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ABSTRACT 
Modern touchscreen devices have recently introduced cus-
tomizable touchscreen settings to improve accessibility for 
users with motor impairments. For example, iOS 10 intro-
duced the following four Touch Accommodation settings [10]: 
1) Hold Duration, 2) Ignore Repeat, 3) Tap Assistance, and 
4) Tap Assistance Gesture Delay. These four independent 
settings lead to a total of more than 1 million possible con-
fgurations, making it impractical to manually determine 
the optimal settings. We present PersonalTouch, which col-
lects and analyzes touchscreen gestures performed by indi-
vidual users, and recommends personalized, optimal touch-
screen accessibility settings. Results from our user study 
show that PersonalTouch signifcantly improves touch input 
success rate for users with motor impairments (20.2%, N=12, 
p=.00054) and for users without motor impairments (1.28%, 
N=12, p=.032). 

CCS CONCEPTS 
• Human-centered computing → Accessibility design and 
evaluation methods; Human computer interaction (HCI). 
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Figure 1: (a) PersonalTouch frst collects touchscreen ges-
tures, and then recommends personalized, optimal accessi-
bility settings. (b) PersonalTouch displays the iOS accessibil-
ity settings for a 72-year old user with mild tremors, which 
improved the user’s touchscreen input success rate from 
48.4% to 66.3%. 
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1 INTRODUCTION 
Touchscreen devices have gesture recognizers that are con-
stantly interpreting users’ touches as one of the supported 
gestures, such as tap, scroll, swipe, long press, rotate, and pinch. 
These gesture recognizers have default settings that are opti-
mized for users with good dexterity; however, they perform 
poorly for users with motor impairment in controlled set-
tings [14, 17, 22, 24, 31, 39, 41, 44] and in the wild [2, 32, 34]. 
To improve touchscreen accessibility, iOS and Android have 
recently introduced accessibility settings to allow the cus-
tomization of these gesture recognizers. For example, Apple 
introduced Touch Accommodation settings in iOS 10 [10]: 
1) Hold Duration, 2) Ignore Repeat, 3) Tap Assistance, and 
4) Tap Assistance Gesture Delay. 

Past research has shown that accessibility settings are 
difcult to discover, access, and understand [2, 41]. Touch-
screen settings are especially difcult for users to try and 
evaluate, because users must test each setting across all 
types of gestures and each type of gesture is afected dif-
ferently. Furthermore, gesture recognizer settings require 
one or more timing thresholds to be confgured correctly. 
Using iOS Touch Accommodations as an example, these four 
independent touchscreen settings have a total of 1.15 million 
possible confgurations, which makes it impossible for users 
to confgure optimally. 

This paper presents PersonalTouch, which improves touch-
screen accessibility by frst collecting and analyzing individ-
ual users’ touchscreen input, and then recommending per-
sonalized, optimal accessibility settings. Our current system 
frst utilizes an iOS app to collect touch input, then analyzes 
how well various types of the user’s gestures are recognized 
using all 1.15 million confgurations, and fnally recommends 
the optimal settings for iOS Touch Accommodations. 

To evaluate our approach, we collected data from 12 partic-
ipants with motor impairments, including spinal cord injury, 
cerebral palsy, Parkinson’s disease, and mild tremors. We also 
collected data from 12 participants without motor impair-
ments. Study results show that PersonalTouch signifcantly 
improved touch input success rate for all users with motor 
impairments, with an average improvement of 20.2% (N=12, 
p=.00054 < .05). PersonalTouch also improved the input suc-
cess rate for 50% of the users without motor impairments, 
with an average improvement of 1.28% (N=12, p=.032 < .05). 

2 RELATED WORK 
The most relevant prior work have: 1) improved keyboard 
and mouse accuracy by optimizing accessibility settings, and 
2) improved touchscreen accessibility for people with motor 
impairments through novel gestures, interfaces, and recog-
nizer algorithms. 

