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ABSTRACT
The application of machine learning for the detection of malicious
network tra�c has been well researched over the past several
decades; it is particularly appealing when the tra�c is encrypted
because traditional pattern-matching approaches cannot be used.
Unfortunately, the promise of machine learning has been slow to
materialize in the network security domain. In this paper, we
highlight two primary reasons why this is the case: inaccurate
ground truth and a highly non-stationary data distribution. To
demonstrate and understand the e�ect that these pitfalls have on
popular machine learning algorithms, we design and carry out
experiments that show how six common algorithms perform when
confronted with real network data.

With our experimental results, we identify the situations in
which certain classes of algorithms underperform on the task of
encrypted malware tra�c classi�cation. We o�er concrete
recommendations for practitioners given the real-world
constraints outlined. From an algorithmic perspective, we �nd that
the random forest ensemble method outperformed competing
methods. More importantly, feature engineering was decisive; we
found that iterating on the initial feature set, and including
features suggested by domain experts, had a much greater impact
on the performance of the classi�cation system. For example,
linear regression using the more expressive feature set easily
outperformed the random forest method using a standard network
tra�c representation on all criteria considered. Our analysis is
based on millions of TLS encrypted sessions collected over 12
months from a commercial malware sandbox and two
geographically distinct, large enterprise networks.
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1 INTRODUCTION
Finding threats by passively monitoring network tra�c has many
advantages in terms of ease of deployment, and has been studied in
industry as well as the academic literature [32, 35]. In addition to the
passive monitoring requirement, accurately identifying malicious
network tra�c on an individual session-based level is necessary
because it allows network devices, such as routers and switches,
to e�ciently enforce network policies. To further complicate a
potential solution, the percentage of network tra�c that makes
use of encryption has been rapidly increasing, and, as expected,
malware authors have also taken advantage of this trend to evade
signature-based detection. Using a man-in-the-middle to decrypt
the tra�c and then using traditional technologies to detect threats
is not ideal due to privacy concerns, and it is not always possible
due to both legal and technical reasons.

Given the above set of constraints, machine learning on the
encrypted network session’s metadata is a natural solution. While
not applied directly to detecting threats in encrypted tra�c, this
basic formula of machine learning and network metadata has been
well-researched [6, 24, 31]. Unfortunately, these solutions have
been slow to materialize as viable methods for real-world threat
detection, and some critics have rightfully called into question the
applicability of machine learning for this problem domain [25, 37].

Suitable false positive rates, while still maintaining high true
positive rates on novel threats, has been di�cult to achieve. In this
paper, we highlight two primary reasons why this is the case:
inaccurate ground truth and non-stationarity in network data. The
most straightforward method to acquire labeled data for training is
to use a sandbox environment to run malware and collect the
sample’s associated packet capture �les for positively-labeled,
malicious data, and to monitor a network and collect all
connections for negatively-labeled, benign data. For the benign
case, even after �ltering the dataset using an IP blacklist [13], there
will typically be a non-negligible percentage of network tra�c that
would be considered suspicious. For the malicious case, malware
samples often perform connectivity checks, or other inherently
benign activities. It is nearly impossible to identify all of these
cases, and this must be taken into account when using supervised
learning.

The second factor that a�ects classi�cation accuracy is the
non-stationary nature of network data. On a user level, the
popularity of websites and services frequently change. For
instance, transitioning your cloud hosted storage from box.com to
google.com/drive/ will have an impact on the encrypted tra�c
patterns observed. On a network and protocol level, change-points
can be introduced when new protocols such as TLS 1.3 [34] or
HTTP/2 [3] are released. These revisions can signi�cantly a�ect
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Figure 1: Graphical representation of a simpli�ed TLS
handshake and application data protocols. The feature
sets used in this paper are taken from the unencrypted
ClientHello message. Red text represents unencrypted
messages, and blue text represents encrypted messages.

the structure of the handshake and application layer messages,
impacting the data features used for classi�cation.

We have designed and performed experiments that test how
six common algorithms perform when confronted with inaccurate
ground truth and an evolving data stream in the network security
domain. We have found that some algorithms are more susceptible
to the challenges that encrypted network tra�c classi�cation poses.
For instance, we show that logistic regression’s performance is not
stable over time, and a standard support vector machine performs
poorly in the presence of network tra�c with corrupted labels.

