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ABSTRACT
Data analysts apply machine learning and statistical methods
to timestamped event sequences to tackle various problems
but face unique challenges when interpreting the results. Es-
pecially in event sequence prediction, it is difficult to convey
uncertainty and possible alternative paths or outcomes. In
this work, informed by interviewswith fivemachine learning
practitioners, we iteratively designed a novel visualization
for exploring event sequence predictions of multiple records
where users are able to review the most probable predictions
and possible alternatives alongside uncertainty information.
Through a controlled study with 18 participants, we found
that users are more confident in making decisions when al-
ternative predictions are displayed and they consider the
alternatives more when deciding between two options with
similar top predictions.

CCS CONCEPTS
• Human-centered computing→ Visualization.

KEYWORDS
Predictive visual analytics, uncertainty visualization, event
sequence analysis, decision making
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1 INTRODUCTION
Sequences of timestamped events have been widely collected
and analyzed to tackle various problems in domains such
as healthcare, digital marketing, and education. For exam-
ple, hospitals record patients’ treatment histories, websites
log users’ page visits, and schools track students’ learning
activities. Key tasks in event sequence analytics include min-
ing and summarizing frequent patterns, querying event se-
quences to build cohorts, and analyzing correlations between
events and outcomes. With the emergence of machine learn-
ing techniques, predicting future events based on historical
paths has also gained traction [53]. For example, marketing
analysts may want to predict customers’ next actions to fore-
see who might unsubscribe and send a retention offer before
it happens; customer experience representatives may want
to predict which customers might experience bottlenecks
and provide support ahead of time.

Using statistical techniques, predictive models allow users
to exploit patterns in their data and predict future trends
and outcomes [35], with ever-increasing accuracy. The out-
put of predictive models often includes uncertain informa-
tion, such as ranges of expected values for numeric predic-
tions or degrees of confidence for categorical predictions.
Extensive research has shown that visual analytics improves
users’ understanding of large sets of event sequences in a
wide variety of tasks: from timeline-based representations
for inspecting individual journeys [45, 46] to aggregated
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overviews for exploring common patterns in a large num-
ber of records [41, 61] and integrated displays for analyz-
ing how different sequences of events lead to different out-
comes [18, 60].
However, most existing techniques focus on visualizing

historical event sequences and few explore designs for sup-
porting the analysis of probabilistic future events generated
by predictive models. The added uncertainty information
leads to difficulty in interpreting their results and discovering
actionable insights, especially for event sequence predictions
which have multiple steps, with multiple possible events at
each step. While prior research broadly explored the design
space of uncertainty visualization, the needs for seeing alter-
natives have not been sufficiently addressed. For example,
besides the most probable prediction, what else may happen
and how likely is it? Without information about alternatives,
people may not be able to confidently make decisions.

Consider a scenario in digital marketing (i.e., advertising
products or services through emails, display ads, paid search
results, etc.). A marketer, Jill, is building an ad campaign for
1,000 customers that involves sending a series of emails. Us-
ing event sequence prediction models, she is able to predict
the likely customer activities after receiving her emails. If
there are three possible activities and she’d like to predict
just the next five steps for each customer, the results will be
5,000 ordered lists of the three events for a total of 15,000
events, each associated with a probability, timestamp, and
customer ID. Understanding these predictions, let alone mak-
ing decisions from them, quickly becomes difficult. By taking
the top-one prediction for each customer at each time-step,
Jill can decrease the number of events to be reviewed, but in
cases of uncertain top predictions or strong alternatives, she
may miss important information.

We seek to fill this gap by designing and evaluating visual-
izations for exploring prediction results of event sequences.
We begin by interviewing machine learning practitioners to
collect design needs for visualizing event sequence predic-
tions.We design and implement a novel alternative-aware un-
certainty visualization to address users’ needs of reviewing
most probable predictions along with possible alternatives.
A controlled study indicated that users are more confident in
making decisions when alternative predictions are displayed
and they consider the alternatives more when deciding be-
tween two options with similar most probable predictions.
The direct contributions of this work are:

• Eight design needs for visualizing event sequence pre-
diction results collected through interviews with five
domain experts.

• An alternative-aware uncertainty visualization design
for reviewing the most probable event sequence pre-
dictions along with possible alternatives.

• A controlled user study with 18 participants evaluating
the effects of showing alternatives on people’s decision
making under uncertainty.

2 RELATEDWORK
In this section, we survey and discuss related literature in de-
cision making and visualization, with a focus on uncertainty
data and event sequences.

Decision Making under Uncertainty
People often need to make decisions under uncertainty [22],
which involves choosing actions based on imperfect observa-
tions with potential gains and risks [33]. Strategies for deci-
sionmaking under uncertainty have been extensively studied
in a wide range of application scenarios, such as choosing
medical treatments with uncertain diagnoses [23, 54], fore-
casting weather with estimated initial conditions [29, 30, 58],
investing with a uncertain risks [24], or collaborative sense-
making under uncertain partner activities [19] and interrup-
tion time [20].

