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a set of potentially matching images from a database.

ABSTRACT
Humans involuntarily move their eyes when retrieving an
image from memory. This motion is often similar to actually
observing the image. We suggest to exploit this behavior as
a new modality in human computer interaction, using the
motion of the eyes as a descriptor of the image. Interaction
requires the user’s eyes to be tracked, but no voluntary physi-
cal activity. We perform a controlled experiment and develop
matching techniques using machine learning to investigate
if images can be discriminated based on the gaze patterns
recorded while users merely recall an image. Our results
indicate that image retrieval is possible with an accuracy
significantly above chance. We also show that these results
generalize to images not used during training of the classifier
and extends to uncontrolled settings in a realistic scenario.
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1 INTRODUCTION
Imagine that you are thinking about your vacation photos
from last summer. After 5 seconds a photo appears in front
of you, from that vacation, very similar to the moment you
just recalled.
We believe such a seemingly magical task is possible

through the use of eye tracking. It has been observed for
over a century that humans move their eyes while thinking
about images [21, 44, 49], more precisely, recalling images
from memory. While this perhaps surprising effect has long
been thought of as an odd superfluous expenditure of energy,
it has been suggested in the 1960’s that it is connected to the
active construction and organization of the image [18, 46].
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This hypothesis has since been rigorously and repeatedly
proven [3, 23–25, 36, 37, 51, 56, 60]. It is now clear that eye
movements during the recall of an image serve as a spa-
tial index. This means gaze during recall is connected to
the location of features in the image. This connection, in
turn, suggests that gaze might contain enough information
to retrieve a (known) image a user merely thinks about.

On the other hand, gaze data is coarse. It has to be expected
that gaze data for different images may be very similar. To
make matters even more difficult, it is known that eye move-
ments during imagery are not reinstatements of those made
during perception [24, 56]. Moreover, there is a large variabil-
ity of eye movements during mental imagery across users.
A common effect is that eye movements during imagery
are of smaller magnitude compared to those during percep-
tion [3, 15, 22, 23]. We discuss more details in Section 2 and
limitations imposed by these characteristics in Section 7.

In order to gauge the feasibility of image retrieval based on
gaze data during mental imagery we set up a controlled lab
experiment (see Section 3)1. Participants are viewing images
while eye tracking is employed. Directly after an image is
shown, the screen turns to gray and participants are asked to
internally recall the image while keeping their eyes open. We
record the eye motions during both image perception and
recall using a video-based eye tracker. Based on the collected
data we evaluate different retrieval scenarios. In all cases
we essentially ask: how well can images be computationally
discriminated from other images based on only gaze data.

The scenarios differ based on what gaze data is used as a
query and what gaze data is used for matching. We consider
different combinations which can be generally divided into
two scenarios: in Scenario 1, we follow the idea of exploring
available information contained in the data; in Scenario 2,
we test a realistic setting in applications, which allows for
the possibility of extension to new users.
We develop two types of retrieval algorithms for these

scenarios. Restricting ourselves to using spatial histograms
of the data, we consider an extended version of earth movers
distance (EMD) and, at least for the scenarios that provide
enough data, we also use deep neural nets. In general, we
find that retrieval is feasible, albeit the data from looking at
nothing is challenging, and the resulting performance varies
significantly across scenarios and observers.

Based on the promising results in a lab setting we make a
first step towards a real application (see Section 6): we sent
several participants with a mobile eye tracker to a staged
‘museum’ exhibiting paintings. After their tour, we ask them

1Gaze data and source code can be found on the project page http://
cybertron.cg.tu-berlin.de/xiwang/mental_imagery/retrieval.html

to recall some of the images while looking at a blank white-
board. We find that the median rank in a classification ap-
proach is small, showing that the idea is promising for prac-
tical use.

Despite the encouraging results, our proposed new modal-
ity still faces challenges that require further investigations.
We discuss them in detail in Section 8 together with possible
future applications.

2 BACKGROUND & RELATEDWORK
Eye movements during imagery
Early studies [44, 49] reported a large amount of eye move-
ment activity during visual imagery, which suggested a tight
link between eye movements and mental images. Today,
a large body of research has shown that spontaneous eye
movements frequently occur when scenes are recalled from
memory and that such gaze patterns closely overlap with
the spatial layout of the recalled information [3, 23, 36].

