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ABSTRACT
With explosive growth of Android malware and due to the severity
of its damages to smart phone users, the detection of Android
malware has become increasingly important in cybersecurity.
�e increasing sophistication of Android malware calls for new
defensive techniques that are capable against novel threats and
harder to evade. In this paper, to detect Android malware, instead
of using Application Programming Interface (API) calls only, we
further analyze the di�erent relationships between them and create
higher-level semantics which require more e�orts for a�ackers
to evade the detection. We represent the Android applications
(apps), related APIs, and their rich relationships as a structured
heterogeneous information network (HIN). �en we use a meta-
path based approach to characterize the semantic relatedness of
apps and APIs. We use each meta-path to formulate a similarity
measure over Android apps, and aggregate di�erent similarities
using multi-kernel learning. �en each meta-path is automatically
weighted by the learning algorithm to make predictions. To the
best of our knowledge, this is the �rst work to use structured
HIN for Android malware detection. Comprehensive experiments
on real sample collections from Comodo Cloud Security Center
are conducted to compare various malware detection approaches.
Promising experimental results demonstrate that our developed
system HinDroid outperforms other alternative Android malware
detection techniques.
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1 INTRODUCTION
Smart phones have been widely used in people’s daily life, such as
online banking, automated home control, and entertainment. Due
to the mobility and ever expanding capabilities, the use of smart
phones has experienced an exponential growth rate in recent years.
It is estimated that 77.7% of all devices connected to the Internet
will be smart phones in 2019 [13], leaving PCs falling behind at 4.8%.
Android, as an open source and customizable operating system for
smart phones, is currently dominating the smart phone market
by 82.8% [4]. However, due to its large market share and open
source ecosystem of development, Android a�racts not only the
developers for producing legitimate Android applications (apps),
but also a�ackers to disseminate malware (malicious so�ware)
that deliberately ful�lls the harmful intent to the smart phone
users. Because of the lack of trustworthiness review methods,
developers can upload their Android apps including repackaged
apps, ransomware [5], or trojans to the market easily in even
Google’s o�cial Android market. �e presence of other third-party
Android markets (e.g., Opera Mobile Store, Wandoujia) makes this
problem worse. Many examples of Android malware have already
been released in the market (e.g., Geinimi, DriodKungfu and Lotoor)
[31] which posed serious threats to the smart phone users, such
as stealing user credentials, auto-dialing premium numbers, and
sending SMS messages without user’s concern [9]. According to
Symantec’s Internet Security �reat Report [28], one in every �ve
Android apps (nearly one million total) were actually malware.
To protect legitimate users from the a�acks of Android malware,
currently, the major defense is mobile security products, such
as Norton, Lookout and Comodo Mobile Security, which mainly
use the signature-based method to recognize threats. However,
a�ackers can easily use techniques, such as code obfuscation and
repackaging, to evade the detection. �e increasing sophistication
of Android malware calls for new defensive techniques that are
robust and capable of protecting users against novel threats.

To be more resilient against the Android malware’s evasion
tactics, in this paper, instead of using Application Programming
Interface (API) calls only, we further analyze the relationships
among them, e.g., whether the extracted API calls belong to the
same code block [13], are with the same package name, or use
the same invoke method, etc. Relations between APIs and apps
and di�erent types relations among apps themselves can introduce
higher-level semantics and require more e�orts for a�ackers to
evade the detection. To represent the rich semantics of relationships,
we �rst introduces a structured heterogeneous information network
(HIN) [11, 18] representation to depict apps and APIs. �en we use
meta-path [19] to incorporate higher-level semantics to build up the
semantic relatedness of apps. In this way, a similarity between two

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1507



apps can not only capture whether they are using the same sets of
APIs but also capture whether the APIs have similar usage pa�erns,
such as in the same package. Since there can be multiple meta-
paths to de�ne di�erent similarities and we want to incorporate
all useful meta-paths and discard useless ones, we propose to use
a multi-kernel learning algorithm [23] to automatically learn the
weights of di�erent similarities from data. In short, our developed
system called HinDroid has the following major traits:
• Novel structural feature representation: Instead of using

API calls only, we further analyze the relationships among
them. Based on the extracted features, the Android apps will be
represented by a structural heterogeneous information network
(HIN), and a meta-path based approach will be used to link the
apps. In this way, the detection of a malicious Android app
is an aggregation of di�erent similarities de�ned by di�erent
meta-paths. �is is much more complicated than traditional
approaches and is more di�cult and costly to be evaded.

• Multi-kernel learning for HIN: HIN is a conceptual repre-
sentation of many other kinds of data, e.g., social networks,
scholar networks, knowledge graphs, etc. �e similarities
de�ned by di�erent meta-paths can be used to make decisions in
an aggregated way. In this paper, we propose a multi-kernel
learning to learn from data to determine the importance of
di�erent meta-paths. �is is a very natural way to handle HIN
based similarities but to our best knowledge is a �rst a�empt.