In addition to examining several algorithms, we provide a
comparison between a standard feature set used for this problem
versus a custom feature set, which we developed with the help of
domain experts. Iterating on the available features is often
overlooked, but typically provides the most signi�cant increase in
performance [19]. Further con�rming this line of thinking, we
found that modifying the data collection process to generate the
expert-guided, more expressive feature set signi�cantly impacted
the performance of all classi�ers that were tested. For example,
linear regression using the more expressive feature set easily
outperformed the random forest method using a standard network
connection representation [39] on all criteria that we considered.
In general, pursuing a deeper understanding of the data and
iterating on the data generation process proved to be extremely
valuable.

It is also interesting to note that the additional data features can
ease some of the burden with respect to accurate ground truth
labeling. Malware typically performs connectivity checks by
visiting a standard website, e.g., https://www.google.com. Using
standard feature representations, this is impossible to di�erentiate
from a benign client going to https://www.google.com. But, if
additional features about the connection are included, such as the
TLS handshake metadata, it becomes possible to distinguish these
two cases because the TLS features provide information about the
originating client.

Finally, given the real-world challenges posed by the network
security domain and the e�cacy we observed in our experiments,
we o�er concrete recommendations for practitioners in terms of
algorithms and data features to correctly and robustly classify
encrypted malware communication. Our analysis is based on
millions of TLS encrypted sessions collected over 12 months from
a commercial malware sandbox and two geographically distinct,
large enterprise networks. We focus on the Transport Layer
Security (TLS) protocol [18] due to its wide adoption.

The remainder of this paper is organized as follows: in Sections
2 and 3, we brie�y review the TLS protocol and the algorithms used
in our experiments. In Section 4 we outline our datasets and the
feature representations that we extract from TLS encrypted tra�c.
Section 6 presents our results. Section 7 highlights related work,
Section 8 reviews the reproducibility of our experiments, Section
9 considers the ethical aspects of our experiments, and Section 10
concludes.

2 BACKGROUND
TLS [18] is the primary protocol to secure many plain-text
application protocols, e.g., HTTPS is the plain-text HTTP protocol
over TLS. Figure 1 provides a graphical representation of a simple
TLS session. The client initially sends a ClientHello message that
provides the server with, among other �elds, a list of cipher suites
and a set of TLS extensions that the client supports. The cipher
suite list is ordered by preference of the client, and each cipher
suite de�nes a set of cryptographic algorithms needed for TLS to
operate. The set of extensions provides additional information to
the server that facilitates extended functionality, e.g., the Server
Name Indication extension indicates the hostname of the server
that the client is trying to connect to, which is important for
virtual hosting. As explained in Section 4, all of the TLS data
features used in this paper are taken from the unencrypted
ClientHello message.

After the ClientHello, the server sends a ServerHello
message that contains the selected cipher suite, selected from the
client’s o�er list, which de�nes the set of cryptographic algorithms
that will be used to secure the exchanged application data. The
ServerHello message also contains a list of extensions that the
server supports, where this list is a subset of what the client
supports. At this time, the server also sends a Certificate
message containing the server’s certi�cate chain, which can be
used to authenticate the server.

The client then sends a ClientKeyExchange message that
establishes the premaster secret of the TLS session. Then the client
and server exchange ChangeCipherSpec messages indicating that
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future messages will be encrypted with the negotiated
cryptographic parameters. Finally, the client and server begin to
exchange application data. In Figure 1, red text represents
unencrypted messages, and blue text represents encrypted
messages. The current TLS 1.2 handshake protocol provides a lot
of interesting, unencrypted information. To enhance privacy, TLS
1.3 will be encrypting more of the handshake, e.g., the
Certificate message will be encrypted, but the data features
used in this paper will still be available. Many important details
were omitted for the sake of brevity, but the associated RFC’s
provide the full speci�cation [18, 34].

Because TLS encrypts many of the application-speci�c features,
therefore making traditional deep packet inspection infeasible,
many researchers have utilized side-channel information to make
useful inferences on the TLS tra�c [38]. These data features are
typically constructed from the individual packet lengths and
packet inter-arrival times of the encrypted session. Commonly
used features include the mean of the packet lengths, n-gram or
Markov chain based features derived from the sequence of packet
lengths, or similarly constructed features for the timing
information.