Despite that the tolerance toward risk is subjective [3, 31]
and differs between domains [57], the importance of provid-
ing uncertainty information in predictive analysis has been
agreed on and emphasized in many studies. For example, a
laboratory study of flood forecasting [47] showed that the
presence of estimated flooding probability leads to more opti-
mal decisions and more coherent answers among individual
decision makers. Similar results were also observed in public
weather forecasting [37], where adding probabilistic uncer-
tainty estimate improved both decision quality and people’s
trust in evacuation instructions in weather warnings.
Although the benefit of providing uncertainty (i.e., the

probability of most probable prediction) in decision making
had been well-studied in various application scenarios, the
effects of showing alternative predictions (i.e., less probable
predictions) has not been fully discussed in existing literature.
In this paper, we investigate the needs of people to be aware
of the alternative predictions and how the alternatives will
affect people’s decision making under uncertainty.

Visualization of Uncertainty
Properly presenting uncertainty information in data analysis
tools can generally improve users’ understanding of data
and the quality of their decisions [21, 28, 51]. According to
extensive surveys [5, 7, 55], two categories of designs are
typically employed for presenting uncertainty information
in combination with the data in static visualizations. The first
category encodes uncertainty with the visual properties of
the data points, such as blur or fuzziness [10, 39], grayscale,
color, or transparency [1, 11, 26], and shape, dashing, or
sketchiness [6, 17]. Overall, these visual encodings can create
an intuitive effect that data with a higher uncertainty is

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 573 Page 2



harder to see or recognize [15], although blurring or fading
out the visual elements may impair the readability of the
visualizations [50].

Techniques in the second category incorporate uncer-
tainty information by adding extra visual components in
the form of glyphs [36, 38, 59], geometric features such as
contour lines and isosurfaces [43, 48], or annotations [8].
These methods can display uncertainty with full details, but
the added amount of visual complexity require more cogni-
tive processing and may slow down users’ exploration [2].

While prior research broadly explored the design space of
uncertainty visualization, the needs for seeing alternatives
have not been sufficiently addressed, i.e., beside the most
probable prediction, what else may happen and how likely?
Without information about alternatives, people may not be
aware of the potential losses and gains when making deci-
sions. In this work, we seek to fill this gap by designing and
evaluating an alternative-aware uncertainty visualization for
exploring event sequence predictions.

Visualization of Event Sequences
Starting with LifeLines [45, 46], early research on event
sequence analysis commonly uses a timeline-based repre-
sentation to visualize individual traces with many success-
ful applications in depicting a patient medical history [4,
25, 32]. These tools can be adapted for showing multiple
records in a stacked manner but does not scale well to large
datasets. To address the scalability issue, another group of
techniques explored using a tree or graph structure to pro-
duce an overview of multiple records while preserving indi-
vidual details. For example, LifeFlow [61], EventFlow [14, 41],
and Scribe Radar [62] aggregate common subsequences on
an alignment point using an Icicle tree representation. Out-
Flow [60] and CareFlow [44] introduce a state transition
graph based the Sankey diagrams [49], which combine mul-
tiple event sequences into a graph of state nodes and show
the step-by-step transitions.

Among visualizations for exploring historical events, sev-
eral are capable of analyzing how different sequences of
events lead to different outcomes, which can help analysts
generate hypotheses about causation. For example, Deci-
sionFlow [18], OutFlow [60], and CareFlow [44], aggregate
similar event sequences into progression pathways and vi-
sually encode the correlations between the pathways and
possible outcomes. CoCo [40] and MatrixWave [63] enable
analysts to compare two groups of records with different out-
comes by highlighting their differences in the composition of
the event sequences. EventAction [12] and PeerFinder [13]
help analysts search and refine a cohort of records similar to
a seed record and to explore their activities and outcomes.
Compared to existing research on visualizing historical

event sequences and definite outcomes of archived records,

our work explores designs for supporting the analysis of
probabilistic future events generated by predictive models.
Specifically, we introduce a novel visualization technique to
address users’ needs of reviewing most probable predictions
along with possible alternatives. In this work, we choose
Sankey diagram as our primary representation, which is
widely used in commercial systems (e.g., Adobe Analytics
and Google Analytics) and familiar to analysts.

3 INFORMING THE DESIGN
Our development followed an iterative, user-centered de-
sign process [42]. To better understand existing approaches
and problems, we began by conducting semi-structured inter-
viewswith five practitioners who use or build event sequence
prediction models in their daily jobs at a large software com-
pany. We synthesized their responses into a set of user needs
to guide our visualization design. We iteratively refined the
design through multiple demos, discussions, and additional
interviews with the initial participants as well as other practi-
tioners. This section describes the formative interview study.

