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ABSTRACT

Networks such as social networks, citation networks, protein-

protein interaction networks, etc., are prevalent in real world. How-

ever, only very few vertices have labels compared to large amounts

of unlabeled vertices. For example, in social networks, not every

user provides his/her pro�le information such as the personal inter-

ests which are relevant for targeted advertising. Can we leverage

the limited user information and friendship network wisely to infer

the labels of unlabeled users?

In this paper, we propose a semi-supervised learning framework

called weighted-vote Geometric Neighbor classi�er (wvGN) to infer

the likely labels of unlabeled vertices in sparsely labeled networks.

wvGN exploits random walks to explore not only local but also

global neighborhood information of a vertex. �en the label of the

vertex is determined by the accumulated local and global neigh-

borhood information. Speci�cally, wvGN optimizes a proposed

objective function by a search strategy which is based on the gradi-

ent and coordinate descent methods. �e search strategy iteratively

conducts a coarse search and a �ne search to escape from local

optima. Extensive experiments on various synthetic and real-world

data verify the e�ectiveness of wvGN compared to state-of-the-art

approaches.
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1 INTRODUCTION

�e problem of learning from labeled and unlabeled data, literarily

a�ributed to semi-supervised learning, has aroused considerable

interests in recent years. Generally, labeled data is scarce while

unlabeled data is abundant. Labeling data can be very tedious, time-

consuming and expensive because it needs the e�orts of skilled

human annotators. How to e�ectively make use of unlabeled data

to improve learning performance is of great practical signi�cance.

Recently, various semi-supervised learning methods have been

proposed, such as TSVM [12, 27], LapSVM [1] and LGC [31]. Both

LapSVM and LGC are based on the assumption of local and global

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

KDD’17, August 13–17, 2017, Halifax, NS, Canada.
© 2017 ACM. ISBN 978-1-4503-4887-4/17/08. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3097983.3098142

label consistency in networks. Although LapSVM and LGC can be

directly applied on sparsely labeled networks, their performance is

not satisfying when their assumptions are not met.

Di�ering from conventional data which is assumed to be i.i.d (in-

dependent and identically distributed), networked data, extracted

from social media, bibliographic databases and etc., is interdepen-

dent. Vertices connected to each other are likely to have the same

labels according to the principle of homophily [20]. Relational learn-

ing [9, 18] has been proposed to capture the correlations between

connected vertices. It makes a �rst-order Markov assumption to in-

fer labels, i.e., the label of a vertex is determined by those of its direct

neighbors in the network. In the prediction process, collective infer-

ence is used to �nd an equilibrium state such that the inconsistency

between neighboring vertices is minimized. Relational learning

methods do not perform well when unlabeled vertices have too few

labeled neighbors to support learning and/or inference [8]. �e

question is how to infer the labels of unlabeled vertices when they

have too few labeled neighbors? Our idea is to use the random walk

to capture both short and long distance relationships in networks.

To be speci�c, if a vertex has too few labeled neighbors, we can

exploit its one- tom-hop (See Section 3) neighbors to support the

learning process.

To motivate the problem, we use a real network called Karate

Club [30] shown in Figure 1(a). �e network records 78 pairwise

interactions (links) between 34 members of a karate club who in-

teracted outside the club. �e network is partitioned into two com-

munities. �e blue community contains 16 members and the green

community contains 18 members. For the test, the labels of the two

vertices in black are given and the labels of the other vertices are

unknown to all the methods. Figure 1(b) shows the result of our

method wvGN only using the geometric one-hop neighborhood

information (the de�nition is given in Section 3.1). Five members

are misclassi�ed, which leads to a Micro-F1 score (the averaged

F1 score over classes, please refer to [7, 21, 29] for more details)

of 0.844; Figure 1(c) gives the result of wvGN using the geometric

one- and two-hop neighborhood information. Two members are

misclassi�ed, which leads to a Micro-F1 score of 0.938; Figure 1(d)

shows the result of wvGN using the geometric one- to �ve-hop

neighborhood information. One member is misclassi�ed, which

leads to a Micro-F1 score of 0.968. When using the geometric one-

to eight-hop neighborhood information, wvGN correctly classi�es

all the members (Figure 1(e)). With the accumulation of both local

and global neighborhood information, the learning performance of

wvGN is strengthened. Figure 1(f) demonstrates the result of wvRN

(weighted-vote Relational Neighbor classi�er) [17] (the results of

LapSVM and LGC are the same and not shown here to reduce the
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clu�er). We can see that wvRN fails in such an occasion when the

network is sparsely labeled.

(a) Karate club (b) wvGN (m=1) (0.844, 0.844)

(c) wvGN (m=2) (0.938, 0.938) (d) wvGN (m=5) (0.968, 0.968)

(e) wvGN (m=8) (1.000, 1.000) (f) wvRN (0.469, 0.319)

Figure 1: Classi�cation results onKarate Club. �e two la-

beled vertices are in black and the misclassi�ed vertices are

in red.m is the number of hops of a randomwalker. Subcap-

tion: Method (Micro-F1, Macro-F1).

To achieve be�er classi�cation results in sparsely labeled net-

works, our method wvGN exploits not only local but also global

neighborhood information of vertices. Speci�cally, the label of a

vertex is jointly determined by its geometric one-hop to m-hop

(m = 1, 2, . . .) neighbors in the network. �e geometric m-hop

neighbors of a vertex are those vertices which arem-hops away by

a random walker. Our main contributions are as follows:

• We use random walks with arbitrarym hops to accumulate

local and global neighborhood information for be�er classi-

�cation.m is implicitly determined by the power iteration

method.

• We formulate the semi-supervised learning in networks as

an optimization problem and propose an objective function

based on the L2-loss SVM.

• We propose a search strategy called gradient and coor-

dinate descent (GCD) to optimize the objective function.

GCD is a combination of the gradient descent (GD) and

coordinate descent (CD) methods. GD is used for a coarse

search and CD is used for a �ne search. GCD does not

easily get trapped in local optima.

• We show the e�ectiveness of our method wvGN by carry-

ing out exhaustive comparative studies with state-of-the-

art methods from various related domains.

2 NOTATIONS AND PROBLEM

FORMULATION

We use lower-case Roman le�ers (e.g. a,b) to denote scalars. We

denote vectors (row) by boldface lower case le�ers (e.g. x). Matrices

are denoted by boldface upper case le�ers (e.g. X). We denote

entries in a matrix by non-bold lower case le�ers, such as xi, j . Row
i of matrix X is denoted by the vector xi . We use [x1, · · · ,xn ] to
denote a vector created by stacking n scalars; similarly, we use

X = [x1; . . . ; xn ] to denote creating a matrix by stacking the vector

xi along the rows. A set is denoted by calligraphic capital le�ers (e.g.