3 ALGORITHMS
We compared six common algorithms: linear regression,
l1/l2-logistic regression, decision tree, random forest ensemble,
support vector machine, and multi-layer perceptron. Our aim was
to cover broad categories of di�erent learning and optimization
algorithms, not to create an individual hyper-optimized algorithm.
For this reason, when tuning hyperparameters we simply used grid
search and cross-validation over a set of standard values. We used
implementations from Scikit-learn [33] for all algorithms except
for the multi-layer perceptron, which used Keras [12]. And again,
our focus in this paper is on supervised learning techniques [37].

3.1 Linear Regression
Linear regression is one of the simplest machine learning models.
It �nds a linear model such that the coe�cient vector, w,
minimizes the residual sum of squares error between data samples
and labels [7]. While not typically used for classi�cation, the
resulting hyperplane can be used to assign binary labels. Linear
regression has the advantages of being e�cient to train/test and
the resulting predictions can be easily explained through the
interactions between the weight vector and the data features.
Some of the disadvantages of linear regression include being
dependent on the scaling of the data features, inability to model
nonlinear functions, and often performing poorly in a
classi�cation setting even when the data is linearly separable. This
model was included as a baseline, naïve method.

3.2 Logistic Regression
Unlike linear regression, logistic regression is designed speci�cally
for classi�cation. Logistic regression returns a proper probability,
which can be interpreted as the probability of a feature vector
belonging to a speci�c class. We used two di�erent versions of
logistic regression: the �rst using l2-regularization and the second
using l1-regularization [22]. Scikit-learn uses liblinear [21] and

a coordinate descent algorithm [23] to train the classi�ers. Similar
to linear regression, the resulting models are easily interpretable
because there is a one-to-one correspondence between the data
features and the parameters of the model. Additionally, the l1-
penalty produces sparse weight vectors, which further increases
the interpretability of the model.

3.3 Decision Tree
It is often the case that the underlying function that is being
modeled is not linear with respect to the input. The remaining
algorithms in the section are all nonlinear. Decision Trees learn
simple rules on the input features to partition the space into
distinct classes [10]; Scikit-learn uses an optimized version of the
CART algorithm. Decision trees are relatively e�cient to learn and
are easy to interpret, i.e., a set of rules can be associated with each
output. Decision trees are robust against feature scaling, but are
not robust against class skew; additionally, decision trees are
susceptible to over�tting [20]. Decision trees can give a
probabilistic outcome by reporting the fraction of data samples
that belong to the same class in the leaf node.

We used grid search and cross-validation to adjust two tunable
hyperparameters: the number of features to consider when looking
for the best split and the maximum depth of the tree. For the number
of features, we considered all features, and the square root and base-
2 logarithm of all features. For the maximum depth, we considered
no maximum, and the square root and base-2 logarithm of the
number of samples.

3.4 Random Forest
A random forest uses an ensemble of decision trees to make
predictions [9]. Each individual decision tree is learned from a
bootstrap sample of the full dataset. In the Scikit-learn
implementation, the output of the ensemble is the average
probability taken over all individual trees. While the bias
components of the individual trees are increased with this method,
the variance of the averaged outputs is signi�cantly reduced,
which often results in superior performance. The random forest
ensemble is less interpretable than a single decision tree, but can
still provide a set of rules for trees that assigned high probability
to an outcome.

Similar to the individual decision tree algorithm, we used grid
search and cross-validation to adjust the number of features per
split and the depth of the trees. We also adjusted the number of
trees in the forest, considering values between 25 and 200 with a
step size of 25. Validation performance typically plateaued between
100-150 trees for the various experiments.

3.5 Support Vector Machine
A kernel-based support vector machine learns a nonlinear function
by using the kernel trick to project samples to a higher dimensional
feature space where the di�erent classes are more likely to be
linearly separable [16]. These models are �exible with little bias
given an appropriate kernel function, and are well suited for
high-dimensional feature spaces. Support vector machine
classi�ers have been shown to be robust and produce optimal
results on a wide range of problems [7]. These models typically
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have very low interpretability, but the kernel function between the
target sample and the support vectors can be used to provide a list
of similar samples in the training dataset.

For the support vector machine, we had the following tunable
hyperparameters: the kernel function, the soft-margin parameter,
and assuming a Gaussian kernel, the width of the kernel. We
examined second and third degree polynomial kernels and a
Gaussian kernel. For the soft-margin parameter and the width of
the Gaussian kernel, we searched between 10−5 to 105 in
increments of an order of magnitude.

