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ABSTRACT
Randomized experiments, or A/B tests, are the standard approach
for evaluating the causal e�ects of new product features, i.e., treat-
ments. �e validity of these tests rests on the “stable unit treatment
value assumption” (SUTVA), which implies that the treatment only
a�ects the behavior of treated users, and does not a�ect the behav-
ior of their connections. Violations of SUTVA, common in features
that exhibit network e�ects, result in inaccurate estimates of the
causal e�ect of treatment. In this paper, we leverage a new experi-
mental design for testing whether SUTVA holds, without making
any assumptions on how treatment e�ects may spill over between
the treatment and the control group. To achieve this, we simul-
taneously run both a completely randomized and a cluster-based
randomized experiment, and then we compare the di�erence of the
resulting estimates. We present a statistical test for measuring the
signi�cance of this di�erence and o�er theoretical bounds on the
Type I error rate. We provide practical guidelines for implementing
our methodology on large-scale experimentation platforms. Im-
portantly, the proposed methodology can be applied to se�ings in
which a network is not necessarily observed but, if available, can
be used in the analysis. Finally, we deploy this design to LinkedIn’s
experimentation platform and apply it to two online experiments,
highlighting the presence of network e�ects and bias in standard
A/B testing approaches in a real-world se�ing.
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1 INTRODUCTION
Before deploying new features or products, it is common practice to
run randomized experiments—or A/B tests—to estimate the e�ects
of the suggested change. A part of the population is randomly
selected to receive the new feature/product (treatment), while an-
other randomly selected part of the population is given the product
status quo (control). �e goal of comparing the treatment popula-
tion to the control population is to impute the di�erence between
two universes that we cannot observe simultaneously: one where
everyone receives treatment and another where no one does. �is
imputation, formalized in the theory of causal inference [16], relies
on a fundamental independence assumption, known as the “stable
unit treatment value assumption” (SUTVA) [9, 26]. It states that
every user’s behavior is a�ected only by their own treatment and
not by the treatment of any other user.

However, this independence assumption may not always hold,
particularly when testing products with social components that, by
design, connect users and allow them to interact with one another.
Consider the example of testing a feed ranking algorithm: If user A
and user B are connected, by changing the ranking of items on user
A’s feed, we impact their engagement with their feed and indirectly
change the items that appear on user B’s feed. User B may well have
been placed in the control group, but their behavior was impacted
by the assignment of user A to the treatment group. �is spillover
of treatment e�ects between users violates SUTVA and leads to
inaccurate treatment e�ect estimates [7].

�ere are three common approaches to minimizing the e�ects
of spillovers: (i) Cluster-based randomization [2, 10, 34], where
users are clustered based on their connections and treatment is
assigned at a cluster level; (ii) Multi-level designs [15, 30], where
treatment is applied with di�erent proportions; (iii) Designs and
analysis that assume speci�c models of interference [3, 8, 12, 28, 31],
e.g. that the interference e�ect is proportional to the number of
neighbors treated.

While mitigating interference is the end goal of the �eld of causal
inference with network interference, a precursor to that question is
to detect whether SUTVA holds in the experiments we run. When
we plan an experiment in which we suspect that SUTVA might be
violated, a common solution is to use cluster-based randomized
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assignments, which minimize the number of edges cut between
treated and control units. Under certain assumptions [10], this
design can partially mitigate the problem of interference. However,
in practice, cluster-based randomized assignments have higher vari-
ance than the completely randomized assignment, making it more
di�cult to accurately estimate the treatment e�ect. Furthermore,
cluster-based assignments require an appropriate choice of cluster-
ing of the population, which can be a challenging even if the graph
of interactions between units is known. If we have a robust way of
testing whether SUTVA holds, we can decide whether the standard
completely randomized assignment is valid and whether running a
cluster-based randomized assignment is necessary.

Traditionally, testing whether SUTVA holds has been done through
post-experiment analysis: Rosenbaum [25] was the �rst to state two
sharp null hypotheses (i.e., there is no treatment e�ect on anyone)
which imply that SUTVA does not hold. Under these restricted
null hypotheses, we can obtain exact distribution of network pa-
rameters. More recent work [1, 4] explicitly tackles testing for
the non-sharp null that SUTVA holds by considering the distribu-
tion of chosen network e�ect parameters for a subpopulation of
the graph under SUTVA. While the �nal test is dependent on the
choice of network parameter and subpopulation, the main appeal
of this analysis-based approach is that it does not require running
a modi�ed experiment.

Rather than focusing on a post-experiment analysis approach,
we explore new designs tailored to test for network e�ects. �e
main idea behind our approach is to simultaneously run a com-
pletely randomized and a cluster-based randomized experiment on
di�erent, randomly selected, parts of the population and to compare
the resulting treatment e�ect estimates. If the two estimates are
very di�erent, that is an indication of network e�ects. However, if
the two estimates are very similar, we expect SUTVA to hold. �is
allows us to test whether SUTVA holds without making any mod-
eling assumptions of how units interact with each other. Moreover,
if SUTVA holds, we are still able to estimate the treatment e�ect
using the part of the population that received a completely random-
ized assignment. If SUTVA does not hold, we can still rely on the
estimate obtained from the cluster-based randomized experiment.