• A practical developed system for real industry application:
We develop a practical system HinDroid for automatic Android
malware detection and provide a comprehensive experimental
study based on the real sample collection from Comodo Cloud
Security Center, which demonstrates the e�ectiveness and
e�ciency of our developed system. HinDroid has already been
incorporated into the scanning tool of Comodo Mobile Security
product. �e system has been deployed and tested based on the
real daily sample collection (over 15,000 Android apps per day)
for around half a year (about 2,700,000 Android apps in total).
�e remainder of this paper is organized as follows. Section 2

presents the overview of our system architecture. Section 3
introduces our proposed method in detail. In Section 4, based on
the real sample collection from Comodo Cloud Security Center, we
systematically evaluate the performance of our developed system
HinDroid which integrates our proposed method, in comparison
with other alternative detection methods and some of the popular
Mobile Security products (e.g., Lookout, Norton Mobile Security).
Section 5 presents the details of system development and operation.
Section 6 discusses the related work. Finally, Section 7 concludes.

2 SYSTEM OVERVIEW
In this section, we present our system overview with preliminaries.

2.1 Preliminaries
Unlike traditional desktop based Portable Executable (PE) �les,
Android app is compiled and packaged in a single archive �le
(with an .apk su�x) that includes the app code (.dex �le), resources,
assets, and manifest �le. Dex (i.e., Dalivik executable) is a �le
format which contains compiled code wri�en for Android and
can be interpreted by the DalvikVM [2], but it is unreadable. In

order to analyze the Android apps, we need to convert the dex
�le to a readable format. Smali is an assembler/disassembler
for the dex format [2], which provides us readable code in smali
language. Smali code is the intermediate but interpreted code
between Java and DalvikVM [3]. Listing 1 shows a segment of
the converted smali code from a ransomware “Locker.apk” (MD5:
f836f5c6267f13bf9f6109a6b8d79175) that will lock smart phone user’s
screen (shown in Figure 1(b)) a�er the installation (shown in Figure
1(a)). If the smart phone is infected by this malware, the victim is
demanded to pay a ransom to a�ackers to unlock the smart phone.

Figure 1: Screen shots of the ransomware “Locker.apk”

Listing 1: An example of smali code
1 . method p r o t e c t e d
2 l o a d L i b s ( Landro id / c o n t e n t / Contex t ; ) V
3 . l o c a l s 4
4 : t r y s t a r t 0
5 new− i n s t a n c e v0 , L j a v a / i o / B u f f e r e d R e a d e r ;
6 new− i n s t a n c e v1 , L j a v a / i o / I n p u t S t r e a m R e a d e r ;
7 invoke− s t a t i c {}, L j a v a / l a n g / Runtime;−>getRunt ime ( ) L j a v a / l a n g / Runtime ;
8 move−r e s u l t −o b j e c t v2
9 cons t− s t r i n g v3 , ” g e t p r o p ro . p r o d u c t . cpu . a b i ”
10 invoke−v i r t u a l {v2 , v3} , L j a v a / l a n g / Runtime;−> exec ( L j a v a / l a n g / S t r i n g ; )

L j a v a / l a n g / P r o c e s s ;
11 move−r e s u l t −o b j e c t v2
12 invoke−v i r t u a l {v2} , L j a v a / l a n g / P r o c e s s ;−> g e t I n p u t S t r e a m ( ) L j a v a / i o / I n p u t S t r e a m ;
13 . . . . . .
14 . end method

2.2 System Architecture
In this paper, to analyzed the collected Android apps, we �rst unzip
each Android Application Package (APK) to get the dex �le, and
then generate the smali codes by decompiling the dex �le. By
analyzing the smali codes, a complete Android API call list will be
extracted, and then the relationships among the extracted API calls
will be further analyzed. Figure 2 shows the system overview of
our developed Android malware detection system HinDroid, which
consists of the following �ve major components.
• Unzipper and Decompiler: �e APKTool [1] is used to unzip

the APKs and decompile the dex �les to smali codes.
• Feature Extractor: It automatically extracts the API calls from

the decompiled smali codes. �e API calls extracted from the
smali codes will be converted to a group of global integer
IDs which represents the static execution sequence of the
corresponding API calls. Based on the extracted API calls, the
relationships among them will be further analyzed, i.e., whether
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Figure 2: System architecture of HinDroid

the extracted API calls belong to the same smali code block, are
with the same package name, or use the same invoke method.
(See Section 3.1 for details).
• HIN Constructor: �is component constructs the HIN based

on the features extracted by the previous components. It �rst
builds connections between the apps and the extracted API calls,
and de�nes the types of relationships between these API calls.
�en the adjacency matrices among di�erent entity types are
constructed, and further the commuting matrices of di�erent
meta-paths are enumerated and built. (See Section 3.2 for details.)

• Multi-kernel Learner: Given the commuting matrices from
HIN, we build kernels for the Support Vector Machines (SVMs).
Using standard multi-kernel learning, the weights of di�erent
meta-paths can be optimized. Given the meta-path weights, the
di�erent commuting matrices can be combined to formulate
a more powerful kernel for Android malware detection. (See
Section 3.3 for details.)