3.6 Multi-layer Perceptron
Multi-layer perceptron (MLP) models with two or more hidden
layers have proven to be state-of-the-art for many tasks such as
speech processing and image recognition [27]. These models have
very little bias and can learn highly nonlinear functions. But, these
models also have many parameters that need to be learned, and
there is the potential for over�tting. Multi-layer perceptrons with
one or more hidden layers su�er from a lack of interpretability,
which is often important in the network security domain.

We again used grid search and cross validation to tune the
hyperparameters of the MLP model. For the number of hidden
layers, we searched between 2 and 5 with a step size of 1. For the
number of neurons in each layer, we searched between 32 and 512
in increments of powers of two. Finally, for the dropout
regularization parameter [26], we searched between .1 and .5 in
increments of .05.

4 DATA
4.1 Collection Environments and Tools
We leveraged three environments for our data collection: two
enterprise networks each with 500-1,000 active users and a
malware analysis sandbox. For the enterprise networks, we
passively monitored all outbound internet tra�c in real-time. We
used the HTTP User-Agent to determine that ∼45% of the
machines on these networks run Windows 7 and Windows 10,
∼40% of the machines run OS X 10.x, and the remaining machines
are either mobile devices, or run various �avors of Linux or
Windows XP. Approximately 50% of the endpoints on these
networks were unmanaged.

The malware analysis sandbox allows users to submit suspicious
executables, and each submitted sample is allowed to run for 5
minutes. The full packet capture is collected and stored for each
sample. Due to hardware constraints, the samples are only allowed
to run for 5 minutes in either a Windows XP or Windows 7 (32-bit
or 64-bit) based virtual machine. The user selects the operating
system, with the default being Windows XP. ∼75% of the malware
tra�c we collected used Windows XP, with the remaining samples
using a variant of Windows 7.

These methods of data collection were straightforward, but
could potentially lead to some biases in our experiments, which we
now explicitly state. The two enterprise networks were located on
distinct continents, but were both branches of the same company.
So, while the network tra�c will have many unique geographical
characteristics, there will also be many overlapping sessions due to
similar endpoint con�gurations. Because the malware sandbox

Time period Enterprise Malware
pre-May 620,072 208,368
May 616,823 15,316
June 596,848 8,832
July 619,859 18,836
August 553,164 13,429
September 545,931 21,114
September (Ent2) 735,195 N/A
Total 4,287,892 285,895

Table 1: The number of TLS encrypted sessions that we
observed betweenAugust 2015 to September 2016; allmonth
denotations in the table refer to 2016. Results are broken
down bymonth. For the enterprise case, we began observing
tra�c in April 2016.

restricts sample runtime to 5 minutes, any activity after this initial
window will not be captured. Also, any malware sample that is not
compatible with the selected Windows version or lacks a critical
dependency will not run.

We wrote a libpcap-based open source package, Joy [30], to
process the live tra�c and the packet capture �les. Joy converts
the network data into a JSON format that contains all of the
relevant data features, which made analyzing this data with
standard tools trivial. For all experiments, we only used TLS
sessions that completed the full TLS handshake, and sent
application data. Joy anonymized all internal IP addresses for the
enterprise tra�c, and we did not retain the unprocessed, raw data.

4.2 Datasets
Table 1 provides a summary of the data that we collected, segmented
by month. We began collecting the malicious pcap �les beginning
in August 2015, gathering ∼10-30,000 new TLS sessions each month.
We began monitoring one enterprise network, Ent1, in April 2016.
We began monitoring a second, geographically distinct enterprise
network, Ent2, in September 2016. We �ltered the enterprise tra�c
using a popular blacklist [13], where the blacklist was updated daily.
Despite this, some malicious sessions undoubtedly remained in the
enterprise datasets. We further examine the rami�cations of this
in Section 6. Finally, for each enterprise network, we randomly
sampled the data, without replacement, to create the �nal datasets.