�is work, together with [24], is part of a two-paper series. In
[24], we introduce the methodology and main theoretical results,
while in this paper we present the practical implementation details,
and provide an in-depth analysis of the experimental results. In
doing so, we make the following main contributions:

• We present the randomized experimental design for testing
whether SUTVA holds, detailed more thoroughly in [24],
and present the essential results on variance estimation
and bounding the Type I error rate (Section 2).

• We provide detailed implementation guidelines to help
practitioners deploy the proposed design on large-scale
experimentation platforms. We discuss how to compute
balanced clustering at scale (Section 3.2), as well as how to
stratify to reduce variance (Section 3.3).

• We deploy our framework on LinkedIn’s experimental plat-
form and we report the results of two large-scale experi-
ments (Section 3), achieving signi�cance in one of them,
highlighting the presence of network e�ects.

2 THEORETICAL FRAMEWORK
In this section, we present our two-stage experimental design for
testing whether SUTVA holds and the main theoretical results. We
provide more complete exposition in [24].

2.1 Two assignment strategies
First, we brie�y review the notation and main results for the com-
pletely randomized (CR) design and the cluster-based randomized
(CBR) design. Let G = (V ,E) be a graph of N units (|V | = N ),
for which we measure outcomes (Yi )i ∈V , and on which we can
assign an intervention with two conditions: treatment and control.
Each unit’s potential outcome is de�ned as a function of the entire
assignment vector Z ∈ {0,1}N of units to treatment buckets: Yi (Z).
If SUTVA holds, Yi (Z) = Yi (Zi ). �e causal estimand of interest is
the Total Treatment E�ect (TTE) given by:

µ ..=
1
N

∑
i ∈V

[Yi (Z = 1) − Yi (Z = 0)]. (1)

Finally, for any vector u ∈ Rn , let u = 1
n

∑n
i=1 ui and σ 2 (u) =

1
n−1

∑n
i=1 (ui − ū)

2.

Completely Randomized Assignment. In a completely random-
ized experiment, we sample the assignment vector Z uniformly at
random from the set {z ∈ {0,1}N : ∑ zi = nt }, where nt (resp. nc )
is the number of units assigned to treatment (resp. control). Let
Yt ..= {Yi : Zi = 1} and Yc ..= {Yi : Zi = 0}. Recall the de�nition of
the di�erence-in-means estimator:

µ̂cr ..= Yt − Yc .

Cluster-basedRandomizedAssignment. In a cluster-based ran-
domized assignment, we randomize over clusters of units in the
graph, rather than individual units. We suppose that each unit inV
is assigned to one of m clusters. We sample the cluster assignment
vector z uniformly at random from {v ∈ {0,1}m : ∑vi =mt }. Units
in cluster j are assigned to the same treatment bucket as cluster
j: Zi = 1 ⇔ zj = 1 if i ∈ j, where mt (resp. mc ) is the number
of clusters assigned to treatment (resp. control). We let Y ′ be the
vector of aggregated potential outcomes, de�ned as Y ′j

..=
∑
i ∈j Yi ,

the sum of all outcomes within that cluster. Let Y ′t ..= {Y ′j : zj = 1},
Y ′c

..= {Y ′j : zj = 0}. �e aggregated di�erence-in-means estimator
is given by:

µ̂cbr
..=

m

N

(
Y ′t − Y

′
c
)
.

2.2 A two-stage randomized design
When SUTVA holds, µ̂cr and µ̂cbr are unbiased estimators of the to-
tal treatment e�ect under a completely randomized assignment and
a cluster-based randomized assignment respectively [22]. When
SUTVA does not hold, their unbiasedness is no longer guaranteed.
In fact, when interference is present, we expect the estimate of the
total treatment e�ect to be di�erent under a completely randomized
design than under a cluster-based randomized design.

Consider for example the case where only the unit’s immediate
neighborhood a�ects their outcome:

∀i,Z,Z′,[ ∀j ∈ N (i ), Zi = Z ′j ] =⇒ Yi (Z) = Yi (Z′), (2)

where N (i ) ..= {j ∈ V : (i, j ) ∈ E} be the neighborhood of i .
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Figure 1: Illustration of the proposed experimental design for detecting network e�ects. (A) Graph of all units and the connec-
tions between them; the dashed circles represent (equally-sized) clusters. (B) Assigning clusters to treatment arms: completely
randomized (CR) and cluster-based randomized assignment (CBR). (C) Assigning units to treatment buckets—treatment and
control—using the corresponding strategy. (D) Computing the treatment e�ect within each treatment arm: µ̂cr and µ̂cbr , and
variance: σ̂ 2

cr and σ̂ 2
cbr . (E) Computing the di�erence of the estimates from each treatment arm: ∆ = µ̂cr − µ̂cbr , and the total

variance: σ̂ 2 = σ̂ 2
cr + σ̂

2
cbr .

In other words, if the assignment Z is such that a unit i’s neigh-
borhood is assigned entirely to treatment (resp. control), then we
observe Yi (Z) = Yi (1) (resp. Yi (Z) = Yi (0)), in which case we can
estimate the treatment e�ect for unit i . �e probability of assign-
ing the whole neighborhood of a unit to treatment or to control is
very small under a completely randomized assignment. One way
to increase this probability is to assign entire clusters of units to
treatment or to control (Section 2.1). Cluster-based randomization
designs are used to reduce the bias under a completely random-
ized assignment when interference is believed to happen primarily
through each unit’s �rst-degree neighborhood.