Keyboard and Mouse Accessibility Setings 
Prior work on optimizing accessibility settings provided by 
operating systems has focused on improving the accessibility 
of keyboard and mouse. Dynamic Keyboard [40] proposed 
an approach to analyze a user’s keyboard use and optimize 
keyboard accessibility settings, including Key Repeat Delay, 
Key Repeat Rate, and Bounce Keys. Koester et al. [26–28] 
developed software agents that processed a user’s keyboard 
and mouse input, and then optimized the corresponding 
accessibility settings including Double-click Time, Double-
click Distance and Pointer Speed for mouse; and Key Repeat 
Delay, Key Repeat Rate, and Sticky Keys for keyboard. Our 
work is the frst investigation into optimizing touchscreen 
accessibility settings. 

Touchscreen Accessibility 
Extensive research has been conducted to understand the 
difculties users with motor impairments encounter when 
using touchscreens [2, 14, 17, 22, 24, 31, 32, 34, 39, 41, 44]. 
Various approaches have been proposed to improve touch-
screen accessibility, including novel gestures and novel user 
interfaces. For novel gestures, swabbing has been shown to 
improve target selection for users with hand tremors [30, 43]. 
For novel user interfaces, a two-stage selection interface [46] 
and a customized adaptive keyboard layout [38] have been 
proposed. These approaches require users to learn new ges-
tures and new interfaces, whereas our approach does not 
require users to change their behavior. 

Algorithms have also been developed for users with motor 
impairments to improve tapping recognition and to also im-
prove the prediction of the (x,y) coordinates of a tap, without 
requiring users to modify their existing behavior. Montague 
et al. [32] trained user- and session-specifc tapping and swip-
ing gesture models. Mott et al. [33] developed a template 
matching-based algorithm that is robust to multiple concur-
rent touches. Our work is complementary to advancements 
in gesture recognizer algorithms in that PersonalTouch evalu-
ates all possible accessibility confgurations and recommends 
the optimal settings. Furthermore, in addition to tapping per-
formance, we evaluate how these confgurations perform for 
all types of touch gestures. 

3 SYSTEM DESIGN AND IMPLEMENTATION 
In order to recommend personalized, optimal settings, our 
system needs to: 1) support the collection of touch data for 
all types of touchscreen gestures, and 2) evaluate all possible 
touchscreen accessibility confgurations. 

Touch Input Tasks 
Our tasks covered all six types of the standard touchscreen 
gestures supported by Android and iOS [4, 18]: tap, long 
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Figure 2: Touch input tasks for collecting individual touch data. The tasks are designed to collect each of the 6 standard gestures 
supported by Android and iOS: (a) tap and long press, (b) swipe, (c) horizontal scroll, (d) vertical scroll, (e) pinch, and (f) rotate. 

press, swipe, scroll, pinch, and rotate. These gestures can 
be categorized as: 1) discrete gestures: tap, long press, and 
swipe, which are recognized after users complete the entire 
gesture; and 2) continuous gestures: scroll, pinch, and rotate, 
which are continuously tracked by the system with the user 
interface continuously updated throughout the gesture. We 
designed the gesture task user interfaces based on designs 
from [17, 22, 36], and the application user interfaces based 
on designs from the stock iOS and Android apps [3, 5, 19, 20]. 
Our app is developed using Swift 4.1 and Xcode 9.3, using 
iOS UIkit [9] and ResearchKit [6]. 

Tap. This gesture is the most frequently used touch ges-
ture. For this input interface design, we adapted the tap task 
from [22] by dividing the screen into a 5 × 5 grid, where 
the center of each grid contained a blue square button, and 
showing one target per trial (Figure 2.a). The target sizes are 
44pt and 80pt for the minimum sizes of buttons and icons, 
respectively, as specifed in Apple’s iOS Human Interface 
Guidelines [8]. 

Long Press. This gesture is used by applications for activat-
ing common various tasks, such as copy-pasting text and 
repositioning mobile app icons. For this input task design, 

we chose the same target size as the tap task (shown in Fig-
ure 2.a), but instead divided the screen into nine regions to 
reduce the number of trials. 

Swipe. This gesture involves performing directional gestures 
that satisfes specifed thresholds [7]. The requirements and 
discreteness for executing the gesture makes it infrequently 
used in a non-gaming app’s functionality, due to its discon-
tinuous feedback. On the other hand, this touch gesture is 
widely adopted in popular gaming app such as Temple Run 
and Minion Rush, where users can control their in-game char-
acter’s direction through swiping actions. For this input task 
design, we adapt the swipe tasks conducted in [22] and sim-
plifed it into a whole-screen swipe task in four directions, 
matching the directions supported by iOS and Android’s 
built-in gesture recognizers (shown in Figure 2.b). 