It has been suggested that eye movements to blank spaces,
or the processes driving them, function as “spatial indices” [1,
51] that may assist in arranging the relevant parts of a visu-
alized scene [3, 18, 36, 46], and it has been argued that such
looks at nothing can act as facilitatory cues during memory
retrieval [14, 50].
But characteristics of eye movements during recalling

pose four challenging issues on our idea of constructing an
eye-movement based mechanism for image retrieval. Firstly,
although imagery eye movements are functional, the eye
movements during imagery are not reinstatements of those
made during perception [24, 56]. Secondly, it is very possi-
ble that covert attentional movements occur during imagery
that may account for the functional role of eye movements to
nothing [55]. Thirdly, some people prefer to close their eyes
during recall, an effect so far not fully understood [41, 62],
which makes eye-movement recordings with video-based
eye-trackers unpractical. Fourth, several studies have re-
ported a large variability in the extent of the imagery eye
movements of participants. Typically, some participants scale
down the size of the area covered by imagery eye movements
compared to the area covered by the original image [15, 23].

Gaze interaction
Despite the well-known ‘Midas Touch’ problem [20], gaze
still offers an attractive option as input, since it is compara-
tively fast and accurate. Especially in hand-free interaction
systems, gaze data provides an additional input modality. As
an input method, gaze is used to indicate users’ intention [19,
35], and to type words [40] and passwords [4]. Other types
of applications are based on the characteristic of eye move-
ments captured by dwell time [45] or smooth pursuit [13].
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For a more comprehensive review of eye-based interaction,
we refer readers to work by Majaranta and Bulling [39].

Most similar to our endeavor are attempts at learning
something about the image or the observer by simply pro-
cessing the gaze in a free viewing task. Fixations have been
used to select images from a collection to indicate the desired
attributes of a search target [54]; or gaze data is exploited to
identify fine-grained differences between object classes [30].
Comparing to previous work, where users are mostly re-
quired to consciously move their eyes, the proposed interac-
tion system relies more on unconscious eye movements.

Brain-computer interfaces
The idea of using brain activity for direct communication
with the computer is intriguing. Early attempts based on
electroencephalogram (EEG) go back to 1970s [61], and first
consolidations of various research efforts [64] argue that
reading the mind will be difficult and the focus of attention
should be on individuals training to steer the EEG for pro-
viding certain commands. Today EEG is used in applications
such as identity authentication [42] and studies about brain
responses [16]. Despite the bandwidth of communication
using EEG still seems to be very limited, the trend appears
to be combining continuous EEG data with other modali-
ties [38, 66].

Likewise, there have been attempts at reading a person’s
mental state using functional magnetic resonance imaging
(fMRI) [17, 28]. The task of reconstructing mental images has
generated much interest and shows promising results [11,
32, 47, 48, 58]. These results are similar to what we want to
achieve: guess the image one is recalling from memory.
Many of EEG based applications are restricted to binary

classification. Participants are instructed to imagine moving
their left or right hand [2], which needs to be repeated many
times to give a sufficient signal-to-noise ratio [43]. Yet it
opens up a possibility of communication for patients with
aggravating conditions [38, 66]. Participants in studies us-
ing fMRI are required to keep still so that acquired images
can be aligned. Such restriction of movements during fMRI
scanning poses another challenge (besides costs) in terms
of practical usage. Our work is based on tracking the gaze
patterns during mental imagery, which is more feasible for
practical purposes.

Photo management and retrieval
Managing photos and image collections can be difficult for
users (cf. [34]), oftentimes requiring context-based organiza-
tion and sorting. Especially retrieval of individual images can
pose a significant challenge and requires advanced interfaces
and interactions (cf. e.g. [33, 59]). Sketches are probably the
oldest way to communicate mental images. Unlike in image
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Figure 2: (a) Experimental apparatus. (b) Trial sequence.

recall, gaze patterns are significantly distorted and incom-
plete compared to the real visual appearance of an object. In-
formation in a sketch is much richer and more coherent than
the data we have to deal with. Nevertheless sketches have
been shown to work well for retrieving images [12, 53, 65]. In
contrast to sketching, we explore how users can retrieve an
image without explicit interaction, which can be beneficial
in situations where sketching is not available (e.g. because
the hands are occupied).

3 EXPERIMENT
The two key components of our method are encoding an
image while viewing it and then recalling it in front of a
homogeneous background. The goal of this experiment is
to collect a large dataset of pairs of eye movements during
viewing and recall. The experimental design (timing, con-
ditions) follows similar experiments in previous imagery
studies [25, 36].

Setup
Apparatus. As visual stimuli, 100 images are randomly cho-

sen from the MIT data set [27]. The selected dataset contains
both indoor and outdoor scenes. Images were presented on
a calibrated 24-inch display with a resolution of 1920 × 1200
pixels at a distance of 0.7m. Gaze was tracked with an Eye-
Link 1000 in remote mode and standard 9-point calibration,
using a chin and forehead rest to stabilize participants. The
experiments were conducted in a quiet, dim and distraction-
free room.