�us, the main idea behind this work is to set up a two-level ex-
perimental design to test for interference, such that di�erent parts
of the graph G will receive treatment through di�erent random-
ized strategies. By comparing the estimates from each randomized
strategy, we test the e�ect of the randomized strategy, which is null
under SUTVA. �is is done by �rst assigning units to treatment
arms and then, within each treatment arm, applying a speci�c as-
signment strategy to assign units to treatment buckets (Figure 1).
�e two-stage design works as follows:

(i) We initially cluster the graph G into m clusters C. Note
that we do not necessarily need to fully observe the graph,
we just need to have a meaningful clustering of the users.

(ii) We sample the units to treatment arms assignment vector
W ∈ {cr ,cbr }N using a cluster-based randomized assign-
ment. We denote byω ∈ {cr ,cbr }m the corresponding clus-
ter assignment vector to treatment arms CR (ωj = cr ) and
CBR (ωj = cbr ). Letmcr andmcbr be the number of clus-
ters assigned to treatment arms CR (completely random-
ized assignment) and CBR (cluster-based randomization

assignment) respectively, and let ncr and ncbr = N − ncr
be the resulting number of units assigned to each arm.

(iii) Conditioned on W, we sample Zcr ∈ {0,1}ncr using a com-
pletely randomized assignment to assign units in treatment
arm CR to treatment and control. Let ncr ,t and ncr ,c be
the number of units that we wish to assign to treatment
and control respectively.

(iv) Still conditioned on W, we sample Zcbr using a cluster-
based randomized assignment to assign units in treatment
arm CBR to treatment and control. Let mcbr ,t andmcbr ,c
be the number of clusters assigned to treatment and control
respectively.

�e resulting assignment vector Z of units to treatment and control
is such that Zcr ⊥⊥ Zcbr |W.

2.3 Testing for the SUTVA null
Next, we present a statistical test for accepting or rejecting the
SUTVA null. We provide a more detailed, step by step, derivation
in [24]. We de�ne the two estimates of the causal e�ect for this
experiment as follows:

µ̂cr (W,Z) ..= Y cr ,t − Y cr ,c , (3)

µ̂cbr (W,Z) ..=
mcbr
ncbr

(
Y ′cbr ,t − Y

′
cbr ,c

)
, (4)

where we have introduced the following notation:

Ycr ,t ..= {Yi : Wi = cr ∧ Zi = 1},
Ycr ,c ..= {Yi : Wi = cr ∧ Zi = 0},
Y ′cbr ,t

..= {Y ′j : ωj = cbr ∧ zj = 1},
Y ′cbr ,c

..= {Y ′j : ωj = cbr ∧ zj = 0}.
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In order to test whether the estimates of each arm are signi�-
cantly di�erent, we must divide the di�erence of the estimates by
its variance under the null. It is uncommon in randomized experi-
ments to know the variance of the chosen estimators exactly, but
we can usually se�le for an empirical upper-bound.

We consider the following variance estimators, computable from
the observed data:

σ̂ 2
cr

..=
Ŝcr ,t
ncr ,t

+
Ŝcr ,c
ncr ,c

, (5)

σ̂ 2
cbr

..=
m2
cbr

n2
cbr

*.
,

Ŝ ′cbr ,t
mcbr ,t

+
Ŝ ′cbr ,c
mcbr ,c

+/
-
, (6)

where we introduced the following empirical variance quantities
in each treatment arm and treatment bucket:

Ŝcr ,t ..= σ 2 (Yi : Wi = cr ∧ Zi = 1),

Ŝcr ,c ..= σ 2 (Yi : Wi = cr ∧ Zi = 0),

Ŝ ′cbr ,t
..= σ 2 (Y ′j : ωj = cbr ∧ zj = 1),

Ŝ ′cbr ,c
..= σ 2 (Y ′j : ωj = cbr ∧ zj = 0).

Finally, we consider the sum of these two empirical variance
quantities:

σ̂ 2 ..= σ̂ 2
cr + σ̂

2
cbr . (7)

As shown in [24], the following results holds when the clustering
is balanced (i.e., all clusters have the same number of nodes):

EW,Z [µ̂cbr − µ̂cr ] = 0, (8)

varW,Z [µ̂cr − µ̂cbr ] ≤ EW,Z[σ̂ 2]. (9)

Note that Eq. 9 is the only statement requiring the clustering to
be balanced. When SUTVA holds, both estimators have the same
expectation under their respective assignment strategy regardless of
whether the clustering is balanced. In order to control the variance
however, as is done in Eq. 9, we restrict ourselves to balanced
clusterings. �ere are now multiple ways in which we can reject
the null. If we reject the null that SUTVA holds when:

|µ̂cr − µ̂cbr |
√
σ̂ 2

≥
1
√
α
, (10)

then the type I error of our test is no greater than α if σ̂ 2 ≥
var[µ̂cr − µ̂cbr ], which we can only guarantee in expectation (Eq. 9).
A less conservative approach is to suppose that the quotient follows
a normal distribution N (0,1), for which we obtain (1 − α ) × 100%
con�dence intervals:

CI1−α (T ) =
(
T − z α

2
,T + z1− α2

)
, (11)

where z α
2

and z1− α2 are the α
2 quantile of the standard normal

distribution.
While bounding the Type I error of our test allows us to assume

SUTVA under which the moments of our test statistic become
tractable, the same cannot be said of the Type II error, where we
must assume a speci�c interference model. We refer the reader to
[24], where we show that under the following popular model of
interference, the Type II error rate of our suggested design and test

decreases as the number of edges cut by the initial clustering also
decreases, with all else being equal:

Yi = β0 + β1Zi + β2ρi + ϵi ,

where ρi = 1
N

∑
i ∈V |N (i ) ∩C (i ) | / |N (i ) |, with N (i ) being the

neighborhood of unit i and C (i ) being the units in i’s cluster.
Finally, note that the results presented in this section hold re-

gardless of whether the true network of interactions between users
is observed. Knowing this network, at least partially, allows us to
�nd more meaningful clusters of users and increases our ability to
detect network e�ects when they are present i.e. reduce the Type
II error. One can achieve similar results by using any network or
domain knowledge deemed relevant for the experiment at hand,
not necessarily the true network.