5 DATA FEATURES
We introduce an additional axis in our experiments: the e�ect of a
more expressive feature set developed by domain experts. Variations
of a standard set of network tra�c features combined with machine
learning algorithms have been used in previous work [6, 39]. These
features are typically derived from IPFIX [15] or NetFlow [14],
and can be exported by traditional network devices. The enhanced
features are less e�cient to obtain, but could also be exported by
network devices [29]. All features were normalized to have zero
mean and unit variance. There are 22 and 319 data features in the
standard and enhanced set, respectively.
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(a) Google Search (b) Bestafera

Figure 2: The TLS packet lengths and inter-arrival times for a typical Google search and malicious data ex�ltration from
bestafera. Upward and downward lines represent the sizes of packets being sent from client → server and server → client,
respectively. The x-axis represents time.

5.1 Standard
For the standard set of features, we used features common in the
literature, speci�cally the work presented by Williams et al. [39].
These 22 features included the minimum, mean, maximum, and
standard deviation of:

• client→ server packet lengths
• server→ client packet lengths
• client→ server packet inter-arrival times
• server→ client packet inter-arrival times

The protocol, duration of the network connection, number of client
→ server packets and bytes, and number of server→ client packets
and bytes were also used. Williams et al. [39] provides a complete
list of these features in their Appendix C: Table of Features. While
most of these features are present in standard NetFlow records,
the information about packet sizes is not. We included the features
derived from the packet sizes in our experiments for the sake of
consistency.

5.2 Enhanced
The enhanced feature set extends previous work by incorporating
individual packet lengths and times, which gives a more detailed
view of the behavioral pro�le of the application, and TLS metadata,
which gives information about the library that the application is
using for TLS. To provide the intuition that the domain experts
used to determine which features were interesting in the context of
TLS malware detection, bestafera, a particular malware sample
known for keylogging and data ex�ltration, is presented as we
describe the enhanced features in depth.

5.2.1 Packet Lengths. Figure 2 shows the packet lengths and
inter-arrival for two di�erent TLS sessions: a Google search in
Figure 2a and a bestafera-initiated connection in Figure 2b. The
x-axis represents time, the upward lines represent the size of packets
that are sent from the client to the server, and the downward lines
represent the size of packets that are sent from the server to the
client. The red lines represent unencrypted messages, and the black
lines are the sizes of the encrypted application_data records.

The Google search follows a typical pattern: the client’s initial
request is in a small outbound packet, followed by large response
spanning many MTU-sized packets. The several alternating packets
are due to Google attempting to auto-complete a search while the
user was still typing. Once Google had su�cient con�dence in the
auto-completed result, it sent an updated set of results shown by

another response spanning many MTU-sized packets. The server
that bestafera communicated with began by sending a packet
containing a self-signed certi�cate, which can be seen as the �rst
downward, thin red line in Figure 2b. After the handshake, the
client immediately begins ex�ltrating data to the server. There was
a pause, and then the server sent a regularly schedule command
and control message. Packet lengths and inter-arrival times can’t
provide deep insight about the contents of a session, but they do
facilitate inferences about the behavioral aspects of a session.

For the speci�c features, we record the sizes of the payloads for
the �rst 50 packets of a session. We then represent these sizes as
a �rst-order Markov chain. We assumed a 1,500 byte MTU, and
created 10 states of 150 bytes each, and estimated the transition
probabilities between states with the collected packet sizes.

5.2.2 TLSHandshakeMetadata. The TLS ClientHellomessage
provides two particularly interesting pieces of information that can
be used to distinguish di�erent TLS libraries and applications. The
client o�ers the server a list of suitable cipher suites ordered in the
preference of the client. Each cipher suite de�nes a set of methods,
such as the encryption algorithm and pseudorandom function, that
will be needed to establish a connection and transmit data using TLS.
The client can also advertise a set of TLS extensions that, among
other things, can provide the server with parameters needed for
the key exchange, e.g., ec_point_formats [8].

The cipher suite o�er vectors can vary in both the number of
unique cipher suites o�ered and the preferred components of each
cipher suite. Similarly, the list of extensions varies based on the
context of the connection. Because most applications typically
have di�erent priorities, these lists can and do contain a great deal
of discriminatory information in practice. As an example, desktop
browsers tend to favor heavier weight, more secure encryption
algorithms, mobile applications favor more e�cient encryption
algorithms, and the default cipher suite o�er vector of clients
bundled with TLS libraries typically o�er a wider range of cipher
suites to help with testing server con�gurations.