• Malware Detector: For each newly collected unknown Android
app, it will be �rst parsed through the unzipper and decompiler
to get the smali codes, then its API calls will be extracted from
the smali codes, and the relationships among these API calls will
be further analyzed. Based on these extracted features and using
the constructed classi�cation model, this app will be labeled
either benign or malicious.

3 PROPOSED METHOD
In this section, we introduce the detailed approaches of how we
represent the Android apps, and how to solve the classi�cation
problem based on the representation.

3.1 Feature Extraction
3.1.1 API Call Extraction. API calls are used by the

Android apps in order to access operating system functionality and
system resources. �erefore, they can be used as representations
of the behaviors of an Android app. In order to extract the
API calls, the Android app is �rst unzipped to provide the
dex �le, and then the dex �le is further decompiled into smali
codes using a well-known reverse engineering tool APKTool
[1]. �e converted smali codes can then be parsed for API
call extraction. For example, in the smali code segment as
shown in Listing 1, the API calls of “Ljava/lang/Runtime; →
getRuntime() Ljava/lang/Runtime” , “Ljava/lang/Runtime;→ exec
(Ljava/lang/String;) Ljava/lang/Process” and “Ljava/lang/Process;→
getInputStream() Ljava/io/InputStream”will be extracted.

3.1.2 Relationship Analysis among the Extracted API Calls.
Although API calls can be used to represent the behaviors

of an Android app, the relations among them can imply
important information for malware detection. For example, as
the aforementioned ransomeware “Locker.apk”, the API calls
of “Ljava/io/FileOutputStream→ write”, “Ljava/io/IOException→
printStackTrace”, and “Ljava/lang /System→ load” together in the
method of “loadLibs” in the converted smali code indicate this
ransomware intends to write malicious code into system kernel.
�ough it may be common to use them individually in benign apps,
they three together in the same method of the converted smali code
rarely appear in benign �les. �us, the relationship that these three
API calls co-exist in the same method in the converted smali code
is an important information for such ransomware detection. To
describe such relationships, we de�ne a code block as the code
between a pair of “.method” and “.endmethod” in the smali �le,
which re�ects the structural information among the API calls. A�er
the extraction of the API calls from the converted smali codes,
to represent such kind of relationship R1, we generate the API-
CodeBlock matrix B where each element Bi j = bi j ∈ {0, 1} denotes
whether this pair of API calls belong to the same code block.

Except for that whether the API calls co-exist in the same code
block, we �nd that API calls which belong to the same package
always show similar intent. For example, the API calls in the
package of “Lorg/apache/h�p/H�pRequest” are related to Internet
connection. �e API calls co-appear in the same package indicate
strong relations among them. To represent such kind of relationship
R2, we generate the API-Package matrix P where each element
Pi j = pi j ∈ {0, 1} denotes if a pair of API calls belong to the
same package. As the example shown in Listing 1, both API
“Ljava/lang/Runtime;→ getRuntime() Ljava/lang/Runtime” and API
“Ljava/lang/Runtime;→ exec (Ljava/lang/String;) Ljava/lang/Process”
are from the same package “Ljava/lang/Runtime”, so the element
representing the relation of these two APIs in the matrix will be
set to 1.

In the smali code, there are �ve di�erent methods to invoke
an API call [2]: (1) invoke-static: invokes a static method with
parameters; (2) invoke-virtual: invokes a virtual method with
parameters; (3) invoke-direct: invokes a method with parameters
without the virtual method resolution; (4) invoke-super: invokes
the virtual method of the immediate parent class; and (5) invoke-
interface: invokes an interface method. Since the same invoke
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method can show the common properties of the API calls (like
the words have the same part of speech), two API calls using the
same invoke method may indicate speci�cally implicit relations
among them. To represent this kind of relationship R3, we generate
the API-InvokeMethod matrix I where each element Ii j = ii j ∈
{0, 1} indicates whether a pair of API calls use the same invoke
method. To further illustrate, as shown in Listing 1, API calls
“Ljava/lang/Runtime;→ exec (Ljava/lang/String;) Ljava/lang/Process”
and “Ljava/lang/Process;→ getInputStream() Ljava/io/InputStream”
both use invoke-virtual method, so the element denoting the relation
of these two APIs in the matrix will be set to 1.

A summary of the description of di�erent relations and their
elements in the relation matrices is shown in Table 1. �e
relationships among the extracted API calls (i.e., whether they
belong to the same code block, are with the same package name, or
use the same invoke method) create a higher-level representation
than a simple list of API calls and require more e�orts for a�ackers
to evade the detection (e.g., it may result in execution collapse if
the a�ackers add several non-associated API calls in the same code
block).

Table 1: Description of each matrix

G Element Description
A ai j If appi contains APIj , then ai j = 1; otherwise,

ai j = 0.
B bi j If APIi and APIj co-exist in the same code block,

then bi j = 1; otherwise, bi j = 0.
P pi j IfAPIi andAPIj are with the same package name,

then pi j = 1; otherwise, pi j = 0.
I ii j If APIi and APIj use the same invoke method,

then ii j = 1; otherwise, ii j = 0.