Interviews
We conducted two one-hour interviews with five machine
learning practitioners (two females, aged 31–43, domain ex-
perience 7–15 years each). One session was with three mar-
keting analysts (P1–3) interested in using predictive tools to
analyze customer behaviors and another was with two data
scientists (P4–5) who design predictive models for clients
(e.g., software developers or data analysts). The interviews
were semi-structured and guided by three topics, including
the analytical tasks the practitioners applied prediction for,
the predictive tools or models they have used, and the chal-
lenges they faced that have not been addressed by existing
techniques. The interviews were not restricted to a particular
use case. We encouraged the practitioners to describe exam-
ples of real situations in their jobs when discussing the tasks
and challenges. One experimenter was responsible for taking
notes during the interviews and coding the transcripts.

Results
Based on the feedback gathered during the interview study,
we identified eight key design needs across three major
themes. To ensure the commonality, each design need was
supported by at least two interviewees (stated separately by
two or stated by one and agreed on by another).

Support for Predicting both Outcomes and Activities. Accord-
ing to the three marketing analyst interviewees, predicting
outcomes (long-term or intermediate) is a key functional-
ity in many existing tools. They typically use regression
or correlation analysis to answer queries such as “what is
the estimated conversion rate of these trial accounts?” or “for
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customers who have purchased product A and B, what else
are they also likely to purchase?” One issue that came up
among all the marketing analysts was the lack of capability
to predict at the activity level (N1 | P1–3). For example,
P1 explained “we need not just outcome summaries but also
their actual activities and behavior patterns.” P3 added that
“in hard situations when nothing look obvious (in the outcome
predictions), seeing what they are likely to do will be especially
useful.” The marketing analysts suggested combining out-
comes and activities in the prediction (N2 | P1–3). For
example, P2 stated that “I can identify customers with a low
renewal probability and see what type of activities we need to
engage them more.”

Support for Visually Exploring Event Sequences. When dis-
cussing how to present the prediction results, the market-
ing analysts expressed a desire for visualizations that can
support exploring historical activities and predictions
simultaneously (N3 | P1–3). Specifically, P2 commented
that their current audience management tool only shows
summary activity metrics such as the numbers of website
visits or product downloads and said: “Visually reviewing
what they (customers) have done before and what they may
do next can help identify what type of content to send.” She
added an example that “for early customers, we often send
them awareness emails to introduce our products and for ad-
vanced users, we send them renewal promotions.” While all
five interviewees agreed that it is useful to show multiple
event sequences at a time (N4 | P1–5) to accelerate the
analysis, the three marketing analysts also emphasized the
importance of being able to inspect individual records
with full details (N5 | P1–3) to help provide a personalized
marketing experience. In addition, two data scientists, P4 and
P5 pointed out that people often forget about uncertainty
when using predictive models and suggested showing the
uncertainty and reminding users that more than one
situations may happen (N6 | P4–5).

Support for Making Personalized Action Plans. One common
need brought up by the marketing analysts was to help them
personalize customers’ experience. P1 explained that “I hope
this tool can help us identify the real problem faced by each
customer, prioritize where we need to focus more, and select
appropriate content in a data-driven way.” The other two
marketing analysts had the same feeling and P2 added: “It
takes a lot of effort to put together assets for an email and days
to see its performance.” They wished to have a prediction
tool that allows them to quickly try out different types
of intervention plans on different audience (N7 | P1–
3) and predict how certain interventions impact their
behaviors (N8 | P1–3).

Discussion
In an attempt to bound the scope of our work to the design
of uncertainty visualization under the context of event se-
quence predictions, we will mainly focus on addressing N3–6
in this paper. While the remaining needs are also important
to fully support users’ analytical workflow, N1–2 are more
related to the choice of prediction models and N7–8 are at
the level of application functionalities. Existing technolo-
gies, such as next-action prediction models and outcome
classifiers [9] could be used to address N1–2 and partial de-
pendence diagnostics [34] can be used for N7–8.

4 VISUALIZATION DESIGN ITERATIONS
Informed by the design needs gathered from the interview
study, we iteratively designed a visualization for exploring
prediction results of event sequences. The final design was
developed over a three-month periodwhere the feedbackwas
collected from 12 machine learning practitioners (4 analysts,
2 researchers, 1 product manager, and 5 from the original
interviews). Over a dozen prototypes were piloted before
settling on the final design (Fig. 1–3 highlight a selection of
the designs). To allow the pilot users to assess our designs in
realistic settings, we developed and demonstrated prototypes
based on a real digital marketing dataset, which consisted of
30-day behavior logs of 38,155 customers.
In this section, we begin by describing the predictive

model used and our method for aggregating its results. Then,
we describe the evolution and key design decisions for the
alternative-aware uncertainty visualization.