Participants. We recruited 30 participants (mean age = 26
years, SD = 4 years, 9 females). They had normal or corrected
to normal visual acuity and no (known) color deficiencies.
10 participants wore contact lenses. No glasses were allowed
due to concerns about eye tracking accuracy. Two observers
failed to calibrate the eye tracker with the required accu-
racy, which left us with a dataset of 28 observers viewing
and recalling 100 images. Importantly, all participants were
naive with respect to the purpose of the experiment. Con-
sent was given before the experiment and participants were
compensated for their time.
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Protocol. Each individual trial involved a 500ms fixation
dot, followed by an image presented for 5000ms , a 1000ms
noise mask, and finally a 5000ms gray image for recall (Figure
2b). Participants were instructed to inspect the image when
it is shown and then think about the image when the empty
gray display is shown. All instructions for encoding and
recall were given during an initial round of 10 trials for each
observer. No further instructions regarding the task were
given after this training.
The 100 images are shuffled in a random order for each

observer and then divided in 5 blocks. At the onset and after
each block of 20 trials, the eye tracker was calibrated. Cali-
bration was accepted if accuracy in the following validation
was below 0.5◦. Each participant thus viewed five blocks of
20 trials and a total of 100 images and 100 subsequent recalls
of the same images.

After finishing all five blocks, observers were asked to look
at another 10 images, 5 of which were among the 100 they
has seen, and determine whether they have seen them earlier
in the experiment. Except for one observer who made one
mistake in the memory test, all participants could correctly
distinguish viewed images from new ones, and this suggests
that the image contents were still in the observers’ memory.

Analysis
Eye movements during visual imagery have characteris-
tics different from eye movements during perception. As
shown in Figure 3a, fixation durations on mental images
(452.2 ± 308.0ms) are longer (t(6.7e4) = −57.29,p < .001,
Welch’s t-test) than fixations on real images (278.0± 73.4ms).
Consequently, there are fewer fixations during recall (16±2.8
in encoding vs. 11 ± 3.6 in recall, t(5.6e3) = 62.77,p < .001,
Welch’s t-test), possibly because memory retrieval requires
additional processing time compared to perception [23, 25].
A comparison of the spatial distribution of fixations con-

firmed that observers tend to shrink the overall extent cov-
ered by their eye movements while thinking about an im-
age, as shown in Fig. 3b. This is in line with previous stud-
ies [15, 22, 23]. Hence, most fixations during imagery/recall
are inaccurate relative to the location of objects in the ac-
tual image, while in viewing/encoding, fixations are virtu-
ally always perfectly aligned with intended image features.
This discrepancy implies that there is no obvious one-to-one
correspondence between absolute fixation locations during
encoding and recall.

4 RETRIEVAL
Retrieval is based on two steps: first the raw eye tracking data
is turned into a more compact representation; then, we try to
assign a query representation to one of the 100 image classes.
For the second part, we consider different approaches, either
measuring the distance between pairs of data representations
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Figure 3: Eye movements characteristics. (a) Fixation dura-
tions (left encoding and right recall) are plotted as a func-
tion of starting time. The black curves indicate the mean
durations and the center 50 percent intervals are depicted
in blue. (b) Spatial distribution of fixations averaged over all
observers plotted in screen coordinates (left encoding and
right recall). Each bounding box of fixations in a single trial
is visualized in light gray and the average is marked by the
black box with a standard deviation shaded in blue.

using an appropriate distance metric, or using deep neural
nets. Depending on what gaze data is used for query and
matching, we have different retrieval scenarios. In particular,
we consider the following combinations:

(1) Within the same condition: the query gaze data and
the gaze data used for matching are both taken from
the observers while

(a) looking at the images or
(b) looking at nothing.
In these situations we always consider matching across
different observers. This means that when querying
with data from a specific observer, his/her data is not
included for matching.

(2) Across conditions: the query data is taken from an
observer looking at nothing and it is matched against
gaze data from looking at the images. Here we differ-
entiate between matching the query data

(a) against the gaze data from all other observers or
(b) against the gaze data from the same observer.