2.4 Incorporating Strati�cation
So far, we have used completely randomized assignment to assign
clusters to treatment arms and, in the CBR treatment arm, to assign
clusters to treatment buckets. Under this randomization strategy,
it is possible that—by chance—we may end up with very di�erent
populations in the two treatment arms, or in the CBR arm, di�er-
ent treatment and control groups. For example, we may assign all
clusters with highly active users in the same treatment arm. Strati-
�cation prevents such scenarios by design. Instead of randomizing
all clusters at once, we �rst divide them into more homogeneous
groups (strata) and we randomize within each stratum. Strati�ca-
tion has two key advantages: (i) it ensures that all covariates used
to create the strata will be balanced, (ii) it improves the precision
of the treatment e�ect estimator. In this section, we extend our test
for detecting network e�ects to incorporate strati�cation.

Suppose that each graph cluster c ∈ C is assigned to one of S
strata. In this section, we assume that the strata are given, but in
Section 3.3 we show how to construct them. We denote by V (s )
the nodes in the graph which belong to strata s . Within each strata
s ∈ [1,S], we assign mcr (s ) clusters completely at random to the
CR treatment arm andmcbr (s ) clusters to the CBR treatment arm,
denoted by vector W(s ), sampled uniformly at random from vectors
{v ∈ {cr ,cbr } |V (s ) | : ∑j I[vj = cr ] =mcr (s )}.

Let Zcr (s ) be the assignment of units the treatment arm CR
to treatment buckets within strata s . If Vcr (s ) is the subset of V
in strata s assigned to treatment arm CR, Zcr (s ) is chosen uni-
formly at random from the vectors {u ∈ {0,1} |Vcr (s ) | : ∑

i ui =
ncr ,t (s )}. Similarly, let zcbr (s ) be the assignment of clusters in
treatment arm CBR to the treatment buckets within strata s . If
Ccbr (s ) is the subset of clusters in strata s assigned to treatment
arm CBR, zcbr (s ) is chosen uniformly at random from the vectors
{v ∈ {0,1} |Ccbr (s ) | : ∑

j vj =mcbr ,t (s )}.
Let ncbr (s ) be the total number of units assigned to treatment

arm CBR andmcbr (s ) be the total number of clusters assigned to
treatment arm CBR within strata s . We can extend the previous
estimators of the average treatment e�ect under strati�cation. Let

Ycr ,t (s ) ..= {Yi : i ∈ Vcr (s ) ∧ Zi = 1},
Ycr ,c (s ) ..= {Yi : i ∈ Vcr (s ) ∧ Zi = 0},
Y ′cbr ,t (s )

..= {Y ′j : j ∈ Ccbr (s ) ∧ zj = 1},
Y ′cbr ,c (s )

..= {Y ′j : j ∈ Ccbr (s ) ∧ zj = 0}.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1030



TREATMENT CONTROL

STRATA 1 CR

CBR

STRATA 2 CR

CBR

STRATA 3 CR

CBR

(B) (C) (D)

CR VS CBRSTRATIFICATION

(E) (F) (G)(A)

�

�̂2�̂2(s2)

�̂2(s3)

�(s3)

�(s2)

µ̂cr(s2)

�̂2
cr(s2)

µ̂cr(s3)

�̂2
cr(s3)

µ̂cbr(s3)

�̂2
cbr(s3)

µ̂cbr(s2)

�̂2
cbr(s2)

�̂2
cbr(s1)

µ̂cbr(s1)

�(s1)

�̂2(s1)

µ̂cr(s1)

�̂2
cr(s1)

Figure 2: Illustration of the proposed experimental design for detecting network e�ects, using strati�cation to reduce variance
and improve covariate balance. (A) Graph of all units and their connections; the dashed circles represent clusters. (B) Assigning
clusters to strata (Section 2.4), (C) Assigning clusters within each strata to treatment arms: completely randomized (CR) and
cluster-based randomized assignment (CBR). (D) Assigning units within strata to treatment buckets: treatment and control,
using corresponding assignment strategy. (E) Computing the treatment e�ects of each treatment armwithin each strata: µ̂cr (s )
and µ̂cbr (s ), and variance within each strata: σ̂ 2

cr (s ) and σ̂ 2
cbr (s ). (F) Computing the di�erence between the estimated e�ects

using CR and CBR within each strata: ∆(s ), and sum variances in each strata: σ̂ 2 (s ). (G) Aggregating the di�erences across
strata to compute the overall di�erence in di�erences (∆) and the total variance (σ̂ 2).