Predictive Model
We generated predictions of future activities based on a Time-
Aware Recurrent Neural Network (TRNN) [9]. TRNN is the
state-of-the-art technique for “next action” prediction. The
input of the model is a sequence of events. Each event is a
combination of event categories and timestamp. Each event
category is characterized by a one-hot representation and
the feature vector of each event is generated based on the
representation of the corresponding event category extended
with the normalized timestamp. The model is built based on
LSTM networks [16], which contains a list of chained LSTM
units. The input of each unit is the feature vector of an event
in the sequence, and the output of each LSTM unit is sent to
the next unit for iteration.
The output of each LSTM unit is recursively computed

based on the input of the current unit and the output of the
previous unit. The model is trained based on the softmax
regression on the weighted output of each LSTM unit, which
intuitively represents the probability of each event category
being the next event. The optimization goal is to maximize
the probability of the actual next event. Once the model is

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 573 Page 4



Figure 1: (a) Historical event sequences aligned by their most recent events. (b) Historical sequences aggregated in Sankey
diagram. (c) The probabilistic future events of each sequence. Each step in the prediction is a probability distribution over all
available event categories, which leads to exponential growth of the number of possible paths. (d) Probabilistic paths of all
sequences aggregated in Sankey diagram, with the sizes of nodes and widths of links proportional to the probabilities. (e) Most
probable future paths derived by preserving only the most probable event at each prediction step. (f) Most probable future
paths aggregated in Sankey diagram, with the sizes of nodes and widths of links proportional to the aggregated population.

Figure 2: The explored choices for visualizing top prediction
uncertainty: (a) size-oriented design, which uses the size of
nodes to distinguish the probabilities, (b) color saturation-
oriented design, which encodes probabilities with the color
saturation for each event category, and (c) opacity-oriented
design, which separate the event probability from the event
category with a grey-scale (opacity) encoding.

trained, when given an event sequence as input, a probability
distribution of the next event can be derived from the output
of the last LSTM unit. We can predict probabilistic future
paths by iteratively appending the most probable next event
to the input sequence.

Aggregating Probabilistic Event Sequences
Unlike historical event sequences where each event belongs
to a certain category and each record has a certain path,
events predicted by the TRNNmodel are represented by prob-
ability distributions over all the event categories, resulting in

up tomn probabilistic future paths for each record (Fig. 1(c)),
wherem represents the number of event categories and n
is the number of steps. The added complexity leads to great
difficulty in producing an overview of the future activities
of multiple records. The simplest solution involves taking
only the most probable prediction at each step. However,
as previously discussed, this obfuscates possible alternative
paths or uncertain predictions.

To address this challenge, our first design aggregated the
paths by calculating the average probability of each event,
e , at each step, S , across all records. This design showed the
overall probability distributions between two steps but lost
track of individuals’ identities (N5) and which alternatives
correspond to which top events. Additionally, after reviewing
this preliminary prototype with pilot users, we noticed that
they tended to focus more on paths with high probabilities
and paid less attention to the less probable ones.

The final aggregation method is a combination of the pre-
vious two iterations: we preserve and aggregate records by
their top prediction at each step (Fig. 1(f)) and alternate
predictions are aggregated by average probability. The new
aggregation method produces an overview of the most prob-
able future activities of all the records (N3, N4) and supports
reviewing individual’s details (N5).
We visualize the most probable future paths as a Sankey

diagram. We then explored designs for encoding the uncer-
tainty information associated with each prediction and a
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Figure 3: (a) Three recordswith the same top prediction and thus to be aggregated into one node. Design choices for aggregating
and presenting their top prediction’s probabilities and varied alternative predictions are: (b) composition-oriented choices
(e.g., pie chart, treemaps), which directly aggregate the probabilities of both top predictions and alternatives by categories.
(c-e) hierarchical-oriented choices, where the prediction results are organized into (c) a hierarchical tree and can be compactly
arranged through horizontal icicle layout, encoding the average probability with (d) the width of each rectangle or (e) the color
opacity. Our final design improved the layout and probability encoding of the hierarchical-oriented choices.

Figure 4: The final design: (a) Only the top prediction (color
of the thick ring) and its probability (darkness of the inner
circle) is displayed at the start. (b-c) Alternative predictions
are added level-by-level (thin rings).

novel glyph design for revealing possible alternatives beside
the most probable predictions.

Visualizing Uncertainty of the Top Prediction
Motivation. Previous work has shown that conveying uncer-
tainty improves decision making and trust [37, 47]. Further-
more, extensive work has been done on visualizing uncer-
tainty [5, 7, 55]. We used Tak et al.’s survey [55] combined
with Vosough et. al.’s flow diagram study [56] as a basis
for the design space: size, blur, color saturation, gradient,
and transparency. Based on their findings, we removed blur,
gradient, and fuzziness due to low perceived visualization
quality and low dependability. Thus, we explored size, color
saturation, and transparency.