S). A network is denoted by G = (V, E), whereV = {v1, . . . ,vn }
is a set of vertices and E is a set of edges. �e a�nity matrix

of vertices is denoted by A ∈ Rn×n with ai, j = aj,i ,ai,i = 0.

�e degree matrix D is a diagonal matrix associated with A with

di,i =
∑
j aj,i . �e random walk transition matrix P is de�ned

as D−1A. For a matrix X ∈ Rn×n , diaд(X) ∈ Rn×1 is a vector

created by extracting the diagonal of X. We consider the following

semi-supervised learning problem in networks:

Semi-Supervised Learning in Networks. Given a net-
work G = (V, E) with vertices {v1, . . . ,vl } labeled as yl =
[y1, . . . ,yl ] , l � n,yi (1 6 i 6 l) ∈ {+1,−1} and vertices
{vl+1, . . . ,vn } unlabeled. �e goal is to learn a classi�er to infer
the labels ŷu = [ŷl+1, . . . , ŷn ] of the unlabeled vertices.

3 WEIGHTED-VOTE GEOMETRIC NEIGHBOR

CLASSIFIER

3.1 �e Model

To classify the vertices in a network, in this work, we �rst transform

vertices from network space to vector space. For a network, we

de�ne its geometric one-hop neighborhood as follows:

De�nition 3.1. Geometric One-hop Neighborhood. �e geo-

metric one-hop neighbors of a vertex vi is de�ned as a set N1

i
which contains those vertex vj which can be reached by a random

walker from vi in one step. �e geometric one-hop neighborhood

is de�ned as a set N1 =
⋃l
i=1N1

i .

We denote a vertex vq in the geometric one-hop neighborhood

N1
by pq which is the qth row of the transition matrix P. �e class

indicator score of the vertex vq is de�ned as follows:

f (pq ) = pq ·wᵀ + b (1)

where the weight vector w and bias term b are the parameters to

be learned.

�en the label of the vertex vq is inferred by the following for-

mula:

yq = siдn(f (pq )) = siдn(pq ·wᵀ + b) (2)

If we want to seek the separating hyperplane with the largest

margin for the positive and negative samples, Equation (1) becomes

the problem of linear support vector machines (SVM). However,
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Equation (1) does not take the neighborhood relationship into con-

sideration to classify vertices in networks, which would lead to the

deterioration of the classi�er. �e theory of homophily [20] tells us

that vertices connected to each other tend to have the same labels.

For example, friends connected in a social network are likely to have

similar interests; papers connected in a citation network are likely

to have similar topics. �us to classify the vertexvq , we need to con-
sider its neighborhood information. A simple relational neighbor

classi�er (RN) [17] estimates the class-membership probability of

the vertexvq by P(class|vq ) = 1

Z
∑
label(vi )=class |i ∈N1

q
ai,q , where

Z =
∑
i ∈N1

q
ai,q . However, in some cases, it is still hard to deter-

mine the label of a vertex according to the theory of homophily.

For example in Figure 2, the vertexv5 is connected to three vertices
in the green class and also connected to three vertices in the yellow

class. Since P(yellow|v5) = P(green|v5) = 0.5, what is the label of

the vertex v5?

1

2
3

4

5

7

8

9

6

Figure 2: An example network with the vertexv5 unlabeled.

In this work, we use a weighted-vote strategy to integrate the

neighborhood information of the vertex vq with Equation (1) as

follows:

f (pq ) = pq ·wᵀ + b > 0

yq = 1

if

∑
i ∈N1

q
ai,q f (pi )∑

i ∈N1

q
ai,q

≥ +1
(3)

Similarly, if the weighted indicator score is less than or equal to

-1, we have:

f (pq ) = pq ·wᵀ + b < 0

yq = −1

if

∑
i ∈N1

q
ai,q f (pi )∑

i ∈N1

q
ai,q

≤ −1
(4)

Inequalities (3) and (4) can be combined into one set of inequali-

ties:

yq ·
∑
i ∈N1

q
ai,q (pi ·wᵀ + b)∑
i ∈N1

q
ai,q

≥ 1

⇒yq ·
(∑

i ∈N1

q
ai,q · pi

dq,q
·wᵀ + b

)
≥ 1

⇒yq ·
(
aq · P
dq,q

·wᵀ + b
)
≥ 1

⇒yq ·
(
pq · P ·wᵀ + b

)
≥ 1

(5)

�e above inequality is just for the classi�cation of the vertexvq
using its geometric one-hop neighborhood information. However,

in real networks, the vertex may be sparsely labeled. For example

in Figure 3, how to infer the class label of the vertex v5 when its di-

rectly connected neighbors are unlabeled? �e relational neighbor

classi�er (RN) [17] iteratively classi�es vertices using its previously

inferred labels. However, if there is an error inference, the error

will be ampli�ed in the subsequent inference procedure.

1

2
3

4

5

7

8

9

6

Figure 3: An example network with sparsely labeled ver-

tices.

Di�ering from RN which only uses the class labels of known

related instances without doing learning, our method wvGN learns

geometic neighborhood information from data. �e geometricm-

hop (m ≥ 2) neighborhood is de�ned as follows:

De�nition 3.2. Geometricm-hop Neighborhood. �e geomet-

ricm-hop neighbors of a vertex vi is de�ned as a set Nm
i which

contains those vertex vj which can be reached by a random walker

from vi inm steps. �e geometricm-hop neighborhood is de�ned

as a set Nm =
⋃l
i=1Nm

i .

In the geometricm-hop neighborhoodNm
i , vq is denoted by pmq

which is the q-th row of the transition matrix Pm . If we replace pq
in the Inequality (5) with pmq , we have:

yq ·
∑
i ∈Nm

q
ai,q (pmi ·w

ᵀ + b)∑
i ∈Nm

q
ai,q

≥ 1

⇒yq ·
(∑

i ∈Nm
q
ai,q · pmi

dq,q
·wᵀ + b

)
≥ 1

⇒yq ·
(
aq · Pm

dq,q
·wᵀ + b

)
≥ 1

⇒yq ·
(
pq · Pm ·wᵀ + b

)
≥ 1

⇒yq ·
(
pmq · P ·wᵀ + b

)
≥ 1

⇒yq ·
(
pm+1q ·wᵀ + b

)
≥ 1

(6)

where pm+1q is the representation ofvq in the geometric (m+1)-hop
neighborhood.

Now the label of the vertex v5 is still determined by its directly

connected neighbors in the geometricm-hop neighborhood where

each neighbor has integrated information from both labeled vertices

v2 and v9. We can see from Equations (5) and (6) that in geometric

neighborhood N1 ∪ · · · Nm
, a vertex is always transformed to its

next-hop neighborhood by the transition matrix P. Similar to SVM

[3, 6], we introduce a positive slack variable ξq in the constraints

and the Inequality (6) becomes:

yq ·
(
pm+1q ·wᵀ + b

)
≥ 1 − ξq

ξq ≥ 0, 1 ≤ q ≤ l , m ≥ 1

(7)
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Compared with the large amount of unlabeled data, the amount

of labeled data is limited in the semi-supervised learning scenario.