Scenario 1 is meant to establish an idea about the available
information contained in the data. Scenario 2, we believe, is
a realistic setting in applications, where we want to use gaze
data from imagining an image for retrieval while collecting
viewing data from other users.
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Data representation
We have experimented with a number of different represen-
tations and were unable to identify a representation that
clearly outperforms others in terms of retrieval performance.
For reasons of a clear exposition we use spatial histograms,
as they consistently performed well, are simple to explain,
and are a natural input for neural nets.
A spatial histogram is defined on a regular lattice with

k = m × n cells. We denote the centers of the gird cells
as {ci }, 0 ≤ i < k . To each cell we associate a weight wi .
The weights are computed based on the number of raw gaze
samples (returned from the eye tracker) that fall into each
cell, i.e., that are closer to ci than to any other center cj , j , i .
Because of the grid structure, we may consider the set of
weights w as intensities of a discrete image. This image is
sometimes called heat map in the literature on eye tracking.
We are aware that it is common to first extract fixations

from the raw gaze data before further processing. We have
opted not to do this, as (1) fixations are not defined in a way
that could be universally accepted, (2) the spatial histogram
is dominated by the fixations anyways, and (3) saccade data
may or may not be useful in classification. In an initial test
using MultiMatch [10], a tool developed in the eye tracking
community for comparing gaze sequences based on fixation
data, we found that the retrieval tasks we are interested in
performed only at chance level.

It has been observed that the sequence information could
be useful [30] but we could not reproduce this observation.
This makes sense, as it has been observed that the order of
where people look during imagery is not identical to the
order during looking at the image [22].

Distance measure
The nature of the data suggests that simple measures of
distance are unable to capture the desired correspondences.
Indeed, we found that simple Euclidean distances on the
weight vectors of spatial histograms, i.e.d(w,w′) = ∥w−w′∥

are not promising. The reasons for this are that the fixations
in one gaze sequence are commonly a subset of the fixations
in the other sequence. Moreover, the data for mental images
is spatially distorted and contains elements that are unrelated
to the original stimulus.

Research on fixations and image saliency has investigated
various ways to measure the agreement (or disagreement) of
real fixations with computational predictions [26]. Bylinskii
et al. [5] observe that the Earth Mover’s Distance (EMD) [52]
tolerates some positional inaccuracy. More generally, EMD
is well known to be robust to deformation and outliers for
comparing images.
In our context the weights w and w′ are representative

for the gaze data. The flows F = { fi j } describe how much of

the weightwi is matched tow ′
j . Based on the idea that w′ is

potentially a subset of w we scale the weight vectors so that

1 = ∥w∥1 ≥ ∥w′∥1 = σ (1)

The flow is constrained to relate all of the weights in w′, but
not more thanwi , to i:∑

i

fi j = w
′
j ,

∑
j

fi j ≤ wi . (2)

This implies
∑

i j fi j = ∥w′∥. Among the flows satisfying
these constraints (i.e., the flows that completely match w′ to
a part of w) one wants to minimize the flow. Therefore we
need to specify how far apart the elements i and j are by a
distance metric {di j }. The resulting minimization is:

argmin
F

∑
i

∑
j

fi jdi j . (3)

In many cases it is natural to use Euclidean or squared Eu-
clidean distance between the cell centers ci and cj to define
di j . On the other hand, we cannot be sure that the space in
which the recall sequences ‘live’ is aligned with other such
spaces, or the fixed reference frame of the images. In line
of this, learning has been used to optimize the metric {di j }
for EMD [9, 63]. Our idea in this context is to restrict the
potential mapping to be affine. This means we define the
distances to be

di j = ∥ci − Tcj ∥22 (4)
where T is an arbitrary affine transformation. We optimize
for the flows F and the transformation T in alternating fash-
ion. With fixed transformation T this is the standard EMD
problem and can be efficiently computed for the size of data
we have to deal with. To optimize T we consider the match-
ing pairs of viewing and recall sequences. Based on the given
flows, computing an affine transformation for the squared
distances is a linear problem. This procedure typically con-
verges to a local minimum close to the starting point [7],
which is desirable in our application, as we expect the trans-
formation to be close to identity. In any case, the minimiza-
tion indirectly defines the resulting distance as

d(w,w′) =
1
σ

∑
i

∑
j

fi jdi j (5)

Distance-based retrieval
Based on a distance measure d between spatial histograms
represented by their weight vectors w,w′, we can perform
retrieval, assuming w′ represents the query data.
The simplest case is scenario 2b, where retrieval is re-

stricted to a single observer. So we have 100 spatial his-
tograms wi representing the gaze sequences while looking
at the images, and a single histogramw′ representing a recall
sequence as a query. Computing the 100 distances d(wi ,w′)

allows ranking the images.
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In the other three scenarios query data from a single ob-
server is matched to the gaze data from other observers. In
these scenarios we base our approach on leave-one-out cross
validation, meaning we alway use all the data from the re-
maining 27 observers for matching. Let wk

i be the spatial
histogram for image i provided by observer k . For each image
we compute the smallest distance of the query w′ to each
image across all observers:

di (w′) = min
k

d(wk
i ,w

′). (6)

Then the ranking is based on di (w′). Note that the first rank
in this case is the same as using the nearest neighbor in
the space of spatial histograms with the distance measure
defined above.