Size-Oriented Designs. We first used the size of nodes to
distinguish the probabilities (Fig. 2(a)). However, this led
to many of our pilot users ignoring low-probability paths
completely and only focusing on the most probable paths.
Further, pilot users tended to emphasize the events where
the population was small but probability was high.

Color Saturation-Oriented Designs. Because we use color as
the event-category encoding, we were inspired by Correl’s
Value-Suppressing Uncertainty Palettes (VSUP) [11] to en-
code uncertainty with the event categories. However, be-
cause event categories are typically categorical without any

natural ordering, it is impossible to create a VSUP with more
than three events. We piloted a matrix palette using satura-
tion (Fig. 2(b)), but our pilot users found the colors confusing
and hard to distinguish between event categories, especially
as the number of categories increased.

Opacity-Oriented Designs. Finally, we encoded the probabil-
ity of the top prediction in its own glyph with a grey-scale
(opacity) encoding (Fig. 2(c)). Because the encoding was sepa-
rated from the event-category, users were more easily able to
distinguish which events were more certain, even between
events of different categories, and also placed an accurate
emphasis on large versus small populations.

Visualizing Alternatives and Their Uncertainties
Motivation. Our motivation for showing alternatives in un-
certainty visualizations was originated from design need N6:
besides the most probable prediction, what else may hap-
pen and how likely? Here, we use a simplified marketing
example to illustrate this need. As shown in Fig. 1(c), the top
prediction of the first customer in step one is “open email.”
However, the probability of this top prediction is only 0.52
and the alternative prediction “visit website” has a proba-
bility of 0.48, which is very close to the top prediction. In
this case, the alternative prediction also requires analysts’
attention. Moreover, only showing the top prediction may
conceal potential values and risks which tend to have a low
probability, such as “purchase” or “unsubscribe.”

Composition-Oriented Designs. To show the top prediction
and alternatives, we first explored graphs and charts that are
commonly used for summarizing categorical data, including
pie charts and treemaps (Fig. 3(b)). In the visualization, the
size of the group is proportional to the size of the chart, the
event categories are shown as sub-areas in different colors,
and the average probability of each event category is propor-
tional to the sizes of the sub-areas. While the visualization
provides a clear overview of the probability composition of
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the prediction regarding event categories, showing all alter-
natives adds significant visual clutters to the display and
may distract users from reviewing the top predictions. Also,
averaging the probabilities for all alternative predictions at
different levels may lead to biases [52].

Hierarchical-Oriented Designs. We then explored designs that
can preserve the hierarchical structure of the prediction re-
sults. As illustrated in Fig. 3(a), each record’s next action pre-
diction is a probability distribution over all available event
categories, ordered by probabilities. The most probable one
is called the top prediction and the rest are alternative predic-
tions. The prediction results of multiple records are arranged
into a hierarchical tree if they have the same top prediction
(Fig. 3(c)). Starting from the root node (i.e., the top predic-
tion), these records split into branches at the n-th level if
they have different n-th alternative predictions. Based on
this data structure, we designed a horizontal icicle layout
(Fig. 3(d)) to show the next action predictions of a group,
where the leftmost rectangle is the root of the tree and the
partitions are the tree nodes. Each rectangle of the partitions
represents a subset of records having the same alternative
prediction at the same tree level. The height of the rectangles
encodes the number of records and the width encodes their
average probability.
This hierarchical-oriented design mitigates the biases of

averages since only the probabilities at the same tree level are
aggregated. Also, users can choose to only review a few levels
of alternatives to simplify the visualization while not losing
predictions with a relatively high probability. However, due
to the variance of the probabilities, partitions at the same
level may fail to align with each other. In addition, we found
these rectangular designs fail to intuitively imply the order
of the levels and users were not sure about how to read the
visualization (i.e., row-by-row or column-by-column).

Our final design uses a circular glyph to address the us-
ability issues of the rectangular designs while preserving the
hierarchical structure of the prediction results. As illustrated
in Fig. 4, only the top prediction (Fig. 4(a)) is displayed at
start. The color of the first outer ring represents the com-
mon top prediction of a group of records. Users can get
started by exploring the top predictions to see the most prob-
able future paths. Then, depending on the granularity of the
analysis, alternative predictions can be added level-by-level,
which are represented by the outer rings growing from in-
side (Fig. 4(b,c)). Arcs in the outer rings correspond to the
rectangle partitions in Fig. 3(e), colored by event categories.
The probabilities of alternative predictions are dynamically
illustrated in the inner circle on mouse hover. Users can
also set a threshold to hide alternative predictions with a
probability lower than the threshold. Compared to the rect-
angular designs, the circular glyph intuitively implies the

order of the different levels of the predictions, explicitly en-
codes the uncertainty, and is more space efficient as users
can incrementally add levels of alternatives.