In addition, as we said before, it is hard to infer the label of a vertex

if it has two few labeled neighbors. To alleviate these situations, we

accumulate the information from every geometric neighborhood

and represent the vertex vq by xq = p2q + · · · + pm+1q = pq ·
(P + · · · + Pm ). �e unconstrained SVM problem with L2 loss is

formulated as follows:

min

w,b

1

2

w ·wᵀ + α
l

l∑
q=1

max(1 − yq · f (xq ), 0)2 (8)

Note that xq can be considered as a random walker taking

m + 1(m ≥ 1) hops from the vertex vq and accumulating the neigh-

borhood information at each hop. With higher values of m, xq
becomes more global. Meanwhile, xq becomes identical, because

the transition probability tends to converge towards the stationary

distribution which is not useful in classi�cation. To avoid the situa-

tion where all vertices have identical representation, we introduce

a dampening factor at each hop such that higher hops have higher

penalty and thus decay faster. Inspired from the heat kernel [5],

the dampening factor for themth
hop is de�ned as ρm/m!, where

ρ is a non-negative parameter (considered as the temperature in

the heat kernel).

In this work, we penalize wi by d
− 1

2

i,i . For mathematical conve-

nience, we extend each instance xq as

[
xq , 1

]
and w as [w,b]. �e

objective function (8) now becomes:

min

w
F (w) = λ

2

(w�d)(w�d)ᵀ+ α
l

l∑
q=1

max(1−yqxqwᵀ, 0)2 (9)

where � means the Hadamard product, λ and α are regularization

parameters, xq =
[
pq ·

(
ρ1
1!
P + · · · + ρm

m!
Pm

)
, 1

]
, X = [x1; . . . ; xn ]

and d =
[
diaд(D−

1

2 )ᵀ, 1
]
.

3.2 Optimization

Stochastic gradient descent (SGD) algorithm is very successful in

training large-scale SVM [24] on sparse data. However, we �nd

it gets easily trapped in local optima because the representation

of each vertex in vector space is not sparse. So do the gradient

descent (GD) and coordinate descent (CD) methods (See Section

4.1) because they are dependent on the starting point. In this work,

we use a combination of GD and CD to optimize our objective

function given in (9). Speci�cally, we �rst conduct a coarse search

by GD owing to its fast convergence and then conduct a �ne search

by CD. �e gradient of (9) with respect to w is:

F ′(w) = λw � d − 2α

l

∑
j ∈I(w)

yjxjbj (w) (10)

where bj (w) = 1 − yjxjwᵀ and I(w) =
{
j |bj (w) > 0

}
.

We iteratively update w as follows:

wt+1 = wt − ηt F ′(wt ) (11)

where ηt is the learning rate at the t
th

iteration and is chosen from{
1, β, β2, . . .

}
by a line search.

We can see that the learning rate ηt for each element in w is the

same at each iteration, which leads to GD’s easily ge�ing trapped

in local optima. To let GD escape from local optima, we conduct a

�ne search by CD. CD �nds an appropriate learning rate for each

element. �e CD method has been successfully applied for solving

large-scale L2-loss SVM [4]. �emethod starts from an initial vector

w0
(the �nal output of GD in this work) and iteratively generates a

sequence

{
wt }

(t = 0, 1, 2, . . .). At each iteration,wt+1
is produced

by sequentially updating each entry of wt
with other entries �xed.

�e process produces a sequence of vectors wt,i
(i = 1, . . . ,n + 1),

such that wt,0 = wt
, wt,n+1 = wt+1

and

wt,i =
[
wt+1
1
, . . . ,wt+1

i ,w
t
i+1, . . . ,w

t
n+1

]
Updating wt,i

to wt,i+1
becomes the following one-variable

sub-problem:

min

z
Fi (wt+1

1
, . . . ,wt+1

i ,w
t
i+1 + z,w

t
i+2 . . . ,w

t
n+1)

≡min

z
Fi (wt,i + zei )

=min

z

λ

2

(
(wt,i + zei ) � d

) (
(wt,i + zei ) � d

)ᵀ
+
α

l

∑
j ∈I(wt,i+zei ))

(bj (wt,i + zei ))2

(12)

where ei ∈ R1×(n+1) is a vector with the ith entry 1 and all other

entries 0.

�e �rst derivative of (12) with respect to z is:

F ′i (z) = λ
(
wt,i
i + z

)
· di −

2α

l

∑
j ∈I(wt,i+zei ))

(yjx j,i (bj (wt,i + zei ))

(13)

As pointed out in [4], Fi (z) is not twice di�erentiable at some j,
where bj (wt,i + zei ) = 0. Following [4, 19], we de�ne the general-

ized second derivative of (12) with respect to z as:

F ′′i (z) = λdi +
2α

l

∑
j ∈I(wt,i+zei ))

x2j,i (14)

�e Newton direction at a given z is
F ′i (z)
F ′′i (z)

. We start from z = 0

and apply a line search z = z−ηi
F ′i (z)
F ′′i (z)

until Fi (z−ηi
F ′i (z)
F ′′i (z)
) < Fi (z),

where ηi is the learning rate for the i
th

element and is chosen from{
1, β, β2, . . .

}
.

3.3 Implementation Details and Analysis

For each vertex, the random walk takes arbitrarym hops. In the

following, we use the power iteration method to implicitly decide

the value ofm for each vertex. Note that di�erent vertices may have

di�erent numbers of hops andwe do not explicitly compute Pm

owing to its high time complexity. If we denote the m-th term

pq · ρ
m

m!
Pm in xq by vmq , then vmq =

ρ
m vm−1q · P. We de�ne the

velocity atm−1 to be the vectorδm−1q = vmq −vm−1q , the acceleration

atm − 1 to be the vector ϵm−1q = δmq − δm−1q and stop the iteration

when ‖ϵm−1q ‖max is below a threshold ϵ̂ . We set ρ = 5 according

to [13], λ = 2
−6

according to [21], and α = 1, β = 1

2
according to

[4]. �e pseudo-code for our binary classi�er wvGN is given in

Algorithm 1.
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In Algorithm 1, steps 4–14 are the details of using the power

iteration method to compute the representation xq of the vertex

vq . Note that this part can be parallelized since the representa-

tion computation for each vertex is independent. Step 16 uses our

GCD to optimize (9). As described in Procedure (lines 19–25), our

GCD method iteratively conducts GD and CD to escape from local

optima. Given the randomly generated initial w, we �rst apply a

coarse search by GD. If the change of the objective (9) is less than

a threshold (10
−4
), we apply a �ne search by CD; otherwise, we

continue the coarse search by GD. We repeat the process until the

maximum iteration is reached. In the optimization process, we �nd

CD costs a lot of time. Inspired by the mini-batch SGD [24], we use

CD to update only a number k = 10% of the elements randomly

selected in w. We �nd such a mini-batch CD method accelerates

the search but does not deteriorate the results (see Section 4.1).