Convolutional Neural Networks
The data we have collected encompasses 2700 gaze data
histograms–we felt this number justifies trying to learn a
classifier using the currently popular Convolutional Neural
Networks (CNN). We design the architectures to have few
parameters to reduce overfitting on the data, which is still
rather small comparing to the typical number of parameters
in CNNs.

Network layout. The basic setup for the CNN is similar
to the ones used for image classification and visualized in
Figure 4a: Each convolution filters the previous layer with
learned 3×3 filter kernels and produces a new image with as
many channels as filter kernels are used. As is common, we
combine each convolution with Batch Normalization (BN)
and ReLU non-linearity. After two blocks of convolution, we
perform Max Pooling to reduce spatial size. After two blocks
of max pooling, the spatial size is down to 3 × 3 elements at
which point we flatten and employ regular fully connected
layers. The first of these two fully connected layers is again
using BN and ReLU. The last one, however, directly feeds into
a softmax layer to produce a probability distribution over
the 100 image classes. To improve generalization, we employ
dropout layers throughout the network with a dropout prob-
ability of 30% in the convolutional layers and 20% in the fully
connected layer.

Application to scenario 1. The network can be directly used
to perform retrieval within the same condition (scenarios 1a
and 1b), as the query data is of the same type as the data used
for generating the network. In this case we train using Cross
Entropy Loss for 50 epochs using the Adam parameter update
scheme and a batch size of 100. Classification accuracy is
tested, as above, using leave-one-out cross validation.

Extension for scenario 2. For working with histograms com-
ing from different processes, it seems better to learn inde-
pendent encodings. Instead of mapping the histograms di-
rectly to their respective image index, and thus casting image
retrieval as a classification task, we rather perform image
retrieval by learning proper encodings and then comparing
them based on distance. In other words, we train an embed-
ding of the histograms from the two conditions into a low
dimensional descriptor space such that matching pairs are
close together, and non-matching pairs are far apart.

The network architecture (see Figure 4a) is similar to the
classification architecture detailed above. The difference is
in the lack of BN layers, as they could not be used in this
training setup, the removal of the softmax output, and the re-
duction from 100 outputs to just 16. We simultaneously train
two instances of this architecture, one for each condition.
Both map histograms to 16 dimensional descriptors.
The Triplet Loss [57], employed during training, forces

the networks to produce descriptors which, for matching
pairs, are more similar (based on Euclidean distance) than
for non-matching pairs. We used two triplet losses in tandem
with four descriptor computations to balance the training
(see Figure 4b).

A ranking for a query histogram can be computed by gen-
erating its representation in the low dimensional descriptor
space and then using Euclidean distance. The procedure for
selecting the best match is identical to the one explained
above for the distances computed based on EMD.

5 RESULTS
Using the two retrieval methods we now present results for
different scenarios. They are described based on the rank of
the queried image among all images. Based on the ranks we
form a curve that describes the percentage of the 100 differ-
ent queries (one for each image) to be matched if we consider
the first x ranks (x ≤ 100). This is essentially a Receiver Op-
erating Characteristic (ROC) curve. The leave-one-out cross
validation generates one curve for each observer, so 28 curves
in total. We consider the mean curve as the overall retrieval
result and also provide the 50% interval in the visualization
(see Figures 5, 6, and 7).

For a good retrieval algorithm, the ROC curve climbs up
steeply at the beginning and quickly reaches the highest
point. This would mean that for most queries the correct
image match is among the top ranked retrieval results. The
overall retrieval accuracy is then measured by the standard
area under the curve (AUC). If retrieval was based on chance,
the expected rank for retrieval would be 50 among the 100
images. The chance for being ranked first would be 1%, the
chance to be among the first 5 would be 5%, and so on. This
means the ROC curve for chance retrieval would be the
bisector line with AUC = 0.5.
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Figure 4: (a) CNN architectures employed for historgam based matching. Numbers around layers indicate width and height, as
well as the number of channels (written below). (b) Descriptor learning setup with two triplet losses. For two different images,
encoding and recall histograms were fed through their respective networks (truncated pyramids) to produce 16-dimensional
descriptors. Two triplet losses were used to force matching descriptors to be closer to each other (based on Euclidean distance)
than non-matching descriptors.

Both methods depend on the size of the histogram, and
the distance measure provides the additional parameter σ .
We also checked how enabling the affine transformation
influences the results. In general, the results in terms of the
AUC are not varying much with these parameters and we
make the following recommendations:

• Choosing k too small slightly degrades the results and
we suggest using histograms of size k ≥ 16 × 16.

• Allowing a partial match improves the result, i.e. choos-
ing σ = 1 is suboptimal. We have settled for σ = 0.5.