5 EVALUATION
We conducted a controlled user study with 18 participants
to investigate the effects of showing alternatives on peo-
ple’s decision making under uncertainty. In this section, we
introduce the design of the experiment, analyze quantita-
tive results, and summarize participants’ subjective feedback
gathered from post-study interviews.

Hypotheses
Extensive studies in decision making have found that com-
municating uncertainty information can influence people’s
choices and their confidence in their choices [3, 30, 37].
Therefore, we pose our research question as to understand
how alternative predictions affect people’s choices and their
confidence in making decisions under uncertainty.

We developed four hypotheses around this research ques-
tion. Research by Arshad [3] showed that presenting uncer-
tainty as supplementary information for decision making
can significantly improve user confidence. We hypothesize
that the additional context about alternative predictions will
enhance this benefit:

H1. Overall, users will be more confident in making deci-
sions when alternative predictions are displayed.

As suggested in several recent studies, uncertainty infor-
mation may become less helpful for improving users’ esti-
mates when the uncertain measurements have similar read-
ings [21] and that users tend to make random decisions when
the prediction uncertainties are high [29]. We hypothesize
that showing alternative predictions will be especially bene-
ficial in these situations:

H2. Showing alternatives predictions has a greater impact
on users’ confidence when deciding between two op-
tions with similar top predictions compared to options
with different top predictions.

H3. Showing alternative predictions has a greater impact on
users’ confidence when deciding between two options
with uncertain top predictions compared to options
with certain top predictions.

Lastly, as observed in experiments [30, 37], showing uncer-
tainty can improve decision quality and reduce risk-seeking
behaviors, we hypothesize that showing alternatives along
with uncertainty information will enhance this effect:

H4. Showing alternative predictions may change users’ de-
cision when the alternatives contain risk or value com-
pared to when the alternatives are normal.
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Figure 5: Example tasks presented in (a) Vunc and (b) Valt .
In these examples, the top predictions of both options rep-
resent “Read Email” but have different probabilities.Valt re-
veals that one-third of the customers have an alternative pre-
diction “Unsubscribe” after receiving email A and have an
alternative prediction “Purchase” after receiving email B.

Vunc Valt
Top Prediction e0, e2, e4 e0, e2, e4
Probability Low, High Low, High
Alternative - (e2, e4), (e0, e4), or (e0, e2)

Combinations 6 12
Comparison Tasks 15 66

Participants 18
Total Tasks 1,512

Table 1: The design of the study tasks.

Experiment Design
Guided by the taxonomy of evaluating uncertainty visualiza-
tions [27], we designed a full-factorial, within-subject study
to test our hypotheses by comparing two uncertainty vi-
sualization designs: Vunc (Fig. 5(a)) and Valt (Fig. 5(b)). We
derived Vunc and Valt from our final alternative-aware visu-
alization design (as introduced in Fig. 4), where Valt shows
both top and alternative predictions butVunc shows only the
top prediction. Their visual encodings were kept the same
to ensure the fairness of the comparison.

Participants and Apparatus
We recruited 18 participants (10 males and 8 females, aged
20–30, M = 24.72, SD = 2.16) through an intern email
list in an industrial research lab. Two of the participants
were undergraduate students and 16 were postgraduate. 10
had hands-on experience in digital marketing during their
three-month internship. 14 were familiar with data analy-
sis, machine learning, or software engineering. The other 4
had limited technical backgrounds but studied marketing,
human resources, or graphic design at school. We made sure
all the participants had taken statistics courses and had no
difficulty in understanding the probabilities in prediction.
Each participant received 10 dollars. A laptop computer was
used, with a 13-inch display of resolution 2560×1600 pixels.

User Tasks and Data
The study was performed using hypothetical tasks in a digi-
tal marketing scenario: “Imagine you are an email marketer
deciding between two emails to send. You have a visualiza-
tion tool that shows the predicted customer reactions to each
email. Which email do you send?” We used a decision task in
a specific context since it can help participants give realistic
responses [27]. We pose the scenario on email sending since
it is one of the most popular marketing channels. However,
we ensured that the task was simple and easy to understand
by participants without marketing knowledge.

As shown in Fig. 5, in each task, the participant was given
two visual glyphs (A and B) representing the prediction re-
sults of the customers’ next actions after receiving either of
the two emails. The participants were asked to provide an
answer using a 7-point Likert scale (definitely A, probably
A, possibly A, not sure, possibly B, probably B, definitely B),
reflecting both their decision and confidence. We generate
study tasks using a synthetic dataset, which included 5 event
types (e0: unsubscribe, e1: open email, e2: read email, e3: click
email, e4: purchase). These five event types are used to cover
3 types of situations: purchase (e4) represents a desired good
reaction, unsubscribe (e0) represents a bad reaction to avoid,
and (e1, e2, e3) are normal reactions.
We considered 3 variables in generating the testing data:

top prediction, top prediction’s probability, and alternative
predictions. The top predictions had 3 possible values rep-
resenting the 3 situations (bad as e0, normal as e2, good as
e4). Top predictions’ probabilities had two levels of certainty
(low probability asU , high probability as C). The alternative
predictions included 3 events. Two were consistently filled
with two normal events (e1, e3) for the purposes of diversity.
The remaining one was chosen from e0, e2, e4 to represent
one of the 3 situations (bad, normal, good) in the alternative
predictions. Since events contained in top predictions will
not appear in alternative predictions, each type of top pre-
diction only has two possible alternatives. For example, if
the top prediction is e2, its alternative predictions can only
be (e1, e3, e0) or (e1, e3, e4).