Algorithm 1: wvGN

Input: A�nity matrix A for a network and labels

yl = [y1, . . . ,yl ] for the labeled vertices {v1, . . . ,vl }
Output: estimated ŷu = [ŷl+1, . . . , ŷn ] for the unlabeled

vertices {vl+1, . . . ,vn }
1 ρ ← 5, t ← 50, ϵ̂ ← 10

−4, λ← 2
−6,α ← 1, β ← 1

2
;

2 compute the degree matrix D;
3 compute the transition matrix P← D−1A;
/* power iteration */

4 for j ← 1 to n do

5 v1j ← pj
ρ1
1!
· P;

6 m ← 1;

7 xj ← v1j ;
8 repeat

9 vm+1j ← ρ
m+1v

m
j · P;

10 xj ← xj + vm+1j ;

11 δm ← |vm+1j − vmj |;
12 m ←m + 1;

13 until ‖δm+1j − δmj ‖max ≤ ϵ̂ orm ≥ t ;

14 xj ←
[
xj , 1

]
;

15 X← [x1; . . . ; xn ], d←
[
diaд(D−

1

2 )ᵀ, 1
]
;

16 w← GCD(Xl , yl , d, λ,α , β); /* Xl is the labeled data

(training data). */

17 ŷu ← siдn(Xu ·wᵀ); /* Xu is the unlabeled data

(test data). */

18 return ŷu ;
19 Procedure GCD(Xl , yl , d, λ,α , β)
20 iter ← 25, w←rand (1,n), w← w

‖w‖2 ;

21 for i ← 1 to iter do
22 w←GD (w,Xl , yl , d, λ,α , β);
23 if ∆F (w) < 10

−4
then

24 w←miniBatchCD (w,Xl , yl , d, λ,α , β);

25 return w;

Complexity analysis. Assume that a network has n vertices

and r edges. In Algorithm 1, lines 1–3 costs O(r ) time. Lines 4–14

adopts the power iteration method to approximately compute the

representation for each vertex. Since the time complexity of the

power iteration method is O(r ) [16], we need O(n · r ) to �nish

steps 4–14. Procedure (lines 19–25) gives the pseudo-code for our

GCD method. Line 22 uses GD to update w. �e time complexity

of GD is bounded by the complexity of computing the gradient

(Equation (10)), i.e., O (l · (n + 1)), where l � n is the number of the

labeled vertices. Line 23 computes ∆F (w), whose time complexity

is O (l · (n + 1)). Line 24 updates w by the mini-batch CD, whose

time complexity is determined by the �rst derivative (Equation

(13)). It costs O (l · (n + 1)) to update one element in w. �us the

time complexity to update k elements in w is O (k · l · (n + 1)). �e

total time complexity of GCD is bounded by O(k · l ·n). Finally, the
time complexity of our method wvGN is O (n · (r + k · l)).

4 EXPERIMENTAL EVALUATION

Our experiments evaluate the classi�cation performance of wvGN

and its competitors on synthetic and real-world data. We compare

wvGN with state-of-the-art methods from related research �elds.

To be speci�c, the baseline methods are as follows:

• Semi-supervised learning. TSVM [12, 27], LapSVM [1] and

LGC [31]. We use the rows of the transition matrix P to

represent vertices and input them to TSVM and LapSVM.

• Relational learning. wvRN [17], SocDim [25] and SCRN

[29].

• Random walk based network learning. Deepwalk [22],

node2vec [10] and SNBC [21].

• Graph di�usion based learning. Heat kernel di�usion [5].

We use the power iteration method to approximately com-

pute the heat kernel.

For more descriptions on those competitors, please refer to our

related work and their original papers. For the datasets that have

more than two classes, we use the one-vs-rest [2] method to train

wvGN for each class, which leads to c (the number of classes) deci-

sion values for each vertex. However, the decision values generated

by each binary wvGN cannot be compared directly. According to

[21], we use Pla�’s Scaling [23] to transform these decision values

to probability scores which are based on the same scale and can be

compared directly. We assign the most probable class label to each

vertex. To validate results, we use two popular evaluation measures

from [7, 21, 29]: Micro-F1 score and Macro-F1 score. �e higher the

values of these evaluation measures, the be�er the classi�cation.

We randomly sample a number of vertices with labels from

each class as training data and use the rest of vertices as test data.

Following the se�ings in [10, 22, 25], we repeat this process ten

times and report the average and standard deviation of Micro-F1

score and Macro-F1 score for each method. �e default parameters

are adopted for the baseline methods according to their original

papers. All experiments are run on the same machine with an Intel

Core �ad i7-3770 with 3.4 GHz and 32 GB RAM. All networks

shown in this work are plo�ed by the python toolbox NetworkX.
�e code of wvGN and all the synthetic and real-world data used

in this work are available at the website
1
.

1
h�ps://github.com/yeweiysh/wvGN
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4.1 Synthetic Data

We use the benchmark graph generator [14] to generate two syn-

thetic networks Network1 and Network2. �e generator makes

the vertex degree and community size follow power law distribu-

tions which re�ect the real properties of vertices and communities

found in real networks. Network1 has 100 vertices and 1008 edges,

which are grouped into two classes (37 and 63 vertices, respec-

tively). �e average degree is 21. Network2 has 120 vertices and

607 edges, which are grouped into three classes (19, 43 and 58 ver-

tices, respectively). �e average degree is 10. For each network,

we vary the number of labeled vertices in each class from one to

�ve and report the average and standard deviation of Micro-F1 and

Macro-F1 scores in Table 1 and Table 2.

From Table 1, we can see that our method wvGN achieves the

best results compared to the baselines. wvGN achieves an average

Micro-F1 score 0.987 and an average Macro-F1 score 0.986 even just

given one labeled vertex in each class. In this case, wvGN achieves

a gain of 1.86% (min) over node2vec and 161.1% (max) over TSVM.

�us, there is no much space le� for wvGN to improve its results

when given more labeled vertices. However, for its baselines, we

can see that most of them have an ascending performance when

given more labeled vertices because they have a relatively worse

starting point. Note that the network embedding method node2vec

is very competitive. Compared with the Network1, Network2

is more complex. From Table 2, we can see that every method

continuously increases their performance with increasing number

of labeled vertices. When given �ve labeled vertices in each class,

wvGN achieves a gain of 34.1% (min) over node2vec and 183.2%

(max) over LGC in terms of Macro-F1 score. “wvGN (full)” means

wvGN with the full use of CD, i.e., all elements in w are updated

by CD. Table 1 reveals that wvGN achieves approximately the

same performance as wvGN (full) while Table 2 shows that wvGN

is be�er than wvGN (full) when the number of labeled vertices

exceeds two.