Scroll. This gesture is also known as pan. Similar to swipe, 
this gesture is a directional gesture, but is continuous rather 
than discrete. This gesture is widely used in any scrollable 
views, and in place of swipe for most non-gaming apps. Un-
like swipe, scroll does not prompt users to perform accurate 
direction gesturing at a minimum speed, but instead moves 
the target interface at the speed of the user’s corresponding 
touch movements. For this input task design, we adapted 
the scroll tasks from prior works [12, 35, 42] and from the 
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scrolling interaction for navigating the iPad tablet’s Apple 
App store layout [3]. We display fve numbered blocks on the 
screen at a time, with three blocks displayed in the middle 
and the remaining two at the borders (shown in Figure 2.c 
and 2.d). The user’s goal is to scroll through the target num-
bered blocks that are prompted at the top-left portion of the 
screen into the screen view. We focus on two scrolling direc-
tions for the tasks: vertical and horizontal. We also focus on 
two distinct target distances from the screen’s border that 
could be easily scrolled into the screen view from our original 
design: near-distance and far-distance. Users are prompted 
in the task to make a best single attempt at scrolling through 
the target block into the screen view. 

Pinch. This gesture is a multi-touch gesture for zooming, 
commonly used in apps such as Google Maps [19] and Apple 
Photos [5]. For this input task design, we adapted the pinch 
tasks from prior works [13, 15, 25]. Our pinch task consists 
of display a rectangle of size proportional to one-ninth of the 
screen’s dimensions onto the user’s view. Users are prompted 
to pinch-to-resize the displayed rectangle to a dotted-line 
target in a single attempt (shown in Figure 2.e). We selected 
four diferent sizes for the users to pinch-to-resize relative 
to the original target’s size: double, quadruple, one-half, and 
one-quarter. 

Rotate. This gesture is a multi-touch gesture that is used in 
apps such as Apple Photos [5] and Google Maps [19]. For this 
input task design, we modifed the rotation tasks from [19, 
23, 45]. Users are shown an on-screen compass with a default 
turn direction during the rotation task, and can manipulate 
the compass by rotating the whole view. The goal of this task 
is to rotate the compass to the top-right direction, which 
is marked with a dotted line (shown in Figure 2.f). Possible 
angles between the default and top-right direction are 30 
degrees and 60 degrees, along with two possible rotation 
directions of clockwise and counterclockwise. 

Recommending Personalized Setings 
As users perform the touch tasks, our app synchronizes the 
touch input data to our cloud-based backend for processing. 
Our recommendation engine performs the following three 
phases of computation: 

(1) Settings Simulation: for all possible combinations of 
accessibility settings, compute how each combination 
of settings modify the raw touch input data. 

(2) Input Success Rate Calculation: for each modifed 
touch input data from 1), compute the gesture recog-
nition success rate, so that we have the success rate 
for each of the 6 types of gestures. 

(3) Settings Recommendation: compute the most opti-
mal combination of settings by weighting the gesture 

recogniztion success rates with the expected gesture 
ratios. 

Setings Simulation. Our current system focuses on iOS’ Touch 
Accommodations accessibility settings introduced in iOS 
10 [10]. There are four such confgurable settings, described 
below, with all time-related settings being confgurable from 
0.10s to 4.00s in increments of 0.05s. 
(1) Hold duration: sets the device to respond to touches 

only after the user holds their fnger on the screen for 
the specifed period of time. 

(2) Ignore repeat: sets the period of time that the device 
will treat several touches as one. This should be turned 
on when users have trouble touching the screen just 
once. 

(3) Tap assistance: sets the device to respond to the frst 
or the last place a user touches. If users touch the 
screen at the place they want, but their fngers drag to 
a diferent place before they can make a selection, then 
Tap Assistance with Use Initial Touch Location should 
be turned on. If users have trouble touching the screen 
at the place they want, but they can drag their fngers 
to the intended location, then Tap Assistance with Use 
Final Touch Location should be turned on. 