�e strati�ed estimators are given by:

µ̂cr (s ) ..= Ycr ,t (s ) − Ycr ,c (s )

µ̂cbr (s )
..=

mcbr (s )

ncbr (s )

(
Y ′cbr ,t (s ) − Y

′
cbr ,c (s )

)
∆(s ) ..= µ̂cr (s ) − µ̂cbr (s ).

Note that for every strata s , the following quantity σ̂ 2 (s ) upper-
bounds varW(s ),Z(s )[∆(s )] in expectation:

σ̂ 2 (s ) ..=
Ŝcr ,t (s )

ncr ,t (s )
+
Ŝcr ,c (s )

ncr ,c (s )
+
m2
cbr (s )

n2
cbr (s )

*.
,

Ŝ ′cbr ,t (s )

mcbr ,t (s )
+

Ŝ ′cbr ,c (s )

mcbr ,c (s )
+/
-
.

Since the assignment of units to treatment is independent across
strata, we can extend the previous test across strata by considering
the following numerator and denominator:

∆ =
∑

s ∈[1,S]

m(s )

M
∆(s )

σ̂ 2 =
∑

s ∈[1,S]

(
m(s )

M

)2
σ̂ 2 (s )

We refer the reader to Figure 2 for an illustration.

3 EXPERIMENTS ON LINKEDIN’S PLATFORM
3.1 Experimental Scenario
Major Internet companies like Google [29], Microso� [18], Face-
book [5], or LinkedIn [35] rely heavily on experimentation to un-
derstand the e�ects of each product decision, before deploying any

changes to the majority of their user base. As a result, these compa-
nies have each built mature experimentation platforms. However,
how many of the experiments run on these platforms violate SUTVA
is an open question. Together with the team running LinkedIn’s
experimentation platform, we applied the proposed theoretical
framework to test for interference in two randomized experiments
on LinkedIn.

LinkedIn users can interact with content posted by their connec-
tions through an algorithmically sorted feed. To improve the user
experience, teams at LinkedIn continually modify the feed ranking
algorithm and seek to determine the impact of these changes on
key user metrics by running randomized experiments. Experiments
of this kind are a typical case where the treatment e�ects may spill
over between the treatment and control units: if a user is assigned
to an e�ective treatment then they are more likely to interact with
the feed, which in turn will impact the feeds of their connections.
�e goal of our experiments is to determine whether these spillover
e�ects signi�cantly bias the treatment e�ect estimators or SUTVA
can be safely assumed.

In remainder of this section, we provide a detailed, step by step,
description of the deployment of our design on LinkedIn’s exper-
imentation platform. We show how to �nd balanced clusters at
scale, evaluating four di�erent algorithms (Section 3.2); how to con-
struct strata based on cluster covariates in order to ensure covariate
balance and reduce the variance of the treatment e�ect estimates
(Section 3.3); how to use lagged outcomes to reduce variance even
further (Section 3.4); and �nally, we report the results of two exper-
iments testing di�erent feed ranking algorithms (Section 3.5). �e
guidelines provided in this section are not speci�c to LinkedIn and
can be applied to any large-scale experimentation platform.
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3.2 Clustering the graph
�e main challenge of implementing the proposed test for inter-
ference is �nding a clustering algorithm that (i) �nds clusters of
highly inter-connected nodes, (ii) generates balanced clusters, and
(iii) scales to the size of the LinkedIn graph. �e LinkedIn graph
contains hundreds of millions of nodes and billions of edges. As
a result, we restrict our search to parallelizable streaming algo-
rithms. Furthermore, because of the way social networks tend to be
structured, most clustering (community detection) techniques �nd
clusters with highly skewed size distribution [13, 19]. We therefore
further restrict our search to clustering algorithms which explicitly
enforce balance. We report the results of our evaluation of the
relevant state-of-the-art clustering algorithms. Before presenting
the empirical results, we provide a brief justi�cation of why we
need balanced clustering.

Why balanced clustering is necessary. As stated in Section 2.3,
having clusters of equal size simpli�es the theoretical analysis of
the variance of our estimators under the null hypothesis. �ere
are also two main practical reasons for partitioning the graph into
clusters of equal size: (i) variance reduction, and (ii) balance on
pre-treatment covariates.

First, clusters of equal size will tend to have more similar aggre-
gated outcomes per cluster (Y ′), which leads to smaller variance of
the estimator, σ̂ 2

cbr . In particular, the values of Ŝ ′cbr ,t and Ŝ ′cbr ,c in
Equation 6 will tend to be smaller.

Second, due to homophily [21], users who are connected will
tend to be more similar to each other, leading to homogeneous
clusters. �us, if the clusters are not balanced, then large clusters of
similar users will tend to dominate the treatment/control population
(depending on where the clusters were randomly assigned), making
it harder to achieve balance on pre-treatment covariates.

�us, even if unbalanced clustering results in clusters of higher
quality, in terms of number of edges cut, that will not necessarily
help us to achieve our ultimate goal of detecting network e�ects.
Finally, note that these observations are not speci�c to our design,
but hold for any cluster-based randomized design.

Evaluation of balanced clustering algorithms. To test di�erent
clustering algorithms, we extracted a subgraph of the full LinkedIn
graph containing only active members from the Netherlands and
the connections between them. �e subgraph contains >2.5M nodes
and >300M edges. We picked the Netherlands because (i) it is a
tightly-connected graph, and (ii) it �ts in memory on a single ma-
chine, which allowed us to compare the streaming algorithms to
state-of-the-art batch algorithms. We tested four algorithms.