3.2 HIN Construction
Given the analysis of rich relationship types of API calls for Andriod
apps, it is important to model them in a proper way so that
di�erent relations can be be�er and easier handled. When we
apply machine learning algorithms, it is also be�er to distinguish
di�erent types of relations. �us, in this section, we introduce how
to use heterogeneous information network to represent the Andriod
apps by using the features (including API calls and the relationships
among them) extracted above. We �rst introduce some concepts
related to heterogeneous information networks as follow.

De�nition 3.1. [18] A heterogeneous information network
(HIN) is a graph G = (V, E) with an entity type mapping ϕ: V →
A and a relation type mapping ψ : E → R, whereV denotes the
entity set and E denotes the link set, A denotes the entity type set
and R denotes the relation type set, and the number of entity types
|A| > 1 or the number of relation types |R | > 1. �e network
schema for network G, denoted as TG = (A,R), is a graph with
nodes as entity types from A and edges as relation types from R.

HIN not only provides the network structure of the data
associations, but also provides a high-level abstraction of the

categorical association. In our application for Android malware
detection, we have two entity types, i.e., Android app and API
call. �ere are four types of relations, e.g., app containing API call,
API calls in the same code block, API calls with the same package
name, and API calls with the same invoke type. �e di�erent
types of entities and di�erent relations of APIs motivate us to
use a machine-readable representation to enrich the semantics of
similarities among APIs. Meta-path [19] was used in the concept
of HIN to formulate the semantics of higher-order relationships
among entities. Here we follow this concept and extend it to our
HinDroid framework.

De�nition 3.2. [19] A meta-path P is a path de�ned on the
graph of network schema TG = (A,R), and is denoted in the form
of A1

R1
−−→ A2

R2
−−→ . . .

RL
−−→ AL+1, which de�nes a composite relation

R = R1 · R2 · . . . · RL between types A1 and AL+1, where · denotes
relation composition operator, and L is the length of P.

A typical meta-path for apps is App
contains
−−−−−−→ API

contains−1
−−−−−−−−→ App.

�is means that we want to connect two apps through the path
containing the same API over the HIN. �ere can be multiple
API calls satisfying this meta-path constraint. �us, we use the
following commuting matrix [19] to give a general form to compute
entity similarities using a particular meta-path.

De�nition 3.3. [19] Given a network G = (V, E) and
its network schema TG , a commuting matrix MP for a
meta-path P = (A1 − A2 − . . . − AL+1) is de�ned as MP =

GA1A2GA2A3 . . .GALAL+1 , where GAiAj is the adjacency matrix
between types Ai and Aj . MP (i, j) represents the number of path
instances between entities xi ∈ A1 and yj ∈ AL+1 under the meta-
path P.

For example, the adjacency matrix between apps and API calls
is GApp,API . �en the commuting matrix of apps computed using

the meta-path App
contains
−−−−−−→ API

contains−1
−−−−−−−−→ App is GApp,APIGT

App,API ,
which is AAT . If we denote aTi as the ith row of the matrix A, then
the similarity between app i and j is given by aTi aj , which is simply
the dot product of two feature vectors. Each feature vector can be
regarded as using a bag-of-APIs to represent an app.

More complicated similarities can be de�ned by commuting
matrix based on the meta-path. Here we only consider the
symmetric meta-path since we only focus on apps similarity. For
example, we can de�ne a meta-path App

contains
−−−−−−→API

same code block
−−−−−−−−−−−−→API

contains−1
−−−−−−−−→ App. �is means that we compute the similarity between
two apps not only considering API calls inside, but also considering
the type of API calls inside. In this example, we use the bag-of-APIs
in the same code block as features, and then use the dot product to
compute the similarities.

3.3 Multi-Kernel Learning
Given a network schema with di�erent types of entities and
relations, we can enumerate a lot of meta-paths. However, not
all of the meta-paths are useful for the particular Android malware
detection problem. �us, an intuitive way is to combine di�erent
meta-paths. Since we are using a supervised learning approach to
learn from examples of Android malware, and HIN can naturally
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provide us di�erent similarities with di�erent semantic meanings,
here we propose to use a multi-kernel learning algorithm to
automatically incorporate di�erent similarities and determine the
weight for each meta-path when classifying apps.

Suppose we have K meta-paths Pk ,k = 1, . . . ,K . We
can compute the corresponding commuting matrices MPk ,k =
1, . . . ,K , where MPk is regarded as a kernel. If the commuting
matrix is not a kernel (not positive semi-de�nite, PSD), we simply
use the trick to remove the negative eigenvalues of the commuting
matrix. Following [10, 16, 23], we use the linear combination of
kernels to form a new kernel:

M =
K∑
k

βkMPk , (1)

where the weights βk ≥ 0 and satisfy
∑K
k=1 βk = 1.