Figure 4 and Figure 5 give us the intuitive demonstrations of

classi�cation on Network1 and Network2 (the labeled vertices

are in black). To reduce the clu�er, we only show the results of

the top three methods here. Note that wvGN only misclassi�es

one blue vertex (highlighted in red in Figure 4(b)). �is vertex has

three edges connected to the green class but only one edge to the

blue class. Since the graph is unweighted, the more a vertex has

edges connected to a class, the more similar the vertex to the class.

According to the weighted vote strategy (see Section 3.1), it makes

sense to classify it as the green class. Figure 4(c) depicts the clas-

si�cation result of node2vec. �ree blue vertices are misclassi�ed.

Figure 4(d) shows that SNBC misclassi�es eleven blue vertices. Fig-

ure 5(b)–(d) show the classi�cation results of wvGN, node2vec and

TSVM on Network2. wvGN misclassi�es 25 vertices. node2vec

misclassi�es 41 vertices. TSVM misclassi�es 54 vertices. wvGN

achieves the best result and has a gain of 20.9% over the second

best method node2vec and 45.8% over the third best method TSVM

in terms of Micro-F1 score.

Figure 6 (a) and (b) compare our optimization method GCD with

GD, CD and SGD on Network1 and Network2. We can see that

all GD, CD and SGD get trapped in local optimal, which leads to

poor performance, especially on Network1. When combining GD

and CD, our method GCD improves the performance.

(a) Network1 (b) wvGN (0.990, 0.989)

(c) node2vec (0.969, 0.967) (d) SNBC (0.888, 0.871)

Figure 4: Classi�cation results on Network1. �e two la-

beled vertices are in black and the misclassi�ed vertices are

in red. Subcaption: Method (Micro-F1, Macro-F1).

(a) Network2 (b) wvGN (0.786, 0.811)

(c) node2vec (0.650, 0.622) (d) TSVM (0.539, 0.537)

Figure 5: Classi�cation results on Network2. �e three la-

beled vertices are in black and the misclassi�ed vertices are

in red. Subcaption: Method (Micro-F1, Macro-F1).

4.2 Real-world Data

For the real-world data, we use four popular relational datasets

CoRA, PubMed, IMDb from [21] and Wikipedia from [10].
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Table 1: Classi�cation results on Network1 with the varying number of labeled vertices (#LV) in each class.

Micro-F1 (%) Macro-F1 (%)

#LV 1 2 3 4 5 1 2 3 4 5

wvGN 98.7±0.7 98.9±0.3 99.3±0.5 99.0±0.3 99.2±0.5 98.6±0.7 98.8±0.4 99.2±0.6 98.9±0.3 99.2±0.5
wvGN (full) 98.7±0.5 98.8±0.7 99.3±0.5 99.0±0.6 99.2±0.5 98.6±0.5 98.7±0.7 99.2±0.6 98.9±0.7 99.2±0.6
node2vec 96.9±0.5 94.5±6.0 94.8±5.1 94.5±5.6 94.2±5.4 96.7±0.5 94.3±5.9 94.6±5.1 94.2±5.5 94.0±5.4
Deepwalk 74.6±26.7 75.6±20.7 77.8±18.9 75.9±20.1 79.6±12.0 74.3±26.9 74.5±22.4 77.0±19.9 75.0±21.2 78.7±12.4
SNBC 85.6±15.6 81.2±17.4 71.4±10.7 71.3±10.5 74.9±10.3 84.0±16.6 80.9±17.8 70.9±10.8 70.5±10.6 73.8±10.0
wvRN 77.9±19.2 66.6±18.5 76.3±21.1 86.7±17.7 92.6±7.3 71.5±25.2 55.1±24.0 70.8±25.7 84.3±20.4 91.7±8.2
SCRN 77.3±22.4 74.2±21.8 81.2±17.2 86.3±13.6 90.2±10.6 66.6±32.3 61.0±31.8 73.5±25.6 80.6±21.5 87.0±16.2
SocDim 55.2±9.9 52.0±8.5 53.7±5.8 57.2±6.2 60.0±6.3 51.8±10.2 49.7±7.5 52.4±4.6 54.9±5.8 58.4±5.4
HeatKernel 82.4±19.8 68.8±20.0 78.6±21.2 88.2±16.3 90.9±11.9 77.7±25.9 57.9±26.1 73.8±25.8 86.6±18.0 90.2±12.3
LGC 60.4±18.6 55.6±18.3 60.5±21.9 62.1±22.1 62.4±17.0 45.1±22.4 39.5±19.7 47.5±26.4 46.9±27.0 45.1±20.1
TSVM 37.8±0 37.5±0 37.2±0 37.0±0 36.7±0 27.4±0 27.3±0 27.1±0 27.0±0 26.8±0
LapSVM 51.9±9.4 52.9±8.8 56.0±8.5 58.2±14.4 65.1±12.8 41.6±8.9 45.6±9.9 49.7±8.2 52.9±16.7 62.4±12.4

Table 2: Classi�cation results on Network2 with the varying number of labeled vertices (#LV) in each class.

Micro-F1 (%) Macro-F1 (%)

#LV 1 2 3 4 5 1 2 3 4 5

wvGN 66.7±11.4 71.8±11.0 77.3±14.5 89.0±2.7 88.9±2.5 67.7±12.2 73.3±11.6 79.1±15.0 90.9±2.5 90.9±2.1
wvGN (full) 67.4±10.1 79.9±7.6 69.6±15.8 86.3±3.5 84.1±5.8 68.1±10.4 82.3±7.1 71.4±15.1 87.7±4.2 85.3±6.0
node2vec 60.4±9.7 70.5±7.3 61.8±11.5 67.9±10.9 67.9±10.9 58.9±12.3 71.8±8.2 61.2±12.6 67.8±12.3 67.8±12.3
Deepwalk 42.4±7.4 46.5±7.1 42.9±12.6 51.2±5.9 51.2±5.9 40.7±7.2 45.2±6.8 41.7±11.7 48.5±5.8 48.5±5.8
SNBC 35.8±6.7 45.5±12.8 48.7±12.3 56.0±5.0 57.2±4.8 35.3±12.0 43.8±13.1 46.0±13.9 56.7±5.8 57.9±4.9
wvRN 45.0±12.1 56.0±15.7 56.9±11.3 68.1±7.5 68.1±7.5 36.2±13.9 49.4±17.8 53.9±14.9 64.8±11.6 64.8±11.6
SCRN 45.9±14.6 50.3±14.8 57.3±10.3 57.2±4.8 65.2±10.3 36.3±16.4 39.7±18.3 50.1±15.2 57.9±4.9 58.7±17.4
SocDim 31.0±7.9 37.0±7.6 42.9±7.2 44.5±4.7 44.5±4.7 29.1±6.7 35.4±6.5 41.3±6.7 42.1±5.2 42.1±5.2
HeatKernel 48.3±10.1 57.3±16.4 55.3±12.6 65.1±8.0 65.1±8.0 40.2±14.5 52.2±17.7 52.5±14.7 59.6±12.0 59.6±12.0
LGC 31.2±5.1 31.3±4.7 31.5±8.0 35.2±4.8 35.2±4.8 29.6±3.5 29.0±3.6 28.4±6.7 32.1±3.8 32.1±3.8
TSVM 54.2±5.0 64.6±7.5 51.7±4.1 52.0±4.9 52.0±4.9 53.5±5.0 64.7±6.7 51.4±4.1 51.7±4.9 51.7±4.9
LapSVM 37.6±13.2 49.4±10.7 58.3±10.5 63.1±8.5 63.1±8.5 23.4±8.6 39.1±11.2 56.9±12.3 66.0±7.9 66.0±7.9
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(b) Network2