(4) Tap assistance gesture delay: With Tap Assistance, 
the device responds to a tap when users lift their fn-
gers within a certain period of time, called the gesture 
delay. The device can respond to other gestures, like 
scrolls, if the users wait longer than the gesture delay. 

One consideration worth mentioning is that these settings 
afect the behavior of each other. For example, if Tap As-
sistance is set to the initial location and Hold Duration is 
activated, there will be two timers set on the frst point the 
user touches: Hold Duration timer followed by the Tap As-
sistance Gesture Delay timer. At this stage, we enumerate all 
possible combinations of settings and compute how a user’s 
raw touch data is modifed by each combination of settings. 
We then compute the input success rate using these modifed 
touch data. 

Input Success Rate Calculation. To evaluate how an acces-
sibility confguration afects input success rate, we need to 
be able to run the touch data through the device’s built-in 
recognizers. However, because iOS does not allow the thresh-
olds of the built-in recognizers to be changed via any API, 
we needed to simulate the exact behavior of the built-in rec-
ognizers to compute how the modifed touch data will be 
interpreted by the recognizers. 
To better understand how the system recognizers inter-

pret touch events, we investigated public and private iOS 
APIs to determine the essential thresholds used by the dif-
ferent iOS gesture recognizers [4]. Specifcally, we reverse 
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engineered iOS gesture recognizers using the following two 
steps: 1) Apple’s developer docs describing the factors each 
recognizer uses for interpreting gestures, and 2) run-time in-
trospection of the names/values of parameters and constants 
using Xcode’s debugger via key-value coding. These two 
steps provided sufcient information to implement tap, long 
press, and pan recognizers exactly as iOS. For swipe, pinch, 
and rotate, we had to disassemble and debug using Hopper 
[11] in order to trace the assembly code to understand the 
algorithms, variables, and constants. 

To validate our recognizers, we used the data set from our 
24-person study mentioned in the next section of the paper, 
which had a total of 108 × 24=2,592 gesture trials. In addi-
tion, we developed a second data collection app to collect 
additional gesture trials. 10 participants (mean age=25.6, 4 fe-
male) were asked to directly perform each of the six types of 
gestures at 100 times each, for a total of 6,000 gesture trials. 
Validating these 8,592 gestures against iOS showed that we 
were able to recognize the gesture events correctly for all 
gesture types. For continuous gestures that also reported 
numerical values (e.g., rotation angle and scale ratio), we had 
<1% error between the reported numerical values. 

After calculating the success rate for each given gesture 
using all possible settings, we then conduct several compar-
isons to identify the most optimal setting. 

Setings Recommendation. By changing the parameters of 
our gesture recognizers, we can calculate the success rate for 
each type of gestures for all possible setting confgurations. 
To calculate the overall success rate for a confguration, we 
multiply the gesture success rates by the ratio of the gestures. 
This ratio of gestures varies depending what apps and tasks 
that users are performing. Unfortunately, we have not been 
able to fnd a references on a real-world ratio of gestures. As 
a result, we propose and consider two diferent ratios of ges-
tures in the calculations of a confguration’s overall success 
rate. The frst set, Study, sets the ratio of each gesture task 
to their corresponding number of trials performed for that 
particular gesture task, as detailed in Section 4: Procedure. 
The second set, Uniform, equally distributes the ratios of 
gestures regardless of their usage frequency, such that more 
commonly-performed gestures are set with the same ratio 
as less commonly-performed gestures. 

For the rest of the paper, we will investigate these ratios of 
gestures for evaluating input success rate. The exact ratios 
for each set correspond to the gesture tasks of: a) tap, b) long 
press, c) swipe, d) horizontal scroll, e) vertical scroll, f) pinch, 
and g) rotate. 