METIS [17] is a widely-used batch graph clustering algorithm, and
thus serves as our baseline to compare the quality of the clustering
achieved by the streaming algorithms. It consists of three phases: (i)
coarsening of the original graph, (ii) partitioning of the coarsened
graph, (iii) uncoarsening of the partitioned graph.

Balanced Label Propagation (BLP) [33] is an iterative algorithm that
greedily maximizes edge locality by (i) given the current cluster
assignment, determining the reduction in edges cut from moving

Table 1: Evaluation of the di�erent balanced clustering algo-
rithms. We report the percentage ofwithin-cluster edges per
clustering of the Netherlands LinkedIn graph. �e values in
bold represent the best performance. For BLP, we report re-
sults only for k = 100 and k = 300, since the running times of
one iteration for larger values of k were too long.

Number of
clusters (k) BLP reFENNEL reLDG METIS

100 26.7% 31.7% 35.6% 35.0%
300 22.7% 27.7% 29.9% 29.4%
500 - 26.1% 27.7% 27.0%
1000 - 23.9% 24.7% 23.8%

a node to another cluster, (ii) solving a Linear Program to �nd an
optimal relocation of nodes while maintaining balance, and (iii)
moving the nodes to the desired clusters according to the relocation
found in step ii . Note that step i and iii can be easily parallelized
and ran in streaming fashion. Step ii requires solving an LP with
linear number of variables and quadratic number of constraints
w.r.t. the number of clusters.

Restreaming Linear Deterministic Greedy (reLDG) [23] is a restream-
ing version of the Linear Deterministic Greedy algorithm [27].
Nishimura and Ugander [23] show that restreaming signi�cantly
increases the quality of the clusters compared to a single pass. LDG
assigns each node u to a cluster i according to:

arg max
i ∈1...k

|Ci ∩ N (u) |

(
1 − |Ci |

C

)
, (12)

where C (i ) is the set of all nodes in cluster i in the most recent
assignment, N (u) is the set of neighbors of u, and C is the capacity
(i.e., maximum number of nodes) allocated for each cluster (usually
set to n

k to achieve perfect balance). �e �rst term maximizes the
number of edges within clusters, while the second term enforces
balance on the cluster sizes.

Restreaming FUNNEL (reFUNNEL) [23] is a restreaming version
of the FUNNEL algorithm [32], which is itself a streaming gen-
eralization of the modularity maximization. It assigns nodes to
clusters as:

arg max
i ∈1...k

|Ci ∩ N (u) | − α |Ci |,

where α is a hyper-parameter. Note that, unlike LDG, FUNNEL
ensures only approximate balance, unless α ≥ dnk e. Nishimura
and Ugander [23] suggest increasing α in each restreaming pass
to achieve best results. We run with linearly and logarithmically
increasing schedules.

We set the number of clusters to k = {100,300,500,1000}. For
each algorithm and value of k , we measured the percentage of edges
found within the clusters (Table 1). We ran BLP for 10 iterations,
and reLDG and reFUNNEL for 20 iterations. In both cases this was
enough for the algorithms to converge. We found that for larger
numbers of clusters (k ≥ 300) running one iteration of the BLP
algorithm using the GLPK solver (GNU Linear Programming Kit)
takes more than a day. It is worth noting that the bo�leneck of the
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Table 2: Results of clustering the full LinkedIn graph. We
ran the parallel version of reLDG on 350 Hadoop nodes for
35 iterations.

Number of
clusters (k)

Percantage of edges
within clusters

Cluster sizes
(mean ± std)

1000 35.59% 43893.2 ± 634.5
3000 28.54% 14631.1 ± 109.3
5000 26.16% 8778.6 ± 199.3
7000 22.77% 6270.5 ± 40.5
10000 21.09% 4389.3 ± 67.2

algorithm is solving the LP, which depends on the number of clus-
ters, rather than the size of the graph. reLDG and reFUNNEL do not
have this limitation as their running time, for a single pass, isO (nk )
and, in practice, larger values of k do not signi�cantly increase the
running time. In terms of clustering quality, reLDG consistently
outperforms all other algorithms (Table 1), including METIS which
requires the full graph to be loaded in memory. reFUNNEL per-
forms worse than reLDG and METIS, except for k = 1000 when
it achieves similar clustering quality as METIS. Finally, BLP lags
behind, performing signi�cantly worse than all other methods.

Clustering the full graph. Next, we apply the reLDG—the best
performing balanced clustering algorithm—on the full LinkedIn
graph containing hundreds of millions of nodes and billions of
edges. As mentioned above, reLDG’s running time is O (nk ) and
can be easily parallelized [23]. We ran the parallel version of reLDG
on 350 Hadoop nodes for 35 iterations. We set k = {1000, 3000,
5000, 7000, 10000} and a leniency of 1% for the balance constraint, to
slightly sacri�ce balance for be�er clustering quality. We �nd that
even when clustering the graph in 1000 clusters more than one third
(35.59%) of all edges are between nodes within the same clusters
(Table 2). Expectedly, as we increase k , the number of edges within
clusters decreases, with k = 10000 having 21.09% of the edges
within clusters. We observe that most clusters are of similar size,
except for very few clusters that are smaller due to the algorithm’s
leniency. We also looked at the distributions of the number of edges
within each cluster (proxy for possible network e�ects) and the
number of edges to other clusters (proxy for possible spillovers).
We �nd that although there is some heterogeneity between the
clusters, there are very few outliers (Table 2). Finally, we analyzed
the sensitivity of clustering quality to di�erent initializations. For
k = {3000,5000}, we run reLDG with four random initializations
and, in both cases, we found very small di�erences—with standard
deviation of 0.03%—between di�erent runs.