• Allowing a global affine transformation shows im-
provements in retrieval rate for some of the scenarios.
This means learning a global transformation matrix
could potentially adjust the deformed recall sequences.

Scenario 1
The tentatively easiest case is retrieving an image based on
the gaze data while looking at the image, matched against
similarly obtained gaze data. Indeed, we find that the AUC for
the distance measure is 96.3% (Fig. 5, U=9.73e3, n1=n2=100,
p<.001 two-tailed, Mann-Whitney rank test). In particular,
the top ranked images is correct in 52.2% of the cases, and
the correct match is among the top 3 in 72.4%. These results
are largely independent of the choice of parameters and the
use of the affine transformation.

The CNN performs only slightly better with AUC = 97.5%
(Fig. 5, U=9.86e3,n1=n2=100, p<.001 two-tailed,Mann-Whitney
rank test), and achieved top-1 and top-3 ranks of 61.3% and
79.1%.

This demonstrates that visual images can be easily dis-
criminated based on eye movements from observers exposed
to those images, at least for a database of 100 images.
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Figure 5: Retrieval performance using CNN (left) and
EMD(right). The 50 percent center intervals of all ROC
curves over all observers are depicted in light colors, viewing
based retrieval in blue and recall based retrieval in orange.

If recall gaze data is matched against recall gaze data,
the results are significantly worse. Using matching based
on the distance measure we find AUC = 65.1% (U=7.08e3,
n1=n2=100, p<.001 two-tailed, Mann-Whitney rank test). The
top-1 and top-3 ranks are 3.4% and 8.2% respectively. For
the CNN we get AUC = 69.8% (Fig. 5, U=7.08e3, n1=n2=100,
p<.001 two-tailed, Mann-Whitney rank test). In 5.9% of the
cases the system could correctly identify the image, and the
top-3 rank dropped to 13.8% (chance would have been 1%
and 3%). Notably, the variance of all ROC curves of retrieval
based on recall gaze data is higher (SD = 7.13%, compared to
SD = 2.42% for retrieval based on viewing gaze data).

Scenario 2
We perform cross-conditionmatching in scenario 2 bymatch-
ing a recall query to viewing gaze data. When matching is
performed against all other observers’ gaze data, the per-
formance drops to AUC = 68.4% as shown in Figure 6 on
the left (U=6.937e3, n1=n2=100, P<10−5 two-tailed, Mann-
Whitney rank test), with top-1 of 5.8% and top-3 of 12.8%.
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Figure 6: Retrieval performance in scenario 2. The left plot
is matching result against viewing from all other observers
and the right plot shows matching against data from the
same observer. The 50 percent center intervals of all ROC
curves over all observers are depicted in light colors.

Ranks

N
um

be
r o

f i
ns

ta
nc

es

AUC = 68.1%

0 20 40 60 80 100

20

0

40

60

80

100

Ranks

N
um

be
r o

f i
ns

ta
nc

es

AUC = 73.4%

0 20 40 60 80 100

20

0

40

60

80

100

Figure 7: Retrieval performance in scenario 2 using CNN.
The left plot is matching result against viewing from all
other observers and the right plot shows matching against
data from the same observer. The 50 percent center intervals
of all ROC curves over all observers are depicted in light col-
ors.

When matching is against the gaze data from the same ob-
server, we achieved an AUC of 73.7% (U=7.47e3, n1=n2=100,
p<.001 two-tailed, Mann-Whitney rank test) based on EMD
distances (right plot in Figure 6). Top-1 and top-3 matches
are 10.0% and 19.6% respectively.

Surprisingly, in this scenario the performance using CNN
is not better than using EMD. Matching against data from all
other observers gives AUC = 68.1% (U=6.91e3, n1=n2=100,
p<.001 two-tailed, Mann-Whitney rank test). Similar to the
results based on EMD distance, the retrieval performance
improves for matching against the data of the observer: AUC
= 73.4% (U=7.44e3, n1=n2=100, p<.001 two-tailed, Mann-
Whitney rank test). We suspect this is due to the difficulty of
the data in general and, in particular, due to the well known
problem of CNN when dealing with global affine transfor-
mations. If there was a way to compensate for such global
transformations in CNN, the results might be better. It would
be interesting to continue with this idea in future work.