Most user-level applications, and by extension a large number
of TLS connections seen in the wild, use popular TLS libraries such
as BoringSSL (Chrome), NSS (Firefox), or SChannel (Internet
Explorer). These applications usually have unique TLS
�ngerprints because the developer will modify the defaults of the
library to optimize their application. To be more explicit, the TLS
�ngerprint for the default OpenSSL 1.0.1r client, s_client, will

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1727



(a) Standard Representation

(b) Enhanced Representation

Figure 3: 10-fold cross validation accuracy, accuracy at a .001% false discovery rate, and the performance over time separated
by enterprise and malware datasets.
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most likely be di�erent than an application that uses the OpenSSL
1.0.1r library to communicate. This is also why bestafera’s TLS
�ngerprint is both interesting and unique: it uses the default
settings of OpenSSL 1.0.1r to create its TLS connections.

In this work, we derive features from the list of o�ered cipher
suites and extensions. Again, these features are especially
interesting because they provide information about the client that
initiated the session, i.e., two otherwise identical sessions can be
di�erentiated based on the client application. We observed 197
unique cipher suites and extensions in our data. We created a
binary vector of length 197, and assigned a 1 to the appropriate
entry if the TLS session supported the relevant cipher suite or
extension.

6 RESULTS
Given the two main issues when performing supervised learning in
the network security domain, non-stationarity in the data and noisy
labels, we designed several experiments to assess the strengths and
weaknesses of six popular algorithms. We also analyzed the e�ects
that the enhanced feature set had on the algorithms.

6.1 Cross-Validated Accuracy
The left-most columns in Figures 3a and 3b show the 10-fold cross
validation accuracy between the pre-May enterprise tra�c and the
malicious tra�c. For the standard representation, a random forest
ensemble and a single decision tree performed the best with a
statistically signi�cant margin determined by a 10-fold paired
t-test at a 5% signi�cance level. When the enhanced features are
used, this discrepancy between classi�ers disappears: all classi�ers,
with the exception of linear regression, have no statistically
signi�cant di�erence with respect to classi�cation accuracy. While
these results may be expected [40], we still consider them to be
signi�cant for the problem domain we consider.

Even moderately sized networks have tens-of-millions of
network connections each day. Due to this scale, and the typical
set of remediation actions that could be taken against a potentially
malicious session, maintaining a low false positive rate is much
more important than total accuracy. Figure 3 also reports the
accuracy at a �xed .001%, or 1-in-100,000, false discovery rate
(FDR). This is the accuracy of the classi�er when it is only allowed
one false positive for every 100,000 true positives. This strict
measure was used as a proxy for results that should be expected in
a real network setting, i.e., the relatively balanced class
composition in the testing datasets is not realistic. The random
forest ensemble was the only classi�er to have a signi�cantly
greater than zero accuracy at a .001% FDR when using the
standard representation. With the enhanced representation, all
algorithms, with the exceptions of linear regression and the
decision tree, performed the same using this metric.

6.2 Longitudinal Study
Threats and normal network behavior evolve over time, and a
classi�er that isn’t continuously updated is at a natural
disadvantage. In the case where updates cannot be deployed
automatically, it is useful to understand how di�erent algorithms
will degrade over time. In this experiment, we trained all classi�ers

Enterprise Malware
Algorithm Standard Enhanced Standard Enhanced
LinReg 99.92% 99.28% 0.00% 58.65%
l2-LogReg 93.35% 98.36% 16.86% 76.13%
l1-LogReg 92.75% 98.97% 19.71% 75.08%
DecTree 97.55% 97.02% 40.98% 83.33%
RandForest 99.53% 99.99% 33.54% 76.79%
SVM 11.94% 99.78% 77.98% 72.62%
MLP 95.90% 99.54% 20.61% 72.53%

Table 2: Classi�cation accuracy on a validation dataset from
a di�erent network for both the standard and enhanced
feature sets. Malware data from September is included to
demonstrate majority-class classi�ers.

on the pre-May data, and Figure 3 shows the performance of these
trained classi�ers between May and September, 2016. The results
for the enterprise data and the malware sandbox data are reported
separately to identify weaknesses with respect to threat detection
and because of the di�erence in scale of the respective datasets.

Using the standard representation, a random forest ensemble
was clearly the best performing algorithm over time, maintaining
its accuracy on the enterprise dataset. But, although the random
forest still outperformed most algorithms on the malware dataset,
its performance still fell signi�cantly over time. There were also
classi�ers that were signi�cantly biased towards one class, linear
regression towards enterprise and support vector machine towards
malware.