To learn the weight of each meta-path, we assume we have a
set of labeled data {xi ,yi }Ni=1, where xi is the app (here we can
regard xi as an ID), and yi ∈ {+1,−1} is the label. �en we use
the p-norm multi-kernel learning framework [23] with following
objective function to learn the parameters:

min
w>0,ξi ≥0,βk ≥0

1
2

∑
k

| |wk | |
2/βk +C

∑
i
ξi +

λ

2

(∑
k

β
p
k

)2/p

,

s .t . yi

(∑
k

wT
k ϕk (xi ) + b

)
≥ 1 − ξi , (2)

where for each kernel we learn a parameter vector wk . For
each data {xi ,yi }, the slack parameter ξi is introduced to allow
mis-classi�cation. ϕk (xi ) is the nonlinear mapping of features in
the Hilbert space that de�nes the kernel, where ϕk (xi )Tϕk (xi ) =
MPk (i, j). �en by applying the representation theorem, we have
wk =

∑
i αiϕk (xi ). αi can be solved using the dual formulation,

and non-zero αi ’s lead to the support vectors.
In multi-kernel learning framework, another set of parameters

besides wk is βk . Here the p-norm
(∑

k β
p
k

)2/p
is used to regularize

the optimization of βk ’s. Empirically we found 2-norm is the
best, and apply it to our problem throughout the paper. A�er
the optimization, the weights βk ’s are optimized to reveal the
importance of the meta-paths serving as kernels. For a new app x
coming,

∑
k wkϕk (x)+b is used to evaluate whether it is malicious

or not.

4 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we show four sets of experimental studies using real
sample collections obtained from Comodo Cloud Security Center to
fully evaluate the performance of our developed Android malware
detection system HinDroid: (1) In the �rst set of experiments, we
evaluate the detection performance of our proposed method; (2) In
the second set of experiments, we evaluate our developed system
HinDroid which integrates our proposed method by comparisons
with other alternative classi�cation methods in Android malware
detection; (3) In the third set of experiments, we compare
the detection performance of HinDroid with other commercial
mobile security products; (5) In the last set of experiments, we
systematically evaluate our developed system HinDroid in real
industry for Android malware detection.

4.1 Experimental Setup
We obtain two datasets from Comodo Cloud Security Center: (1)
�e �rst sample set includes recent collected Android apps (through
January 30, 2017 to February 5, 2017), which contains 1,834 training
Android apps (920 of them are benign apps, while the other 914 apps
are malware including the families of Lotoor, RevMob, Fakegupdt,
and GhostPush, etc), and 500 testing samples (with the analysis
by the anti-malware experts of Comodo Security Lab, 198 of them
are labeled as benign and 302 of them are labeled as malicious). (2)
�e second dataset has larger sample collection containing 30,000
Android apps obtained within one month (Januray 2017), half of
which are benign apps and the half are malicious apps. We evaluate
the Android malware detection performance of di�erent methods
using the measures shown in Table 2.

Table 2: Performance indices of Android malware detection

Indices Description
TP # of apps correctly classi�ed as malicious
TN # of apps correctly classi�ed as benign
FP # of apps mistakenly classi�ed as malicious
FN # of apps mistakenly classi�ed as benign
Precision TP/(TP + FP)

Recall TP/(TP + FN )

ACC (TP +TN )/(TP +TN + FP + FN )

F1 2 ∗ Precision ∗ Recall/(Precision + Recall)

4.2 Detection Performance Evaluation of the
Proposed Method

In this set of experiments, based on the �rst sample set described
in Section 4.1, resting on the 200 extracted API calls and the three
di�erent kinds of relationships generated among them (R1, R2, R3)
(as described in Section 3.1), we construct 16 meta-paths (shown
in Table 3) and compare their detection performances by using
Support Vector Machine (SVM). Table 1 gives the description of
each matrix which forms di�erent meta-paths. We also evaluate
the combined similarity [25, 26] by selecting the meta-paths using
Laplacian score [12]. We rank each meta-path using its Laplacian
score. �e order of the ranking is: PID12 → PID16 → PID6 →
PID3 → PID5 → PID11 → PID9 → PID2 → PID8 → PID7 →
PID13 → PID14 → PID15 → PID10 → PID4 → PID1. We
select the top �ve meta-paths (i.e., PID12, PID16, PID6, PID3, and
PID5) and use their Laplacian scores as the weights to construct
a new kernel (i.e., PID17) fed to the SVM. Similar to multi-kernel
learning, if the similarity matrix is not PSD, we remove the negative
eigenvalues following [26]. We also use these top �ve meta-paths
as the kernels and apply multi-kernel learning (described in Section
3.3) for comparison (i.e., PID19). Another set of comparison is using
all the meta-paths (i.e., PID18 with combined similarity and PID20
by applying multi-kernel learning). �e experimental results are
shown in Table 3.