Figure 6: Optimization comparison on the synthetic data.

�e x-axis represents the number of labeled vertices in each

class.

CoRA is a collection of research articles in computer science and

PubMed is a collection of research articles in diabetes. Both CoRA

and PubMed are sparse citation networks. Vertices tend to have low

degree in such networks. By using global neighborhood informa-

tion, we can see from Table 3 and Table 4 that wvGN improves the

classi�cation results when the percent of labeled vertices exceeds

1%. From Table 3, we can see that wvRN and HeatKernel are two

very competitive baselines considering their classi�cation results

and simplicity. When the percent of labeled vertices is 1%, wvRN is

superior to our method wvGN in terms of Micro-F1 score. When

the percent of labeled vertices is increased to 3%, wvGN achieves a

gain of 334.5% (max) over Deepwalk and 6.24% (min) over wvRN

in terms of Macro-F1 score. Table 4 demonstrates that HeatKernel

is be�er than wvGN when the percent of labeled vertices is 1%.

wvGN achieves a gain of 120.6% (max) over wvRN and 2.92% (min)

over HeatKernel in terms of Macro-F1 score when the percent of

labeled vertices is 3%.

Di�ering from CoRA and PubMed, IMDb is produced based on

the vertex similarity. Most of the vertices in the network have

similar degrees. Compared with CoRA and PubMed, IMDb is a

more di�cult network to classify. We can see from Table 5 that

wvGN is superior to its competitors in terms ofMicro-F1 score when

the percent of labeled vertices is greater than 1%. wvGN achieves a

gain of 183.7% (max) over node2vec and 6.37% (min) over SocDim

in terms of Micro-F1 score when the percent of labeled vertices

is 7%. However, it is defeated by SocDim in terms of Micro-F1

score when the percent of labeled vertices is 1%. It is also defeated

by HeatKernel and SNBC in terms of Macro-F1 score. To sum up,

wvGN achieves four out of ten best results; HeatKernel achieves

three; SNBC achieves two; SocDim achieves one.
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Wikipedia is a co-occurrence network of words appearing in

the �rst million bytes of the Wikipedia dump. It is a highly noisy

network with lots of interclass edges. Our method wvGN is be�er

than its competitors in terms of Micro-F1 score when the percent

of labeled vertices exceeds 1%. To be speci�c, wvGN achieves a

gain of 336.5% (max) over wvRN and 6.82% (min) over SNBC when

the percent of labeled vertices is 7%. SNBC outperforms wvGN

when the percent of labeled vertices is 1%, but the gap is very

narrow, only a gain of 0.72%. In terms of Macro-F1 score, node2vec

outperforms wvGN when the percent of labeled vertices is greater

than 1%. To sum up, wvGN achieves �ve out of ten best results;

node2vec achieves four; SNBC achieves one.

5 RELATEDWORK

Semi-supervised Learning. Transductive SVM (TSVM) [12, 27]

achieves the aim of max-margin classi�cation while ensuring that

the unlabeled instances are put backward from the margin as far

as possible. TSVM �rst uses SVM to label the unlabeled instances

and then switches labels to improve the objective function. �is

process is susceptible to local optima and requires a large number

of label switches before converging. Frequent label switches lead

to higher training time compared with SVM. Laplacian Regular-

ized SVM (LapSVM) [1] extends SVM by including the intrinsic

smoothness penalty term fᵀ · L · f in SVM’s objective function,

where L is the Laplacian matrix. Because LapSVM needs to com-

pute the inverse of a dense Gram matrix, its time complexity is

O(n3) which is impractical for learning on large-scale networks.

Local and Global Consistency (LGC) [31] predicts the labels of un-

labeled instances following the prior assumption of consistency,

i.e., nearby instances tend to have the same labels, and instances

on the same structure (cluster or manifold) tend to have the same

labels. During each iteration, each vertex not only receives the

label information from its neighbors, but also retains its initial

label information. �e closed form expression for the vertices is

β (I − αS)−1 Y, where S = D−
1

2AD−
1

2 and Y keeps the initial label

information. �e closed form expression needs to invert the matrix.

For learning on large-scale networks, the inversion operation o�en

consumes a lot of time and resources. In addition, if the assump-

tion of consistency is not met, LGC tends to fail. Compared with

LGC and other label-propagation based semi-supervised learning

methods, our method wvGN makes no such local and global label

consistency assupmtions but directly learns geometic neighbor-

hood information from data, which is then used to infer the labels

of vertices. Linear Neighborhood Propagation (LNP) [28] assumes

that each data point can be linearly reconstructed from its neighbor-

hood and it uses this assumption to construct the graph from data.

For the networked data from which we do not need to construct

the graph, LNP deteriorates to LGC.

Relational Learning. �e Relational Neighbor (RN) [17] classi-

�er is a simple classi�er which only uses the class labels of known

related instances without doing learning. RN works by making

two strong yet o�en reasonable assumptions: 1) some instances’

class labels are known within the same linked structure and 2) in-

stances related to each other are similar and likely belong to the

same class (also called homophily [20]). However, RN may not

perform well if the labeled instances in the network are isolated.

Instead of making a hard labeling during the inference process, the

weighted-vote Relational Neighbor classi�er (wvRN) [17] extends

RN by assigning class labels to instances with some probabilities.