With respect to the enterprise data, the random forest using the
enhanced representation almost exactly maintained its
cross-validation accuracy across all 5 months. The random forest
was also one of the most competitive algorithms when detecting
malicious TLS sessions across all 5 months. It is interesting to note
the robustness of linear regression when using the enhanced
representation, and how is easily outperformed all other methods
that used the standard representation.

6.3 Distinct Network
We also tested how the classi�ers performed when using a
validation dataset collected from an enterprise network in a
geographically distinct region. Tra�c patterns are often di�erent
when considering distinct networks, especially when the networks
are not located in the same country. For example, di�erent
governments suggest and/or mandate di�erent cipher suites,
which would impact the features we use for classi�cation. Along
these lines, it is important to know how well a trained classi�er
will generalize to a new environment.

Table 2 lists the accuracy of the various classi�ers when tested
on data collected at the new network. The classi�ers were trained
on the pre-May data. Similar to the previous results, we found that
the random forest ensemble was extremely competitive, with four
nines of accuracy. And again, the enhanced data features were more
impactful than the choice of algorithm, e.g., linear regression with
the enhanced feature set outperformed all other methods using the
standard data representation.
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(a) Standard Representation (b) Enhanced Representation

Figure 4: The accuracy of the classi�cation algorithms using the enhanced feature representation when a certain percentage
of the labels are chosen at random and �ipped.

6.4 Inaccurate Ground Truth
Noisy labels are a signi�cant problem with real-world data
collection in the network security domain. This is not only a
problem when considering an adversarial setting, but also in the
mundane setting of data preprocessing. A sandbox environment
can generate many inherently benign network sessions, either
from the malicious executable or the underlying operating system.
Conversely, determining that a set of network connections from an
enterprise network is truly benign is often impossible.

In this experiment, we randomly changed the class of a �xed
percentage of samples in the pre-May training dataset, trained the
classi�ers, and then tested the classi�ers on the September data
collected from the original enterprise network and the malware
sandbox. Figure 4 shows the results on both feature representations.
For the enhanced data, the support vector machine was by far the
least robust with respect to label noise. This has been independently
observed, and although not addressed in this paper, solutions have
been proposed [4].

Interestingly, logistic regression with both an l1 and l2 penalty
was helped by the label noise. These methods were biased towards
the malware samples, and introducing the label noise, at a rate of
1.5% to 5.0% signi�cantly increased the classi�cation accuracy on
the enterprise dataset, and had no further degradation past 1.5% on
the malware data. MLP and linear regression were both stable
across all levels of label noise when using the enhanced data.
Although linear regression’s extreme bias led to a low accuracy at
a �xed FDR, the bias made linear regression extremely robust to
label noise. As Figure 4 shows, the random forest ensemble
maintained its accuracy on the enterprise data despite the noisy
labels. It was also signi�cantly better on the malware data than all
other classi�ers with reasonable enterprise performance:
maintaining ∼89% accuracy versus ∼72-74% accuracy. And again,
the enhanced feature representation signi�cantly helped the
classi�ers account for the noisy labels.

6.5 Adversarial Machine Learning
Adversarial machine learning promotes awareness of the types of
attacks that can be perpetrated against a machine learning system,
and attempts to provide solutions in the form of robust data
features and training algorithms [5, 17, 36]. The goal of this
current research is not to evaluate algorithms or data features in
the adversarial setting, but to evaluate these parameters in the
presence of noise that is expected in the network domain. That
said, the previous results are also applicable to the situation in
which an attacker has some in�uence over the training data, e.g.,
by submitting carefully crafted samples to the malware sandbox,
or having an insider presence on an enterprise network where
benign data is collected.

6.6 Computational Complexity
For the sake of completeness, Figure 5 plots the training and testing
time of the classi�cation algorithms in seconds versus the accuracy
at a .001% FDR for the enhanced feature representation. These
results align with what is typically reported for the respective
algorithms. The MLP method [12] was slow to train, but quick to
classify new samples. The random forest ensemble was quick to
train and quick to classify new samples.