From Table 3 we can see that di�erent meta-paths indeed show
di�erent detection performance. For example, some meta-paths,
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Table 3: Detection performance evaluation

PID Method F1 β ACC TP FP TN FN

1 AAT 0.9529 0.1069 94.40% 283 19 189 19
2 ABAT 0.9581 0.0900 95.00% 286 9 189 16
3 APAT 0.9495 0.0858 94.20% 273 0 198 29
4 AIAT 0.9183 0.0623 90.40% 270 16 182 32
5 ABPBTAT 0.9479 0.0670 94.00% 273 1 197 29
6 APBPTAT 0.9502 0.0565 94.20% 277 4 194 25
7 ABIBTAT 0.8683 0.0639 84.60% 254 29 169 48
8 AIBITAT 0.8722 0.0639 85.00% 256 29 169 46
9 APIPTAT 0.8373 0.0445 81.20% 242 34 164 60
10 AIPITAT 0.8761 0.0572 86.60% 237 2 196 65
11 ABPIPT BTAT 0.9184 0.0616 90.80% 259 3 195 43
12 APBIBT PTAT 0.8597 0.0617 84.60% 236 11 187 66
13 ABIPIT BTAT 0.9284 0.0426 91.80% 266 5 193 36
14 AIBPBT ITAT 0.8237 0.0426 82.60% 218 3 195 84
15 AIPBPT ITAT 0.8597 0.0469 81.60% 215 5 193 87
16 APIBIT PTAT 0.8597 0.0458 84.60% 236 11 187 66
17 Combined-kernel (5) 0.9214 —— 91.20% 258 0 198 44
18 Combined-kernel (16) 0.9740 —— 96.80% 300 14 184 2
19 Multi-kernel (5) 0.9834 —— 98.00% 297 5 193 5
20 Multi-kernel (16) 0.9884 —— 98.60% 299 4 194 3

e.g., AAT , ABAT , and APBPTAT , perform well on the test set.
Some other meta-paths do not perform well on their own, such as
AIBPBT ITAT , which may be because the semantics of the meta-
path does not re�ect the problem of Android malware detection
well. However, when we combine these meta-paths to others, they
still help to improve the classi�cation results.

Laplacian score indeed helps us select some important meta-
paths. For example, among PID12, PID16, PID6, PID3, and PID5,
the meta-paths for PID6, PID3, and PID5 are very good. However,
the weights used for combining the meta-paths are the Laplacian
scores which may not be the best to re�ect classi�cation property.
From the result we can see that “Combined-kernel (5)” for test set
is with 91.20% detection accuracy and “Combined-kernel (16)” is
96.80%. �is shows that by combining di�erent meta-paths using
Laplacian score, it can also improve the performance.

Finally, the method using multi-kernel learning successfully
outperforms the single meta-paths and the unsupervised meta-
path selection algorithm, i.e., Laplacian score. From the results
we can see that, both “Multi-kernel (5)” over the �ve selected
ones by Laplacian score and “Multi-kernel (16)” performed very
well. To demonstrate the e�ectiveness of multi-kernel learning,
we further show the correlation between the learned parameter
βk weighting each meta-path in multi-kernel learning algorithm,
shown in Eq. (1), and the actual performance of each meta-path in
Table 3 and Figure 3. We can see that βk ’s can successfully �lter out
the meta-paths that do not perform well on the malware prediction
problem while maintaining the “good” meta-paths for �nal decision
of malware detection.

Figure 3: βk and F1
correlation.

Figure 4: Parameter
sensitivity evaluation.

Remark: In Figure 3, βk is the parameter learned by multi-kernel learning, shown in
Eq. (1). F1 is the actual performance of SVM using each meta-path as kernel.

Since HIN construction in our framework can be fully automated,
the only parameter we need to tune is in multi-kernel learning.
In this experiment, based on �ve-fold cross validation, we show
the results using di�erent values of the penalty parameter C
ranging from 1 to 105. Figure 4 shows the stability of HinDroid
with di�erent parameters. From the �gure, we can see that in
a wide range of numbers, our algorithm is stable and not very
sensitive to the penalty parameter. �is indicates that for practical
use, we can simply tune a parameter using some training data
based on cross-validation, and apply that parameter to the test
set without concerning the change of the parameter a�ecting the
online performance.
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4.3 Comparisons of HinDroid and other
Alternative Detection Methods

In this set of experiments, based on the �rst sample set described
in Section 4.1, we compare HinDroid (i.e., the system integrating
multi-kernel learning based on all the constructed 16 meta-paths)
with four other typical classi�cation methods, i.e., Arti�cial Neural
Network (ANN), Naive Bayes (NB), Decision Tree (DT), and Support
Vector Machine (SVM) based on the extracted API calls as well as
feature engineering based on the discussion in Section 3.1. For
ANN, we use 3 hidden layers (500 neurons in each hidden layer)
and train the network using back propagation. �e learning rate is
set to 0.3 and the momentum is set as 0.5. For SVM, we use LibSVM
in our experiment and the penalty is empirically set to be 1,000.

�e experiment results are shown in Table 4. From the results we
can see that feature engineering helps the performance of machine
learning, since the rich semantics encoded in di�erent types of
relations can bring more information. However, the use of this
information for traditional machine learning algorithms is simply
�at features, i.e., concatenation of di�erent features altogether.
From Table 4, we can see that HinDroid further outperforms
these alternative classi�cation methods with feature engineering
in Android malware detection. In Table 4, we also show detailed
information of true-positive and false-positive numbers for di�erent
algorithms. It’s shown that ourHinDroid algorithm can signi�cantly
reduce the numbers. To check whether the overall improvement
is signi�cant, we also run 30 random trials of training and testing
examples to compare HinDroid and SVM with feature engineering,
and the probability associated with a paired t-Test with a two-
tailed distribution is 1.62 × 10−13. �is shows that HinDroid is
signi�cantly be�er than the best baseline method we compared.
�e reason behind this is that, in HinDroid we use more expressive
representation for the data, and build the connection between
the higher-level semantics of the data and the �nal results. �is
again demonstrates that using HinDroid can reduce the work of
feature engineering, and signi�cantly improve the Android malware
detection performance.

