes, there is a potential that thousands of shoes
becomes a research product informing all the other shoes that
follow, and perhaps more than show. Our everyday things may
combine data across large numbers of artifacts informing each
other. New potential for hybrid craft emerge as new outliers and
expressions emerge from the data, creating newmaterial geometries.
The role of the designer becomes more active in the process as
the behavior of individuals changes over time. The cycle in some
ways resembles software development working with more software
developers in hybrid craft may open more possibilities.

Understanding and designing the data and material relationship
over the lifetime of an object tells us new things about materials,
use, and people in their natural setting. The insights gained during
this research are only a first step into encoded material and data for
iterative personalization. We hope to create several more iterations
of the shoes for individual wearers and understand the limits of
iterative personalization in shoes. We also hope others will join us
to explore the data & material relationship to iteratively personalize
of all kinds everyday things.
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