• Study Gesture Ratio: {50:18:8:8:8:8:8} 
• Uniform Gesture Ratio: {1:1:1:1:1:1:1} 

To choose the optimal confguration, we used the same 
cross-validation methodology used by prior works [29, 33] 

in gesture recognition to train and test on separate gesture 
trials. Specifcally, we conducted 5-fold cross-validation at 
10 times each for each participant. We frst randomly parti-
tioned the 108 gesture trials into a collection of fve sets that 
are nearly equal in count, {22, 22, 22, 21, 21}, with a balanced 
sampling for each gesture. We then used four sets to train 
the optimal settings and tested on the remaining one set. 
The 5-fold validation was repeated 10 times, for a total of 50 
runs, where the success rate was then averaged. During the 
process, we frst sort all confgurations by overall success 
rate after applying the specifc gesture ratio, and then by 
the total time duration. If multiple confgurations have the 
same success rate, then the confguration that is the most 
responsive (i.e., with the least wait time) is preferred as the 
optimal one. After ten runs, the most selected setting will be 
the suggested optimal setting. 

System Performance. Our current recommendation engine 
is written using the CUDA toolkit [37] to utilize GPU accel-
eration, and is hosted on the GPU Accelerated Computing 
instances on Amazon’s Elastic Computing Cloud (EC2) [1] It 

Currently, calculating the success rates for a given gesture 
using all 1.15 million possible settings takes 2.78s per gesture. 
This only has to computed once for each gesture used in the 
training set, and could be optimized using pruning strategies. 
For example, stopping evaluating longer duration settings 
once it fnds a duration setting that results in no touch events. 
Analysis shows that this pruning strategy would eliminate 
an average of 40% of the possible settings. 

Identifying the most optimal settings given a gesture train-
ing set and a target gesture ratio currently takes 0.01s. It is 
fast enough for real-time adaptation of changing the target 
gesture ratio (e.g. switching apps or having a sliding window 
of recently used gestures). 

4 USER STUDY 
The user study aims to quantify how PersonalTouch afects 
input performance compared to the default touchscreen con-
fguration, which has all accessibility settings turned of. 
Moreover, the study explores how participants with motor 
impairments currently use touchscreen accessibility features. 

Participants 
We recruited 12 participants (age 22 to 80, mean=59.2, SD=23.0, 
8 females) with diagnosed and self-reported motor impair-
ments as described in Table 1. We also recruited 12 partici-
pants without motor impairments (age 22 to 70, mean=32.4, 
SD=17.3, 6 females). All participants used touchscreen de-
vices regularly, and also used their fngers for touchscreen 
input except for P1, whom regularly used a stylus with her 
mouth. 
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Self-Reported Impairments 

ID Age Gender Device Health Condition Fa Co St Mo Gr Ho Tr Sp Se Dir Dist 

P1 41 F Smart phone Spinal cord injury ■ ■ ■ ■ ■ ■ 

P2 27 F Smart phone Spinal cord injury ■ ■ ■ ■ ■ ■ 

P3 22 F Smart phone/Tablet Cerebral palsy ■ ■ ■ ■ ■ 

P4 25 F Smart phone Cerebral palsy ■ ■ ■ ■ ■ ■ 

P5 74 M Tablet Parkinson’s ■ ■ ■ ■ ■ ■ ■ 

P6 76 M Smart phone/Tablet Parkinson’s ■ ■ ■ ■ ■ ■ 

P7 77 F Tablet Parkinson’s ■ ■ ■ ■ 

P8 80 M Tablet Parkinson’s ■ ■ ■ ■ ■ ■ 

P9 73 F Tablet — ■ 

P10 72 F Smart phone/Tablet — ■ ■ 

P11 73 M Tablet — ■ 

P12 70 F Smart Phone/Tablet — ■ 

Legend: Fa = rapid fatigue, Co = poor coordination, St = low strength, Mo = slow movements, Gr = difculty gripping, Ho = difculty 
holding, Tr = tremor, Sp = spasm, Se = lack of sensation, Dir = difculty controlling direction, Dist = difculty controlling distance 
Table 1: Details for the motor impaired group, including gender, age, regularly-used device, and health condition. Categories 
of self-reported impairments are from Findlater et al. [16]. 