Discussion
Identifying an image based on gaze data during looking at the
image works well, based on a variety of different approaches.
It is clear, however, that this result is highly dependent on
the set of images being used. If the 100 images evoke similar
gaze patterns, they could not be discriminated based on gaze

data. Our results indicate that gaze on the images we chose is
different enough to allow for computational image retrieval.
This is important, because if discrimination had been diffi-
cult based on gaze data from viewing, it would have been
unlikely that gaze sequences during recall contained enough
information for any task.
The results for retrieval based on gaze data from recall

using data for recall to match indicate how severely distorted
the recall data is. The performance significantly decreases
and indicates that the task we believe is most important in
applications, namely matching gaze data from recall against
gaze data from viewing, may be very difficult.
The two scenarios we consider for matching recall data

against viewing data show quite different results. Matching
the recall data of an observer against their own viewing data
works much better than matching against the viewing data
from other observers. This indicates that viewing is idiosyn-
cratic. The fact that observers agree more with themselves
than with others is also consistent with the findings that
fixations during recall are reenactments [1, 51].

To our knowledge, this is the first quantitative assessment
of the amount of information in the recall gaze that can be
used to identify images.

6 REAL-WORLD APPLICATION
We have established that the gaze pattern while only recall-
ing an image could be used to identify the image using stan-
dard techniques from vision and learning. The data, however,
was collected under artificial conditions. We are interested
in performing a similar experiment, albeit this time under
more realistic conditions.

A useful application could be retrieving one or more of the
images seen from a museum visit. To explore if this is possi-
ble, we hung 20 posters in a seminar room (see Figure 8a),
simulating a museum2. The images had slightly varying sizes
at around 0.6m × 1.0m on both portrait and landscape ori-
entations. Their centroids were at a height of 1.6m. For the
recall phase, an (empty) whiteboard was used.

We recruited 5 participants (mean age = 32, 1 female) for
the museum visit; only 1 had participated in the earlier ex-
periment. Each of them was outfitted with a Pupil mobile eye
tracker with reported accuracy of 0.6 degrees [31], equipped
with two eye cameras at 120Hz and one front-facing camera
at 30Hz. The eye tracker was calibrated on a screen prior to
viewing the images. No chin rest was used during the calibra-
tion but participants were asked to keep their head still. As
in the controlled experiment, we used a 9-point calibration
and a display (1920 × 1200 pixels) placed at 0.7m distance.
2We initially planned to do this in cooperation with any of the large mu-
seums close by, but legal and administrative issues connected to the video
camera in the eye tracker caused more complication then we felt the merely
symbolic character was worth.
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Figure 8: (a) The setup in the ‘museum’-experiment. Participants view 20 images wearing an eye tracker. Later, they were asked
to think about the images while looking at the (blank) whiteboard. Gaze patterns from this recall are used for identifying the
image. (b) Example of video stream (scene and eye cameras). Green dots indicate fixations. Red lines represent the trajectory
to the previous viewed position.

This also approximates the viewing distance between the
visitor and the museum items. After calibration, positions of
pupil center in eye cameras are mapped into the front-facing
camera, yielding the resulting gaze positions. As long as the
eye tracker stays fixed on the head, the calibrated mapping
is valid. Participants were asked to inform us if they notice
any displacement of the eye tracker.
After calibration the cameras were continuously record-

ing. Participants were asked to view all the images, in no
particular order or timeframe (but without skipping or ig-
noring any). Furthermore, participants were asked to obey
markers on the floor indicating minimal distance to the im-
ages (similar to the rope in a museum). After viewing the
images, participants were asked to recall images they liked,
in any order, and as many as they wanted to recall. Each re-
call sequence started with instructions by the experimenter
and ended with participants signaling completion.
We manually partitioned the resulting eye tracking data

based on the video stream from the front facing camera. 20
viewing sequences are extracted for each participant and
Figure 8b shows several frames of the data. The viewing du-
ration varied greatly among participants, from few seconds
to more than a minute per image. All participants recalled at
least 5 images, with 10 being the highest number. Viewing
and recall sequences are represented as variable-length gaze
positions mapped in the front-facing camera. In total, each
dataset from one participant contains gaze positions of 20
viewing sequences and five or more recall sequences.

For the analysis it turned out to be relevant what part of
the viewing and recall sequences we would use. We consid-
ered the first 5, 10, 15, 20 seconds of the viewing sequence
and the first 5, 8, 10, 12 seconds of the recall sequence. We

represented the resulting raw data using k-means clustering
with k = 10 and computed distances using EMD. The EMD
based distance measure is able to compensate for global rigid
transformation, which seems very important for the setting.
The resulting ranks are above chance in all cases, yet differ-
ent parameter settings worked best for different participants.
The results did improve with optimization for a transfor-
mation. There was no significant advantage in including
rotation or scaling, but translation was important.