7 RELATEDWORK
There has been previous work comparing supervised machine
learning algorithms in the network domain [39]. In that work,
Williams et al. evaluated the performance of naïve Bayes, C4.5,
Bayesian Network, and naïve Bayes Tree algorithms on the
problem of network application identi�cation, i.e., HTTP vs FTP vs
DNS, etc. They put forth the standard set of data features
presented in Section 4. They found that the accuracy of all
algorithms were similar, and the signi�cant di�erentiator was the
computational complexity of the algorithms. We build on this
work by considering the encrypted tra�c patterns of malware, a
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(a) Training (b) Testing

Figure 5: The training and testing time of the classi�cation algorithms using the enhanced feature in seconds versus the
accuracy at a .001% FDR. In 5a and 5b, the error bars represent one standard deviation away from the mean time it took to
train and test the models during the experiments of Section 6.1, respectively.

more extensive set of data features, and examining machine
learning algorithms with respect to real-world problems: evolving
data streams and inaccurate ground truth.

Label noise in the security domain has also been studied [28].
There has been research showing how to modify speci�c learning
algorithms to account for label noise, e.g., adding a correction term
to the kernel matrix of a support vector machine [4]. We add to this
body of work by introducing a new set of results for the problem of
encrypted, malware tra�c classi�cation. Additionally, we provide
experimental results showing that additional domain-speci�c data
features help to alleviate the negative impact of noisy labels.

The enhanced data features used have been studied in the
security domain [1, 2]. However, these data features have not been
studied in terms of the e�ects they have on di�erent machine
learning algorithms. Speci�cally, until this paper, there has been
no experimental evidence showing that the unencrypted TLS
metadata can reduce the e�ect that noisy labels and a
non-stationary network environment have on machine learning
algorithms.

8 REPRODUCIBILITY
Unfortunately, both the malware and enterprise data used in our
experiments are highly con�dential and cannot be publicly shared.
Institution speci�c network data is notoriously di�cult to share.
With respect to the malware data, there do exist free malware
sandboxes that allow packet capture downloads, but these o�erings
typically employ rate-limiting or do not have easy to script API’s,
and were therefore not suitable for our needs.

Those caveats aside, all of the data features used in this paper
were generated by Joy, a network data collection and analysis tool
that we open sourced and actively maintain [30]. Joy can be used
to generate similar data when presented with malware packet

captures �les or is fed live tra�c through a SPAN port at a
monitoring point that sees Internet-bound tra�c. For the machine
learning algorithms, we used standard implementations and
parameter settings from well known and supported open source
projects, Scikit-learn [33] and Keras [12].

9 ETHICAL CONSIDERATIONS
All non-malware network tra�c used in our experiments was
collected and analyzed in accordance with the policies de�ned by
our institution. This included the anonymization of all personally
identi�able information such as internal IP addresses and
usernames located in unencrypted HTTP sessions. Strict access
control policies are maintained to ensure that all individuals
accessing the data have the proper training to handle sensitive
data, and have a valid justi�cation to analyze the data.

It should also be noted that this research made no attempt to
compromise the encryption of the studied TLS sessions. On the
contrary, we are pursuing methods that can make useful, threat-
relevant inferences on the encrypted tra�c without the need to
perform decryption, i.e., man-in-the-middle [11].

10 CONCLUSIONS
The network security domain poses a unique set of challenges,
notably, the scale of the data, demand for very low false positive
rates, evolving data streams, and noisy class labels. In this paper,
we analyzed six common machine learning algorithms, and showed
how they each performed on the problem of detecting malicious,
encrypted network sessions. We speci�cally designed experiments
to illustrate the algorithms’ performance under the assumption
of a typical operating environment, i.e., when the testing data is
generated by a separate, but related, distribution and when the
ground truth labels cannot be determined with 100% accuracy.
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Although we found the random forest ensemble classi�er to be
the most robust for this problem domain, we demonstrated that
the choice of features had a much greater e�ect on performance.
The enhanced feature set was created by augmenting a standard
feature set used in this domain with features identi�ed by a
domain expert and speci�cally tailored for encrypted network
sessions. By not relying solely on features that were convenient to
gather and engaging with domain experts to iterate on how the
data would be best represented, all machine learning algorithms
had signi�cant improvements in performance. Combining diverse
views of the data, such as features pertaining to how the
application is transmitting data with features that are
representative of the application, was the key innovation. As an
example of the magnitude of the improvement, linear regression
using the enhanced feature set easily outperformed the random
forest ensemble using a standard network connection
representation on all criteria considered.
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