4.4 Comparisons of HinDroid and other
Commercial Mobile Security Products

In this set of experiments, to evaluate the detection performance
of HinDroid, based on the �rst sample set described in Section 4.1,
we also compare it with some other popular commercial mobile
security products (e.g., Clean Master (CM), Lookout and Norton
Mobile Security). For the comparisons, we use all the latest versions
of the mobile security products (i.e., Clean Master (CM): 2.08,
Lookout: 10.9-7f33b3e, and Norton: 3.17.0.3205).

Table 5 shows di�erent detection results from HinDroid and
other mobile security products. From Table 5, we can see that
HinDroid outperforms others in the detection of the most recent
collected Android malware from di�erent families (e.g., Lotoor,
RevMob, and GhostPush, etc.). �e success of HinDroid may lie in
its novel higher-level semantic feature representations as well as
the multi-kernel learning based on the constructed HIN in feature
engineering. Besides, HinDroid also has high detection e�ciency:
the prediction of an Andriod app is around 3-5 seconds on average,
including the feature extraction.

Table 4: Comparisons between HinDroid and alternative
detection methods. “Original” means all the algorithms use
original app features (i.e., API calls) as input. “Augmented”
means that, we simply put all HIN-related entities and
relations as features for di�erent algorithms to learn.

Original F1 AUC ACC TP FP TN FN

ANN-1 0.9173 0.9023 90.20% 272 19 179 30
NB-1 0.8514 0.8511 83.60% 235 15 183 67
DT-1 0.9202 0.9005 90.40% 277 23 175 25
SVM-1 0.9529 0.9458 94.40% 283 9 189 19

Augmented F1 AUC ACC TP FP TN FN

ANN-2 0.9409 0.9316 93.00% 279 12 186 23
NB-2 0.9025 0.8891 88.60% 264 19 179 38
DT-2 0.9539 0.9397 94.40% 290 16 182 12
SVM-2 0.9590 0.9537 95.20% 281 7 191 17

HinDroid 0.9884 0.9849 98.60% 299 4 194 3

Table 5: Comparisons with other mobile security products

Family Sample # Norton Lookout CM HinDroid

Lotoor 78 75 74 76 78
RevMob 52 46 50 48 52
Malapp 33 29 32 30 33
Fakebank 31 29 30 29 30
Generisk 29 29 29 29 29
GhostPush 19 15 16 18 18
Fakegupdt 16 15 14 14 16
Danpay 21 19 20 20 21
HideIcon 12 11 9 8 12
Idownloader 11 10 9 9 10

Total 302 278 283 281 299

DetectionRate – 92.05% 93.71% 93.05% 99.01%

4.5 Evaluations Based on Large and Real
Sample Collection from Industry

In this experiment, based on a real and larger data collection from
Comodo Cloud Security Center (i.e., 30,000 Android apps obtained
within one month (Januray 2017), half of which are benign apps
and the half are malicious apps), we systematically evaluate the
performance of our developed system HinDroid, including the
detection e�ectiveness and scalability.
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Figure 5 shows the overall and zoomed-in receiver operating
characteristic (ROC) curves for this experiment based on the ten-
fold cross validations. From Figure 5, we can see that HinDroid
achieves an impressive 0.9833 TP rate at the 0.0087 FP rate while
labeling the newly collected Android apps.

Figure 5: Le�: ROC curve of HinDroid, Right: Zoomed-in.
We also further evaluate the training time of HinDroid with

di�erent sizes of the training data sets. Figure 7 shows the scalability
of our proposed method. It is shown that similar to other kernel
methods, the multi-kernel learning is quadratic to the number of
data samples. When dealing with more data, approximation or
parallel algorithms should be developed. However, as shown in
Figure 6, for such Android malware detection problem, the need
of more labels is not as important as the need of more expressive
representations of data. �erefore, for practical use, our approach
is still feasible.

Figure 6: Scalability
evaluation of HinDroid

Figure 7: Comparisons when
training data sizes vary

5 SYSTEM DEPLOYMENT AND OPERATION
By adopting the proposed methods, our developed system HinDroid
has already been incorporated into the scanning tool of Comodo’s
Mobile Security Product. HinDroid has been used to predict
the daily sample collection from Comodo Cloud Security Center
which contains over 15,000 unknown �les per day. Note that
Android malware techniques are constantly evolving and new
malware samples are produced on a daily basis. To account for
the temporal trends of Android malware writing, the training sets
of our developed system are dynamically changing to include newly

collected apps. Our system HinDroid has been deployed and tested
based on the real daily sample collection for around half a year
(about 2,700,000 Android apps in total have either been trained or
tested).