Procedure 
We frst interviewed participants about their touchscreen 
experience and how they currently use accessibility features. 
Participants were seated comfortably at a desk in a quiet 
ofce setting, with a 12.9 inch iPad Pro running iOS 11.2 
placed on the desk. We then explained the iOS Touch Ac-
commodations settings [10] and observed how they would 
confgure them. 
Participants then practiced and performed the gesture 

tasks in a fxed sequence of: tap, long press, swipe, horizontal 

scroll, vertical scroll, pinch, and rotate (shown in Figure 2). 
Each trial began when the frst touch event was registered, 
and ended after no touch event occurred for one second. 
This one-second sliding window is necessary to record un-
intended touches such as rapid touches, due to Parkinson’s 
disease or additional fngers; and palm resting, due to users’ 
natural inclination of resting their palms on the touchscreen. 
Each participant performed 108 gesture trials: 50 (tap) + 

18 (long press) + 8 (swipe) + 8 (horizontal scroll) + 8 (vertical 
scroll) + 8 (pinch) + 8 (rotate). The total number of trials is 

Figure 3: Touchscreen input success rate (%) for the 12 participants with motor impairments when using the default touch-
screen settings versus PersonalTouch. 
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capped to about 100 to ensure that participants would not 
be exhausted, and the number of trials per type of gesture is 
chosen to refect their relative usage. The study session took 
about 1 hour for users with motor impairments and about 
30 minutes for users without motor impairments. 

5 RESULTS 
Our user study includes qualitative feedback on accessibility 
features and quantitative results on improved touchscreen 
input performance. 

Awareness and Usage of Accessibility Features 
3 of the 12 participants with motor impairments have used at 
least one iOS accessibility feature. All 3 have used Assistive 
Touch as a shortcut to switch between applications and to 
control the volume. 6 participants were aware of accessibility 
features but have not used any, while the remaining 3 were 
not aware of them. Only 1 participant, P4, knew about Touch 
Accommodations before our study because her doctor intro-
duced her to these functions. However, P4 did not use them 
because she did not know how to adjust these settings by 
herself. After explaining the customizable Touch Accommo-
dations settings to the participants, all expressed that they 
were uncertain how to choose the appropriate settings. 

Participants with Motor Impairments 
Figure 3 shows the input success rate for the 12 participants 
with motor impairments for tasks with our study-specifc 
gesture ratio (see Section 3). The average success rate signif-
icantly improved by 20.2% (pairwise t-test: N=12, p=.00054 
< .05), from 55.7% using the default settings to 75.9% using 
PersonalTouch. 
Participants who currently have more difculty using 

touchscreens had larger improvement with PersonalTouch. 
The average absolute improvement was 29.1% versus 11.2% 
for participants with ≤ 50% initial success rate versus partic-
ipants with > 50% initial success rate, respectively. 
Our suggestion also show improvements on tasks with 

other gesture ratio. For the tasks with equal ratio of all types 
of gestures, the success rate signifcantly improved by 8.5% 
(pairwise t-test: N=12, p=.00028 < .05), from 64.5% using the 
default settings to 73.0% using PersonalTouch. 
Table 2 shows the optimal, personalized confgurations 

for the two diferent input scenarios that that we earlier pro-
posed for our work (see Section 3): tasks with equal ratio 
values for all the gesture types (i.e., Uniform gesture ratio), 
and tasks with our study-specifc gesture ratio (i.e., Study ges-
ture ratio). PersonalTouch recommends diferent settings for 
diferent participants because it is based on user-specifc mod-
els. Table 2 also shows that participants with severe motor 
impairments tend to need longer time thresholds compared 
with people with minor impairments. In addition, depending 

on the ratio of the diferent types of gestures, PersonalTouch 
may recommend diferent accessibility settings for the same 
user in order to optimize for the overall success rate. 

Participants without Motor Impairments 
PersonalTouch recommended the default settings as the op-
timal settings for 6 of the 12 participants without motor im-
pairments. For the other 6 participants, there is a slight—but 
statistically signifcant—improvement using PersonalTouch. 
Overall, the success rate improved by 1.28% (pairwise t-test: 
N=12, p=.032 < .05), from 95.40% to 96.68% using the study-
specifc gesture ratio. 
Our analysis found that the errors are primarily due to 

tapping being interpreted as scrolling due to unintentional 
lateral movement before lifting the fngers, where Personal-
Touch recommends turning on Tap Assistance with a short 
0.10s duration to mitigate this. Based on our fndings, Per-
sonalTouch improves touchscreen usability for users with a 
wide range of motor abilities. 

