Showcasing ElectroDermis

Eric Markvicka*, Guanyun Wang*, Yi-Chin Lee, Gierad Laput, Carmel Majidi, Lining Yao

*The first two authors contributed equally to this work.

Morphing Matter Lab & Soft Machines Lab, Carnegie Mellon University {emarkvic,guanyunw,yichinle,glaput,cmajidi,liningy}@andrew.cmu.edu

ABSTRACT

In this video, we showcased "ElectroDermis" [1], a fabrication approach that simplifies the creation of highly-functional and stretchable wearable electronics that are conformal and fully untethered by discretizing rigid circuit boards into individual components. These individual components are wired together using stretchable electrical wiring and assembled on a spandex blend fabric, to provide high functionality in a robust form-factor that is reusable. We describe a series of example applications that illustrate the feasibility and utility of our system.

CCS CONCEPTS

• **Human-centered computing** → *Ubiquitous and mobile computing systems and tools.*

REFERENCES

[1] Eric Markvicka, Guanyun Wang, Yi-Chin Lee, Gierad Laput, Majidi Carmel, and Lining Yao. 2019. ElectroDermis: Fully Untethered, Stretchable, and Highly-Customizable Electronic Bandages. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*. ACM, 632.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

CHI'19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland UK © 2019 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-5971-9/19/05. https://doi.org/10.1145/3290607.3311772