For the development of the system, Comodo has spent over
$250K, including hardware equipment and human resource
investment. Due to the high detection e�ciency and e�ectiveness,
the developed system HinDroid can greatly save human labors and
reduce the sta� cost: over 50 anti-malware analysts at Comodo
Cloud Security Center are utilizing the system on the daily basis.
In practice, an anti-malware analyst has to spend at least 8 hours
to manually analyze 40 Android apps for malware detection. Using
the developed system HinDroid, the analysis of about 15,000 �le
samples can be performed within minutes with multiple servers.
�is would bene�t over 10 million smart phone users of Comodo’s
Mobile Security product.

6 RELATEDWORK
In recent years, there have been research studies on developing
intelligent Android malware detection systems using machine
learning and data mining techniques [6–8, 29, 30]. DroidDolphin
[30] used a dynamic analysis framework including DroidBox and
APE to record thirteen activity features from the collected Android
apps, and then applied Support Vector Machine (SVM) to build a
malware prediction model. Crowdroid [6] also performed dynamic
analysis for Android malware detection which extracted API system
calls as the feature set for k-means clustering. CopperDroid
[22], an automatic Virtual Machine Introspection (VMI) based
dynamic analysis system, extracted operating system interactions
(e.g., �le and process creation), as well as intra- and inter-process
communications (e.g., SMS reception) as the features to represent
the behaviors of the Android apps. �ough dynamic extraction
is more resilient to low level obfuscation, it is computationally
expensive to perform and requires simulation of user interactions.
On the contrast, static analysis focuses on analyzing the internal
components of an app without executing it. �is makes it
much cheaper to perform than dynamic analysis. DroidMat [29]
performed static analysis on Android apps to extract API calls,
permissions and intent messages as the input features for k-means
clustering and �nally k-NN classi�cation. DroidMiner [32] also
extracted API calls, but then transformed them into modalities for
associative classi�er. Peiravian and Zhu [15] analyzed Android apps
creating a feature set consisting of API calls and permission requests
that they then fed to SVM, Decision Tree, and ensemble classi�ers.
Due to its high e�ciency in feature extraction, in this paper, we
choose to use static analysis for feature representation of Android
apps. We �rst extract API calls from the smali �les. Di�erent
from the existing works [15, 29, 32], we then further analyze the
relationships between them (i.e., whether the extracted API calls
belong to the same smali code block, are with the same package
names, or use the same invoke method). Based on these extracted
features, the Android apps will be represented by a structured
heterogeneous information network (HIN), and a meta-path based
approach will be used to link the apps.

Heterogeneous information network has been proposed for
several years. HIN is a conceptual representation of graph/network
with di�erent types of entities and relations [11, 18]. It has been

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1514



applied to scienti�c publication network analysis [17, 19, 20, 35],
public general social media analysis [14, 33, 34], and document
analysis based on knowledge graph [24–27]. Di�erent from
traditional graph similarities, such as shortest path, the similarity
de�ned on HIN, i.e., PathSim [19], is more likely a natural extension
to dot product. Di�erent from the simple dot product, the similarity
de�ned over HIN considers the semantics of the network meta-
data. �us, the similarity can be related to certain topics or
relationships. Originally, PathSim [19] is developed for ranking
similar researchers in scienti�c publication data. Only one meta-
path is used for each query. �en PathSim is extended by �nding
important paths for entity clustering by using some user provided
seed entities in each entity type [20, 21]. In our application,
the problem of Android malware detection is considered as a
task of classi�cation, thus we care more about the classi�cation
boundary instead of cluster centers to improve the generalization
property. Another extension is to develop a similarity based on
multiple meta-paths using an unsupervised meta-path weighting
mechanism [25, 26]. �is approach uses unsupervised feature
selection algorithm to rank the meta-paths �rst, and then combines
di�erent meta-paths based on the selection criterion. Since it
is a supervised learning task in our case, a be�er idea is to
jointly optimize both the classi�cation boundary and the meta-path
weights based on the provided labels (either malicious or benign).

7 CONCLUSION
To combat the Android malware threats, in this paper, instead
of using API calls only for feature representation, we further
analyze the relationships among them, which create higher-
level semantics and require more e�orts for a�ackers to evade
the detection. Based on the extracted features, we present a
novel Android malware detection framework, HinDroid, which
introduces a structured heterogeneous information network (HIN)
representation of Android apps, and a meta-path based approach
to link the apps. We use each meta-path to formulate a similarity
measure over Android apps, and aggregate di�erent similarities
using multi-kernel learning. �en each meta-path is automatically
weighted by the learning algorithm. To the best of our knowledge,
this is the �rst work to use HIN representation for Android malware
detection. A comprehensive experimental study on the real sample
collections from Comodo Cloud Security Center is performed
to compare various malware detection approaches. Promising
experimental results demonstrate that HinDroid outperforms other
alternative Android malware detection techniques as well as
popular mobile security products. �e system has already been
incorporated into the scanning tool of Comodo Mobile Security
product.
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