Breakdown Analysis for Diferent Gestures 
We also found that when optimizing for the overall recog-
nition rate given a gesture ratio, the most frequently-used 
gesture type would have the largest improvement, while 
less frequently-used gesture types would either have smaller 
improvements or even reduced recognition rates. The fol-
lowing list shows all the gesture recognition rates using Per-
sonalTouch with the study-specifc gesture ratio, where tap 
showed the largest improvement while the least frequently-
used gestures—pinch and rotate—actually decreased in recog-
nition rate. 

• Tap: 46.3% → 85.5% (+39.2%) 
• Long Press: 45.8% → 55.1% (+9.3%) 
• Swipe: 82.3% → 90.1% (+7.8%) 
• Scroll: 86.1% → 92.2% (+6.1%) 
• Pinch: 47.2% → 38.1% (-9.1%) 
• Rotate: 56.6% → 46.8% (-9.8%) 

6 DISCUSSION 
App-specific Optimization 
Diferent apps have a diferent mix of gesture ratios. For 
example, messaging apps use more tapping and vertical 
scrolling, compared to photo album apps that use more hor-
izontal scrolling. In addition to our current system-wide 
optimization, we can further improve accessibility by an-
alyzing app-specifc gesture ratios and dynamically adjust 
accessibility settings based on the current app. 
In general, the task weights could be modifed through 

micro factors: the application that people used and the condi-
tion (e.g., sit, walk) in which they used the app; or by macro 
factors: the most-used input method for each individual user 
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Tasks w/ Equal Ratio of All Types of Gestures Tasks w/ Study-Specifc Ratio 

ID Hold Duration Ignore Repeat Tap Assistance Hold Duration Ignore Repeat Tap Assistance 

P1 - - INIT(0.10) - - INIT(0.10) 

P2 - 0.10 INIT(0.25) - 0.10 INIT(0.25) 

P3 - 2.30 INIT(0.25) - 2.15 INIT(0.35) 

P4 - 1.20 - - 0.80 -

P5 - 0.70 - 0.30 0.45 INIT(0.20) 

P6 - - INIT(0.25) - - INIT(0.25) 

P7 - 0.15 INIT(0.50) - 0.10 INIT(0.55) 

P8 0.15 - INIT(0.25) 0.20 - INIT(0.25) 

P9 - - INIT(0.15) - - INIT(0.15) 

P10 0.20 0.75 - 0.25 0.55 INIT(0.10) 

P11 0.10 - INIT(0.15) 0.10 - INIT(0.15) 

P12 - - INIT(0.15) - - INIT(0.20) 
Legend: INIT/FINAL= Tap Assistance using initial/fnal touch location. (UNIT: seconds) 

Table 2: Optimal iOS Touch Accommodations settings for the 12 participants with motor impairments, showing that the op-
timal settings difer for: (a) tasks with uniform distribution of all types of gestures versus (b) tasks with our study-specifc 
gesture ratio. 

and diferent personal touchscreen behavior along with the 
growth of age. With dynamic task weights, our suggested 
settings could better personalize and accommodate to the 
user’s individualized needs. 

Suggested Configuration on Setings beyond Touch 
Accommodations 
The suggested confgurations that our method provided are 
not limited to Touch Accommodations. The input gestures 
mapping is one common method that is applied in several 
accessibility settings including Switch control, which pro-
vides an alternative way to interact with the application by 
using the universal switch method that people are most com-
fortable with; and Assistive touch, with customized gestures 
that map the single touch gestures to multi-touch gestures 
such as pinch and rotate. For example, P1 was not sure as to 
whether she needed to turn on the settings that could use 
single fnger to pinch and to rotate. After running the analy-
sis on her behavior data, we discovered that she performed 
well on the tap task and scroll task, while had difculties 
performing multi-touch gesture. Since P1 used a stylus as her 
chosen input medium, it was not easy for her to complete 
those challenging tasks. We provided her with suggestions 
on using this specifc accessibility feature when she need 
to pinch or to rotate on the screen, and received positive 

feedback from her such as, "Now I can use the map more 
easily." 