3.3 Stratifying the clusters
To ensure balance on cluster-level covariates and to reduce the
variance of the treatment e�ect estimates—as discussed in Sec-
tion 2.4—we use strati�cation to assign clusters to treatment arms,
and in the CBR treatment arm, clusters to treatment buckets. Strati-
�cation produces the greatest gains in variance reduction when the
covariates used to stratify are predictive of the outcomes. While
we cannot observe the outcomes before we run the experiment,

Table 3: �e e�ect of strati�cation on pre-treatment vari-
ance. We report the empirical variance of the di�erence-in-
di�erence-in-means estimator (∆) using the pre-treatment
outcomes. To avoid disclosing raw numbers all values are
multiplied by a constant.

Number of
clusters (k) No strati�cation Balanced k-means

strati�cation
1000 0.890 1.000
3000 0.592 0.650
5000 0.590 0.545
7000 0.445 0.451
10000 0.400 0.372

we do have historical data about the past behavior of the users,
including the pre-treatment outcomes (the key metric of interest
just before launching the experiment). Although, we hope that the
treatment will signi�cantly increase the outcome, we do expect
that the pre-treatment outcomes will be highly correlated with the
post-treatment outcomes. Note that even in the worst-case scenario
when the selected covariates fail to predict the post-treatment out-
comes, the treatment e�ect estimates still remain unbiased and
have no more sampling variance than the estimates we would have
obtained using a completely randomized assignment [14].

We describe each cluster using four covariates: number of edges
within the cluster, number of edges to other clusters, and two
metrics that characterize users’ engagement with the LinkedIn
feed averaged over all users in the cluster (one of which is the pre-
treatment outcome). To group clusters into strata, we used balanced
k-means clustering. We experimented with two algorithms: [20]
led to more balanced groups of clusters (strata) but does not scale to
more than 5000 data points, whereas [6] is faster, more scalable but
outputs clusters (strata) that are slightly less balanced. We report
results only for the la�er.

We cannot measure the e�ects of strati�cation on the post-
treatment variance since we can run the experiment only once,
either with or without strati�cation. However, we can measure
the e�ects on the pre-treatment variance. Table 3 shows the pre-
treatment variance of the di�erence-in-di�erence-in-means esti-
mator under our design with and without strati�cation. For small
values of k = {1000, 3000} stratifying increases the variance. How-
ever, for larger values of k = {5000, 7000, 10000} strati�cation leads
to smaller or similar variance.

3.4 Variance reduction using lagged outcomes
In order to further reduce the variance of the estimator of the
network e�ect, we de�ne a new variable as the di�erence between
post-treatment and pre-treatment outcomes, as suggested in [11]:

Y ∗i = Yi,t − Yi,t−1,

where Yi,t is the outcome of unit i at period t and Yi,t−1 is the
outcome of unit i one period unit prior to t . Since this is only a
question of choosing the appropriate outcome variable, this does
not change the validity of our procedure. In practice, we chose 2
and 4 weeks as the di�erence between t and t − 1 in the �rst and
the second experiment, respectively.
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Table 4: Results of two online experiments testing for network e�ects ran on 20% and 36% of all LinkedIn users. �e outcomes
are related to the level of users’ engagementwith the feed. We report results pre-treatment, post-treatment, andpost-treatment
using the variance reduction technique explained in Section 3.4. We refer to the �rst treatment arm as BR, instead of CR, since
we used a Bernoulli randomized assignment instead of a completely randomized assignment (Section 3.5). To avoid disclosing
raw numbers all values are multiplied by a constant, except for the �nal row which displays the two-tailed p-value of the test
statistic T under assumption of normality T ∼ N (0,1).

Experiment 1 Experiment 2

Statistic pre-treatment post-treatment post-treatment
(Y = Yt − Yt−1) pre-treatment post-treatment post-treatment

(Y = Yt − Yt−1)
BR Treatment E�ect (µ̂br ) -0.0261 0.0432 0.0559 0.0230 0.2338 0.2108
CBR Treatment E�ect (µ̂cbr ) 0.0638 0.1653 0.0771 0.2733 0.8123 0.5390
Delta (∆ = µ̂br − µ̂cbr ) -0.0899 -0.1221 -0.0211 -0.2504 -0.5785 -0.3281
BR standard deviation (σ̂br ) 0.0096 0.0098 0.0050 0.3269 0.3414 0.2911
CBR standard deviation (σ̂cbr ) 0.0805 0.0848 0.0260 0.9332 0.9966 0.5613
Delta standard deviation (σ̂ ) 0.0811 0.0856 0.0265 0.9367 1.0000 0.5712
p-value (2-tailed) 0.2670 0.1530 0.4246 0.5753 0.2560 0.0483

3.5 Experimental results
We ran two separate experiments on the LinkedIn graph, in August
and November 2016, respectively. �e experiments tested two sepa-
rate changes in the feed ranking algorithm. Note that the treatment
did not have any trivial network e�ect, e.g, it did not speci�cally
encourage users to interact with each other. �e outcome of interest
is the number of sessions in which the user actively engages with
their feed.