The glyphs in each study task were generated in pairs by
iterating over all the conditions (Table 1). To focus on the
study goals and ensure each study session can be completed
within one hour, we did not vary the population and the
probability of the alternative predictions. Participants were
told that the alternative predictions in each glyph have the
same probability.

Procedure
Each study session started with a 10-minute tutorial, intro-
ducing top predictions, uncertainties, and alternative pre-
dictions. We also explained our visualization designs (Vunc ,

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 573 Page 8



Valt ) and the study task. Then the participants used our
study system to perform two training tasks using each de-
sign. Participants were encouraged to ask questions and we
made sure they fully understood the experiment. The for-
mal study began, which was divided into two sessions for
Vunc and Valt , respectively. The order of the sessions was
counterbalanced using a Latin Square. The order of the tasks
within each session and the order of the glyphs in each task
were randomized. In Valt , alternative predictions were ran-
domly ordered in the outer ring. We conducted post-study
interviews to understand the reasons behind participants’
decisions and gather their feedback.

Results
Confidence. We first compareVunc andValt in terms of users’
average confidence in making decision in different experi-
ment conditions. We inferred users’ confidence by taking the
absolute value of each choice in 7-point Likert scale (0=not
sure, 3=very confident). A Wilcoxon signed-rank test was
used at a significance level of 0.05. The means, Z-scores, and
p-values are reported in Fig. 6 where comparisons with sig-
nificant differences are highlighted in a white background.
As reported in Fig. 6, among all 15 comparison condi-

tions with different top predictions and probability levels, we
found thatValt (M = 2.56, SD = 0.72) generally had a higher
average confidence compared to Vunc (M = 2.30, SD = 0.78)
and the differences were significant in 6 conditions, which
supports H1. Among the 6 conditions with a significant dif-
ference, 5 represented a situation when both options had
similar top predictions (i.e., ei .∗ v.s. ej .∗, where |i − j | ≤ 2)
with only one exception where the top predictions were ex-
tremely different (e0.U v.s. e4.U ), confirming H2. Moreover,
alternative predictions had significantly increased the av-
erage confidence in all the three conditions where the top
predictions of both options were uncertain. Surprisingly, we
also found significant differences in three conditions where
one of the top predictions was certain. These results partially
supported H3 and also indicated that showing alternatives
has an impact on both certain and uncertain top predictions.

Decision Changes. Next, we investigate if the participants
had made different choices when deciding between two op-
tions using Vunc and Valt . We counted the 18 participants’
choices on all 66 tasks when using Valt , excluding “not sure”
answers. The numbers of choices were further broken down
according to the 15 comparison conditions with different top
predictions and probability levels. We identified the decision
changes by contrasting each participant’s choices made with
Vunc and Valt .

In Fig. 7, we highlighted in red the numbers of different
choices in each comparison condition and annotated the

alternative predictions of each option. Overall, most deci-
sion changes occurred when two options had similar top
predictions but extremely different alternative predictions
(i.e., e0 and e4 as alternative predictions). By referring to the
observations in Fig. 6, we also found in these comparison
conditions, participants’ confidence was lower than usual
when usingVunc and significantly increased when usingValt .
These findings partially supportedH4 and indicated that the
participants considered more alternative predictions that
contained potential risk or value when deciding between
two options with similar top predictions. In contrast, when
top predictions were different, their decisions were hardly
changed by alternatives.

Feedback
We summarized participants’ feedback around the usefulness,
utility, and ease of understanding of our alternative-aware
uncertainty visualization.

Usefulness. All study participants gave positive answerswhen
asked if seeing alternative predictions was useful. One com-
mented: “I turned to alternative predictions when it is hard
to choose from the top prediction.” Another said that: “I com-
pared the alternative predictions when the top predictions of
both options are not certain.” One participant thought show-
ing alternative predictions was critical for risk control and
said: “When the top prediction is good but has a low certainty,
then I will consider alternative predictions to make sure that,
in the worst case the top prediction does not come out, the re-
sult is still tolerable.” Moreover, two participants mentioned
that alternative predictions can sometimes determine the
nature of top prediction. One explained: “For example, when
I compare two medium top predictions with different level of
certainty, I could not decide which one is better unless I know
the alternative predictions.” This also explains why e2.C/e2.U
shows most decision changes in Fig. 7.