Contribution to People with Diferent Impairments 
and Who Use Other Devices 
Our method could also be applied to people with diferent 
difculties for touchscreen input. For users with visual im-
pairments as an example, such users often used an accessi-
bility feature called VoiceOver, which can be combined with 
hand gestures to access information on touchscreen devices. 
According to other previous studies [41] though, some peo-
ple with both visual and physical impairments had difculty 
performing some of the default controlled gestures—such 
as three-fnger swipe—for other accessibility features. These 
particular users can beneft from our evaluation process for 
touchscreen input, providing them with the most suitable 
input method through better combinations with other acces-
sibility features. 
Furthermore, our method is not only limited to iOS de-

vices, and can potentially be adapted to Android devices 
that incorporate more advanced customizable settings for 
accessibility. One example is an accessibility feature called 
Touch and hold delay [21], which sets the time threshold for 
distinguishing tap and long press. Our methods could not 
only be customized on some Android devices, but could also 
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provide the suggested confguration on such a feature by 
analyzing the user’s touch gesture data. 
As for the applicability on devices with smaller screens 

(e.g., smartphones), we could generalize the training data 
collected from tablets onto smartphones by sampling only 
tasks that also ft on a smartphone screen for training pur-
poses. For example, the center 3×3 grid of our 5×5 grid of 
tap targets on an iPad actually falls within the screen size 
of a large iPhone, and the training data can be generalized 
as such. Actual data collection on smartphones would be 
needed to validate how well this approach works, and also 
how well the optimal settings for a tablet generalizes to a 
smartphone—both of which we would like to explore in a 
future study. 

7 LIMITATIONS AND FUTURE WORK 
Our vision of PersonalTouch is to dynamically adapt to users 
by monitoring their individual touchscreen interactions. The 
continuous observations and data collections on the user’s 
touch input is also crucial for the dynamic weight. However, 
there were limitations of our approach that we discovered, 
and are viable areas for investigating as ideal next steps. 

Initial Hand Positions for Gesturing 
Our gesture tasks were designed to have a short rest between 
each trial for the participants to reset their hand position, in 
order to control for the efect of the proximity of the previous 
target. However, users perform real-world gesturing tasks 
on their touchscreen devices that do not assume that they 
always reset the position of their hands each time they per-
form a diferent gesture. This discrepancy between our study 
requiring that participants reset their hand positions and 
real-world tasks that do not require such an assumption may 
afect the calculation of our recommendations. As such, we 
wish to pursue further study that better understands these 
diferences and what impacts may occur from them. 

Broader Demographics of Study Participants 
Another future work area involves further expanding our 
current size of participants in our study to include more di-
verse demographics. That is, we are interested in conducting 
user studies that evaluate our method more deeply towards 
people with difculties in touchscreen interactions. Further-
more, we are also interested in broadening the conditions 
of our user study, which also emphasizes that participants 
interact on a wider range of device system settings and sizes. 
By investigating our approach on these additional popula-
tions and conditions, we expect to see general improvements 
on touchscreen usability and accessibility for a wider range 
of interaction behaviors. 

Real-world Frequency of Gesture Tasks 
One other limitation of our work is in the artifcial selection 
of our ratio values for our gesture tasks. In particular, we 
explored gesture ratios that focused on two diferent sets: 
one where each gesture ratio corresponded to the number of 
trials of their gesture task in our user study, and one where 
all the gesture ratios were set uniformly equivalent to each 
other. Since the ratio values of the gestures not only varies 
depending what apps and tasks users are performing, but 
also afect the overall success rate of a confguration, we 
would like to select gesture ratio values that are more closely 
aligned with gesture task usage in real-world touchscreen 
interactions. To do so, we would like to conduct user studies 
that also investigate the frequency of occurrence for each 
gesture task on diferent popular mobile apps and common 
activities associated with those apps. 

8 CONCLUSION 
We present PersonalTouch, our approach to improve touch-
screen usability by suggesting personalized, optimal accessi-
bility settings. Our study results demonstrated that Person-
alTouch signifcantly improved users’ touch input success 
rate on our gesture tasks, with 20.2% improvement for all 
our users with motor impairments and 1.28% improvement 
for half our users without motor impairments. We believe 
that PersonalTouch can better accommodate users in more 
optimally setting their touch input confgurations, and there-
fore better enhancing their touchscreen gesture interaction 
experiences. 
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