Since the number of the labeled instances in networks is small, both

RN and wvRN need to propagate the known label information to

the related instances by a collective inference procedure. �e above

two relational classi�ers focus on the single-label classi�cation

problem. However, in many real relational networks, each entity

may belong to multiple classes. SocDim [25] �rst extracts latent

social dimensions via the top eigenvectors of the modularity matrix

and then uses them as features for discriminative learning. �e ex-

tracted social dimensions describe each instance’s hidden relations

in the network, which is specially useful when the network has

multiple diverse relations inside. Since the extracted latent social

dimensions by SocDim are dense which is not scalable for large-

scale networks, EdgeCluster [26] partitions the edges into disjoint

sets such that each set represents one latent social dimension. To

achieve this, a variant of k-means is proposed to handle clustering

of many edges. �en a linear SVM is adopted to classify those

extracted social dimensions. SCRN [29] is a method designed for

the multi-label networks. It starts by constructing a social feature

space which is an edge-centric representation of social dimensions

to capture the vertex’s potential a�liations. To describe each ver-

tex’s intrinsic correlation to each class, SCRN assigns each vertex a

class-propagation probability. Finally, it assigns the label to a vertex

considering its neighbors’ class labels, the similarity to its neigh-

bors and its class-propagation probability. ghostEdge [8] works by

adding ghost edges to a network to enable the �ow of information

from labeled vertices to unlabeled vertices. It combines the aspects

of statistical relational learning and semi-supervised learning in

one framework. Within-Network Classi�cation (WNC) [11] pro-

poses structural-aware vertex features to deal with the situation

where the theory of homophily does not hold. WNC only considers

the pa�erns within a given radius threshold, which is incapable of

capturing long distance relationships in networks.

RandomWalk Based Learning in Networks. Deepwalk [22]

uses local information obtained from truncated random walks to

learn latent representations of vertices in a network. It models a

stream of short random walks on networks as natural language

sentences, which is reasonable because both the degree distribu-

tion of a connected network and the distribution of words in the

natural language follow power law distributions. node2vec [10] is

a semi-supervised method for scalable feature learning in networks.

It learns a mapping of vertices to a low-dimensional feature space,

which maximizes the likelihood of preserving network neighbor-

hoods of vertices. To e�ciently explore diverse neighborhood, a

biased random walk procedure is proposed, which compromises

breadth-�rst sampling (BFS) and depth-�rst sampling (DFS). SNBC

[21] is a novel structural neighborhood-based learning method

based on the lazy random walk. �e classi�cation of a vertex is

decided based on how it is labeled in the respective k-th level

neighborhood. �e classi�cation results are a�ected seriously by

the form of the regularization on w. Our method wvGN exploits

random walks to explore geometirc one- tom-hop neighborhood

information of a vertex. And the label of the vertex is determined

by the accumulated geometric one- tom-hop neighborhood infor-

mation. wvGN uses a proposed gradient and coordinate descent
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Table 3: Classi�cation results on CoRA (#vertices: 24,519, #edges: 92,207, #classes: 10) with the varying percent of labeled

vertices (%LV). N/A means the results are not available because the algorithm is not �nished in one week.

Micro-F1 (%) Macro-F1 (%)

%LV 1% 3% 5% 7% 9% 1% 3% 5% 7% 9%

wvGN 62.8±2.8 71.6±0.9 74.2±0.6 75.4±0.5 75.8±0.4 52.8±2.0 63.0±1.0 66.1±1.0 67.7±0.6 68.3±0.8
node2vec 49.7±15.4 50.3±7.3 50.4±7.7 54.2±7.5 54.8±8.0 42.2±10.0 43.3±6.5 46.4±5.9 49.2±5.3 50.7±7.0
Deepwalk 23.2±1.6 16.5±1.9 18.8±1.4 24.1±0.2 26.7±0.9 15.0±0.5 14.5±1.2 16.9±1.0 20.0±0.1 21.6±0.7
SNBC 50.1±2.6 63.0±1.1 66.5±0.9 68.0±0.9 68.2±0.9 27.2±2.4 49.2±2.1 54.4±0.1 57.3±1.5 57.8±1.0
wvRN 65.2±1.4 70.0±0.7 72.1±0.5 73.2±0.6 74.3±0.3 52.5±2.2 59.3±1.0 61.9±0.8 63.7±0.6 64.9±0.6
SCRN 64.3±1.9 70.3±0.7 72.6±0.4 73.6±0.4 74.6±0.3 50.8±3.0 59.2±0.9 62.2±0.7 63.9±0.5 65.2±0.5
SocDim 49.3±0.9 55.6±0.5 59.6±0.6 62.5±0.8 63.6±0.4 27.8±1.3 44.8±0.8 49.9±0.9 53.4±1.2 54.8±0.8
HeatKernel 64.3±2.0 69.6±0.7 72.0±0.5 73.1±0.6 74.2±0.2 51.7±3.1 59.1±1.0 62.0±0.9 63.7±0.6 64.9±0.4
LGC 47.4±2.6 48.7±2.5 48.6±1.8 48.7±2.0 48.5±1.7 23.1±0.3 24.5±2.9 23.1±2.7 23.3±1.6 22.3±2.3
TSVM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

LapSVM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 4: Classi�cation results on PubMed (#vertices: 19,717, #edges: 44,324, #classes: 3) with the varying percent of labeled

vertices (%LV).

Micro-F1 (%) Macro-F1 (%)

%LV 1% 3% 5% 7% 9% 1% 3% 5% 7% 9%

wvGN 63.0±5.7 75.8±1.2 78.4±0.8 79.0±0.6 79.8±0.5 59.5±6.4 73.9±1.1 76.7±1.0 77.3±0.8 78.2±0.5
node2vec 64.0±4.0 63.2±6.1 64.5±5.5 65.6±5.7 61.1±6.2 61.8±4.5 69.5±8.1 61.6±6.8 62.7±6.8 57.4±7.4
Deepwalk 33.2±1.4 35.0±1.0 35.2±0.8 35.5±0.8 36.1±0.9 32.7±1.2 34.5±0.9 34.7±0.9 35.0±0.6 35.7±0.9
SNBC 52.1±7.2 71.3±1.8 72.3±0.6 78.4±0.6 79.5±0.5 44.2±10.0 68.0±1.5 73.7±1.0 76.3±1.0 77.7±0.6
wvRN 35.8±0.8 35.9±0.5 35.9±0.4 35.9±0.3 36.0±0.3 33.2±0.3 33.5±0.3 33.3±0.4 33.4±0.3 33.3±0.2
SCRN 36.4±0.9 36.2±0.3 36.3±0.5 36.2±0.3 36.2±0.3 33.1±0.3 33.6±0.2 33.4±0.4 33.4±0.4 33.3±0.3
SocDim 42.6±1.6 47.6±1.9 51.5±1.2 55.2±2.1 57.3±1.7 37.7±3.2 43.3±4.1 47.7±3.1 53.1±3.3 55.4±2.2
HeatKernel 67.9±2.4 73.3±1.1 76.5±0.6 77.7±0.6 78.8±0.4 65.9±2.4 71.8±1.0 75.0±0.6 76.4±0.7 77.5±0.4
LGC 62.2±10.0 71.5±6.3 75.6±2.3 76.6±1.6 76.6±1.7 56.8±11.9 68.9±0 72.7±3.1 74.1±1.8 74.1±1.8
TSVM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

LapSVM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 5: Classi�cation results on IMDb (#vertices: 19,359, #edges: 362,079, #classes: 21) with the varying percent of labeled

vertices (%LV).