Utility. We asked the participants to rank the importance of
top prediction, top prediction’s probability, and alternative
predictions. 13 out of 18 chose top prediction as most im-
portant, followed by top prediction’s probability, and then
alternatives. One explained: “I will check the top prediction
first and then compare uncertainty when the top predictions
are the same. If I still cannot decide, I will consider alternative
predictions.” Two others had the same rankings, but felt that
top prediction and uncertainty should be considered together
without explicit ordering. Three participants put alternative
predictions prior to uncertainty and one marketing student
commented: “I would take any risk for purchase because it
is the ultimate goal in marketing. If one side contains a good
outcome, I would go for it.” This feedback indicate the subjec-
tive nature of how people perceive risk and value and shed
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Figure 6: Users’ average confidences when using Vunc or Valt under 15 comparison conditions with different top predictions
and probability levels. Alternative predictions varied when using Valt and the results are aggregated. Significant differences
(p < 0.05) are highlighted in a white background. Error bars show 95% confidence intervals.

Figure 7: The distribution of the 18 participants’ choices on
all 66 tasks when usingValt . Decision changes are identified
by contrasting each participant’s choices made with Vunc
and Valt and highlighted in red.

light into our unexpected observation that alternatives had
significant effects even when top predictions were certain.

Ease of Understanding. Weasked the participants to rate “how
easy was the visualization to understand” on a 7-point Likert
Scale (1=very difficult, 7=very easy). On average, the partici-
pants felt the visualization was easy to understand (M = 6.17,
SD = 0.62). One with a graphical design background com-
mented: “The design is well aligned with people’s cognition.
The top prediction and probability shown in the middle indi-
cates their highest priority. The surrounding alternatives rep-
resent additional information.” Another with a data science
background suggested an improvement for our uncertainty
encoding: “Using darkness to show probability is intuitive but
I also want to see specific values to make a more accurate com-
parison and decision.”

6 DISCUSSION
All hypotheses were confirmed in the user study results,
with a larger impact than expected. Despite that the most
significant impact was when the top predictions were similar,
one exception stood out: when comparing two very different
top predictions (uncertain e0 v.s. uncertain e4), the presence
of alternative predictions changed users’ decision making,
indicating that alternative-aware visualizations could also be
beneficial even when one top prediction is obviously supe-
rior to another. Also, despite that we found no difference in

all conditions where both top predictions are certain, we sur-
prisingly found significant results in three conditions where
only one top prediction was certain, indicating that showing
alternative predictions has an impact in both certain and
uncertain situations.
We only tested the particular task of sending marketing

emails in the user study, but our needs analysis, visualiza-
tion designs, and study findings can provide useful guidance
to many other digital marketing channels (e.g., display ads,
paid search results), where customer activities are similarly
defined (e.g., views, clicks) and the risks and gains are com-
parable (e.g., dropout, conversion). Our design can also be
adapted to visualize event sequence data in other domains,
such as patients’ electronic health records and students’ aca-
demic histories. However, since people’s perception and tol-
erance toward risks differ among domains [57], the impact of
showing alternatives requires further investigation to verify
for specific applications.

Finally, while this paper only focused on addressing four
design needs related to uncertainty visualization design for
event sequence predictions, we believe that there is value
in clarifying the remaining needs so as to inspire others to
develop better solutions to support decision making.

Limitations and Future Directions
Our visualization design has several limitations. We used
darkness to encode uncertainty information in consideration
of its intuitiveness and enabling fast comparison. However,
participants with a background in data science expressed
the need for reviewing exact uncertainty values for mak-
ing more accurate comparisons and decisions. Therefore, we
recommend showing both darkness and exact values in appli-
cations of our design. Moreover, unlike general uncertainty
visualizations, our design was tied to the event sequence data
and may not be an optimal solution to other data structures.

Our user study also has several limitations. First, our par-
ticipants may not fully represent experts with long domain
experience and the task may not fully represent real-world
situations. We still need long-term case studies with domain
experts to advance our understanding of the usefulness of
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our design in real-world analytical tasks. Second, our study
did not formally compare different design options for uncer-
tainty encoding, since we focus more on understanding the
effects of the added alternative predictions. In future work,
wewill incorporate alternative visualization into other uncer-
tainty displays and produce generalized design guidelines.

7 CONCLUSION
Predicting next events to gain insights about the future is
an emerging event analytics task. Informed by interviews
with five machine learning practitioners, we have designed
an alternative-aware uncertainty visualization for exploring
event sequence predictions. Our study suggests that people
are more confident in making decisions when alternative
predictions are displayed and they consider the alternatives
more when deciding between two options with similar top
predictions. Based on the study results and participants’ feed-
back, we have discussed when, why, and how showing alter-
native predictions is useful or has limitations.
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