The best median ranks for 5 recalled images were, in order
from best to worst, 2, 2, 3, 4, 5 (without translation we found
2, 3, 3, 4, 7). So if duration can be adapted to each participant
the results are surprisingly good. Applying any combination
of duration to all 5 participants in the same way leads to
worse overall results. Optimization for translation pays off
in this situation as well, as the results get more stable against
the choice of parameters: for a wide variety of combinations
we find median ranks of 4 and 5. All the reported median
ranks have to be seen in context of the median of a purely
random retrieval being 10.
None of our participants had reported big movements

during the experimental session and no secondary calibra-
tion was conducted. The camera rate of the eye tracker also
seems to be irrelevant in our setting as long as meaningful
eye movements are recorded. There is no special requirement
for high-speed eye camera since saccades and other type of
micro eye movements are not included in the analysis.

7 LIMITATION AND FURTHERWORK
By collecting a large eye movement dataset in the looking-
at-nothing paradigm, we made the first attempt to com-
putationally estimate the content of mental images from
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eye movements. Our results demonstrate that gaze patterns
from observers looking at the photographic images contain
a unique signature that can be used to accurately discrimi-
nate the corresponding photo. More excitingly, using gaze
patterns of observers just thinking about an image, i.e. im-
agery/recall eye movements, achieved a reasonably good
retrieval accuracy. While the proposed method introduces
a novel interaction modality, a number of challenges and
limitations have to be addressed to explore its full potential,
discussed below.

Scalability
Retrieval depends on image content. Clearly, the more pho-
tos are added to the database, the more likely that several
different photos will give rise to the same eye movement
behavior, which inevitably affects performance. This is be-
cause image representations are essentially downsampled to
gaze patterns, and similar representations lead to increased
ambiguity. This would pose a limit to how many photos
can be used with this retrieval method. In similar studies
performed on fMRI data, Chadwick et al. [6] showed brain
activity patterns can be used to distinguish among imagining
only three film events and in [8] fMRI signals were used to
reconstruct face images but only 30 images were used.
Moreover, it is very likely that if all participants would

look around in the full extent of the monitor, when imagining
the photo, the retrieval performance of the system would
increase significantly. Maybe it would be possible to instruct
participants to make more extensive eye movements than
they would normally do, in order to help the computer find
the right image? It is not unreasonable to expect a small
effort on the part of the participant–which in many brain-
computer interface applications is the norm.

Temporal stability
Our recall data were recorded immediately after image view-
ing. A longer delay might reduce the discrimination perfor-
mance as the memory deteriorates. In future work, it would
be interesting to explore the influence of memory decay and
its effect on image retrieval from long-term memory.

Alternative sensing modalities
Our proposed technique relies on sensing the motion of the
eyes over time. To gather this data, we used a video-based
eye tracker, which relies on users’ eye to be open, even when
they look at a neutral surface during recall. In contrast, other
sensing techniques, e.g. electrooculography (EOG), allow
to sense eye movement when users’ eyes are closed. This
would also allow users to create a neutral background by
simply closing their eyes, which might even increase the
vividness of mental imagery [41, 62]. However, the lack of
reference with closed eyes might introduce different types

of distortions. We believe that exploring alternative sensing
modalities such as EOG as replacement or additional data
source will allow our concept to become more viable for
everyday interactions. We aim to explore additional sensing
modalities as well as their deployment in less controlled
environments in the future.

Towards real-world applications
Our current work focuses on the evaluation of the proposed
new interaction model along with the development of com-
putational tools. We used image retrieval as an indicator for
the success of understanding user’s intention. From a prac-
tical point of view, it would be interesting to compare our
method to existing techniques such as manual selection or
speech-based interface.

How to accurately track eye movements using mobile eye
trackers poses another challenge. In our museum visiting
experiment, we did notice that the calibration accuracy grad-
ually got worse. As the shifts of the eye tracker over time are
rigid translations, our comparison methods should be able
to compensate them. Such limitations reply on the further
improvements of mobile eye tracking.
With the development in wearable devices, we believe

tracking themotion of the eyeswould be a natural by-product.
Combination with other interaction modalities, such as the
possibility offered by recent work in speech interface [29],
offers a rich source of information. With additional sources
of information, we believe that our interface would provide
an improved interaction between users and software agents.

8 CONCLUSIONS
In this paper we present a new modality based on the invol-
untary activity of the ocular muscles during recall of a pre-
viously observed image. We have developed computational
methods for matching eye movement data among different
observers and different conditions. A controlled experiment
together with an experiment in a museum-like setting have
demonstrated the feasibility of the new modality.

Overall, this study provides evidence that eye-movement
based image retrieval is computationally feasible. We have
shown reasonable performance with naive participants, and
we have good reason to believe that instructed participants
who make a small effort to move their eyes more during
imagery/recall can achieve very high accuracy levels for
photo databases of 100 images or more.
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