Practical Considerations. In order to address some of the chal-
lenges of running experiments in real-time on a non-�xed popula-
tion, the LinkedIn experimentation platform [35] is implemented to
run Bernoulli randomized assignments (BR) and not completely ran-
domized assignments. A Bernoulli randomized assignment assigns
each unit to treatment or control with probability p independently
at random, whereas a completely randomized assignment (CR) as-
signs exactly nt = bp · N c units to treatment, chosen uniformly at
random. For large sample sizes, as it is the case in our experiments,
the di�erence between a CR and BR assignment is negligible for the
purpose of our test. �e edge cases where no units are assigned to
treatment or control are very unlikely when N is large. In [24], we
provide a formal explanation for why running a Bernoulli random-
ized assignment does not a�ect the validity of our test in practice.

With these constrains in mind, we run our experiments as follows:
(i) We cluster the LinkedIn graph into balanced clusters (Sec-

tion 3.2). We set the number of clusters to 3000 in the �rst
experiment and to 10000 in the second experiment.

(ii) We stratify the clusters based on their covariates using
balanced k-means strati�cation (Section 3.3).

(iii) In each stratum, we randomly assign clusters to the CBR
treatment arm, and subsequently to the treatment or con-
trol bucket.

(iv) Units that were not assigned to the CBR treatment arm are
passed to the main experimentation pipeline, where a sub-
population is �rst sampled at random, and then assigned
to treatment or control using Bernoulli randomization.

Prior to launching the experiments, we ran a series of balance
checks on the background characteristics of the users to ensure
that there are no systematic di�erences between the populations
in the two treatment arms and between the treatment and control
groups within each arm. We compared the distributions of number
of connections per user, levels of user activity, and the number of
premium member accounts.

We report the results of the two experiments in Table 4. To
avoid disclosing raw numbers, we multiply all values by a constant,
expect for the last row, which displays the two-tailed p-value.

Experiment 1. We ran the experiment for two weeks on 20% of
the LinkedIn users: 10% assigned to Bernoulli randomization (BR)
and 10% assigned to cluster-based randomization (CBR). We �rst
test whether there is any systematic bias of the outcomes in the
assignment prior to experiment. We apply the test for network
e�ects on pre-treatment outcomes (A/A test) and, as expected, we
do not �nd any signi�cant e�ects. Next, we test for network e�ects
post-treatment: we fail to reject the null hypothesis that SUTVA
holds. �e treatment e�ects within each arm were not as signi�cant
as expected, which potentially led to smaller networks e�ects and
not enough evidence for our test to reject the null. We observe that
most of the variance comes from the CBR treatment arm. Using the
lagged outcomes (Y = Yt −Yt−1) reduces the variance (σ̂ ) 3.2 times,
but also reduces the di�erence in treatment e�ects (µ̂br − µ̂cbr ) 5.8
times. We still fail to reject the null.

Experiment 2. In this experiment, we used a larger test population,
36% of all LinkedIn users: 20% assigned to Bernoulli randomization
(BR) and 16% assigned to cluster-based randomization (CBR). We
also ran the experiment for a longer period of time: 4 weeks. As in
experiment 1, we �rst test for network e�ects using pre-treatment
outcomes (A/A test) and we do not �nd signi�cant e�ects. Testing
post-treatment, we also fail to reject the null. However, by applying
the variance reduction technique described in Section 3.4, we reduce
the standard deviation (σ̂ ) 1.8 times, while also reducing the di�er-
ence in treatment e�ects (µ̂br − µ̂cbr ) 1.8 times. We �nd signi�cant
network e�ects: we reject the null that SUTVA holds (p = 0.048).
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Although we did not reject the null hypothesis twice, in both
experiments we found positive network e�ects: the di�erence-in-
means estimate was higher in the cluster-based randomization
treatment arm (µ̂cbr ) than the Bernoulli randomization one (µ̂br ).
Given the nature of the outcome variable, this behavior is expected.
In fact, the outcome of interest, which measures the number of
sessions in which a user engages with an item on their feed, yields
itself to positive interference e�ects: the more of user’s connections
engage with items on their feed, the more content to engage on
the user’s feed there will be. �e fact that we rejected the null
in the second experiment, but not in the �rst, suggests that small
treatment e�ects in the �rst experiment were likely the reason why
no strong interference e�ects were observed.

4 FUTUREWORK
�is work opens many avenues for future research. In this section,
we highlight a few.

First, the proposed design compares a cluster-based randomized
assignments with a completely randomized assignment. A very
similar test could be investigated where instead of comparing these
two designs, each treatment arm assigns di�erent proportions of
treated units. An interesting result would be to understand how the
Type I and Type II error of these two hierarchical designs compare.

Second, there is a growing literature on identifying heteroge-
neous treatment e�ect, which we believe can be adapted to this
framework. Cursory analysis of the experiments run showed that
interference e�ects seemed strongest for moderate users of the
LinkedIn platforms, but were weaker for very recurrent users of
LinkedIn and less-recurrent users.

Finally, as mentioned at the end of Section 2, the type II error of
our test is strongly dependent on how “good” our initial clustering
of the graph is. With all else being equal, this means cu�ing fewer
(possibly weighted) edges of the graph. A follow-up to our work
would be to explore clustering algorithms which manage both
objectives of minimizing edges cut but also managing the �nal
empirical variance.
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