Micro-F1 (%) Macro-F1 (%)

%LV 1% 3% 5% 7% 9% 1% 3% 5% 7% 9%

wvGN 24.5±7.7 40.8±1.9 41.5±0.9 43.4±0.9 44.1±0.8 8.7±1.2 11.6±0.5 12.5±0.5 13.4±0.7 13.6±0.5
node2vec 11.5±2.7 14.7±1.1 14.1±0.5 15.3±1.0 18.0±1.1 8.6±1.9 11.9±0.4 11.7±0.2 12.1±0.3 12.8±0.4
Deepwalk 15.2±1.7 13.3±0.7 15.9±0.2 24.8±1.9 32.8±1.2 11.2±0.6 10.7±0.3 11.1±0.5 11.2±0.5 11.0±0.2
SNBC 20.3±8.3 35.8±2.4 35.3±1.0 34.8±0.7 34.8±0.8 7.6±1.5 12.3±0.7 14.4±0.4 15.6±0.4 16.5±0.3
wvRN 33.3±5.0 36.0±0.5 36.4±0.4 37.0±0.3 37.4±0.3 10.0±0.7 10.4±0.3 10.3±0.2 10.4±0.2 10.3±0.2
SCRN 33.6±6.2 36.7±0.9 37.1±0.3 37.8±0.4 38.0±0.4 9.3±0.9 9.5±0.4 9.5±0.2 10.0±0.3 10.0±0.2
SocDim 37.2±1.8 38.6±1.2 40.3±0.1 40.8±0.4 41.1±0.3 7.6±0.5 8.0±0.5 8.8±0 9.2±0.4 0.095±0.003
HeatKernel 30.8±6.8 35.6±1.2 37.2±0.6 39.3±0.7 41.2±0.8 11.7±1.4 13.9±0.6 14.7±0.5 15.5±0.6 16.4±0.6
LGC 37.1±4.0 39.4±0.1 39.7±0.1 39.9±0.1 39.9±0.1 8.3±0.4 9.0±0.2 9.4±0.2 9.4±0.1 9.5±0.1
TSVM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

LapSVM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

(GCD) method to optimize its objective function. GCD is robust to

the starting point and does not easily get trapped in local optima.

Graph Di�usion Based Learning. �e most related graph dif-

fusion method to our work is the heat kernel di�usion [5]. It is de-

�ned as h = exp(−ρ)
(∑∞

i=0
ρ i
i ! P

i
)
s = exp

(
−ρ(I − P−1)

)
s, where s

stores the initial class label information of the labeled vertices. It

di�uses the class label information of the labeled vertices to the

whole network through the above formula. In the classi�cation

procedure, it �rst compares the amount of information a vertex re-

ceives from di�erent classes. �en it assigns the vertex to the class

which di�uses the most information to the vertex. MultiRankWalk

[15] is based on the personalized pagerank di�ussion and we �nd

it is inferior to the heat kernel di�usion in the experiments.
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Table 6: Classi�cation onWikipedia (#vertices: 4,777, #edges: 184,812, #classes: 40)with the varying percent of labeled vertices

(%LV).

Micro-F1 (%) Macro-F1 (%)

%LV 1% 3% 5% 7% 9% 1% 3% 5% 7% 9%

wvGN 41.6±1.0 45.3±0.6 44.9±1.0 45.4±1.0 45.4±0.7 6.5±0.4 6.8±0.4 6.3±0.4 6.8±0.5 6.6±0.3
node2vec 29.3±5.0 31.2±1.8 31.1±2.4 31.7±2.6 34.3±4.2 6.4±0.4 7.1±0.2 7.6±0.5 8.0±0.6 8.3±0.5
deepwalk 17.7±1.5 14.0±1.2 13.5±1.4 13.8±1.8 15.7±1.8 4.2±0.4 4.1±0.2 4.1±0.3 4.0±0.3 4.0±0.2
SNBC 41.9±0.5 42.5±0.4 42.4±0.6 42.5±0.6 42.6±0.5 4.4±0.2 4.4±0.3 4.4±0.5 4.5±0.3 4.6±0.4
wvRN 1.6±1.1 4.2±2.5 7.8±4.0 10.4±3.5 13.0±6.6 0.7±0.4 1.1±0.6 1.6±0.5 2.0±0.7 2.2±0.6
SCRN 1.7±1.3 4.2±2.1 8.3±4.1 11.8±3.1 15.0±6.2 0.7±0.4 1.1±0.5 1.7±0.5 2.1±0.5 2.4±0.5
SocDim 33.9±1.5 32.4±1.6 32.6±0.8 33.3±0.9 33.5±1.0 5.6±0.2 6.4±0.3 6.5±0.4 6.8±0.5 7.2±0.4
HeatKernel 1.3±1.0 4.3±3.3 7.7±4.3 10.5±3.8 12.8±8.7 0.6±0.4 1.0±0.7 1.5±0.6 1.7±0.6 2.0±0.7
LGC 36.7±6.5 38.9±0.1 39.0±0.1 39.0±0.1 39.1±0.1 3.0±0.3 3.0±0 3.0±0 3.0±0 2.9±0
TSVM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

LapSVM 27.4±13.9 41.9±0.6 42.0±0.6 42.2±0.3 42.2±0.6 2.4±0.7 4.1±0.4 4.2±0.3 4.3±0.3 4.2±0.4

6 CONCLUSION

In this work, we have proposed wvGN to tackle the problem of

intra-network classi�cation when the number of labeled vertices

is limited. wvGN is a semi-supervised learning framework which

exploits both labeled and unlabeled vertices to achieve be�er classi-

�cation. Conventional graph-based semi-supervised and relational

learning methods either make assumptions of local and global label

consistency or do not learn from data, and thus they do not perform

well if the assumption is not met or the starting inferene procedure

has some errors. To conquer these, wvGN learns geometic neigh-

borhood information directly from data. It optimizes an objective

function based on L2-loss SVM. A search strategy based on the

gradient and coordinate descent methods has been developed to

solve the problem of local optima. Empirical studies prove that our

method wvGN is superior to state-of-the-art methods. One chal-

lenge raised in networks is that networks are highly dynamic. �e

out-of-sample extension of wvGN from the current static networks

to dynamic networks will be dealt with in the future work.
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