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ABSTRACT
Onion sites on the darkweb operate using the Tor Hidden Service
(HS) protocol to shield their locations on the Internet, which (among
other features) enables these sites to host malicious and illegal con-
tent while being resistant to legal action and seizure. Identifying
and monitoring such illicit sites in the darkweb is of high relevance
to the Computer Security and Law Enforcement communities. We
have developed an automated infrastructure that crawls and in-
dexes content from onion sites into a large-scale data repository,
called LIGHTS, with over 100M pages. In this paper we describe
Automated Tool for Onion Labeling (ATOL), a novel scalable anal-
ysis service developed to conduct a thematic assessment of the
content of onion sites in the LIGHTS repository. ATOL has three
core components — (a) a novel keyword discovery mechanism
(ATOLKeyword) which extends analyst-provided keywords for dif-
ferent categories by suggesting new descriptive and discriminative
keywords that are relevant for the categories; (b) a classi�cation
framework (ATOLClassify) that uses the discovered keywords to
map onion site content to a set of categories when su�cient labeled
data is available; (c) a clustering framework (ATOLCluster) that can
leverage information from multiple external heterogeneous knowl-
edge sources, ranging from domain expertise to Bitcoin transaction
data, to categorize onion content in the absence of su�cient super-
vised data. �e paper presents empirical results of ATOL on onion
datasets derived from the LIGHTS repository, and additionally
benchmarks ATOL’s algorithms on the publicly available 20 News-
groups dataset to demonstrate the reproducibility of its results. On
the LIGHTS dataset, ATOLClassify gives a 12% performance gain
over an analyst-provided baseline, while ATOLCluster gives a 7%
improvement over state-of-the-art semi-supervised clustering algo-
rithms. We also discuss how ATOL has been deployed and externally
evaluated, as part of the LIGHTS system.
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1 INTRODUCTION
Tor’s HS protocol [4] allows web services to remain hidden by
obfuscating the IP addresses of the network servers, through multi-
ple relays within Tor’s overlay network, using a network routing
scheme called onion routing. �ese hidden anonymous services use
the .onion special top-level domain (TLD) and are, hence, o�en
referred to as onion sites or simply onions. Some recent examples of
these include drugs and weapons marketplaces (Silk Road, Armory)
carrying out illegal trade, hacker forums (OnionWarez) publish-
ing details of identity the� victims, terrorist forums [3] a�racting
bulk donations, whistleblower sites (WikiLeaks), and fraudulent
�nancial sites (EasyCoin, OnionWallet) running monetary scams.
�ese websites are hosted in an anonymous manner, making it
di�cult for law enforcement to shut them down. With the number
of onion sites growing at an alarming rate (nearly doubled in the
last year [31]), cyber and national security experts are increasingly
investing in data mining tools that automatically identify suspicious
activities on the darkweb [3].

Our ElasticSearch-based LIGHTS darkweb repository grows
daily and currently indexes over 100 million pages from over 43
thousand unique Tor Hidden Services reached since the commence-
ment of this project.1 Onion crawling, content indexing, and meta-
data generation are also fully automated by our LIGHTS acquisition
system, and substantial e�ort has been applied to derive critical
metadata to thematically label the content discovered within each
harvested onion site. �ese labels are critical for navigating content,
facilitating searches and content �ltering, and for broadly under-
standing darkweb user communities within the ocean of darkweb
pages. One strong motivation for analyzing onion sites and labeling
them thematically is to identify malicious onions, e.g., sites doing
illegal trade in weapons, drugs, etc. — it is important to detect such
sites to be able to track potentially criminal activity. To solve this
problem of detecting crawled onion sites with illicit content, we
�rst focus on reliably characterizing onion categories by relevant
keywords, which we use to annotate onions with sensitive category
labels (e.g., weapons, drugs, hacker) and then try to identify sites
1�is paper analyzes a subset of this data from 23,585 onion sites
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actually containing illicit content. �is need to characterize cate-
gories and assign the labels to onions motivated the development
of the ATOL (Automated Tool for Onion Labeling) framework.

Another important area of application of thematic labels is Bit-
coin transaction analysis on the darkweb. Anonymous digital cur-
rencies like Bitcoins are at the center of the darkweb economy,
being used as the de-facto digital currency throughout thriving
dark markets [37]. It is a popular payment mechanism used by the
hacker community to sell malicious tools, a�ack services, steal user
data, and to extort payment (or ransom) from compromised victims.
Indeed, in the last two years our darkweb crawling team has mined
nearly 1.5 million unique Bitcoin addresses from the LIGHTS repos-
itory. Onion thematic labeling can help us identify the nature of
Bitcoins transactions. For example, if a Bitcoin address occurs more
o�en in drug-related onion pages than weapon-related ones, then
through our statistical analysis tools we label that Bitcoin address
as a more likely indicator of drug-related transactions than weapon-
related transactions. Another use of the Bitcoin transaction data is
as a source of provenance data to help the thematic categorization.
Bitcoin transactions are recorded publicly in block chains, allowing
us to verify valid Bitcoin addresses used to make payments. Dark-
web vendors can create di�erent sites to obfuscate their operations,
but if multiple onions share one or more common valid Bitcoin
destination addresses, then it gives us useful evidence that these
sites should be categorized together to have the same thematic label.

Contributions. We identify below the main challenges and con-
tributions associated with our work:

(1) Automated keyword discovery: ATOL has an automated
keyword discovery algorithm (ATOLKeyword) that uses the
available small-volume training data to automatically dis-
cover new category keywords. �e scale at which ATOL op-
erates and the fact that the size of the repository is growing
everyday requires us to have this automated mechanism
for keyword discovery. ATOLKeyword �nd keywords that
are di�cult for humans to detect, but are relevant nonethe-
less. For example, ATOL discovers “phpcredlocker” for the
Hacker category (refers to a secure credential repository),
“neurogroove” for the Drugs category (refers to a Polish
drug website), and “�ash-ball” for the Weapons category
(refers to a French ball-launching weapon) — these are all
valid and relevant keywords, but could be di�cult for a
human analyst to identify.

(2) Classi�cationwith limited training data: Standard su-
pervised classi�cation frameworks [12, 26–28, 45], pro-
posed in the context of surface web (i.e. for sites indexed
by standard web search engines) are di�cult to implement
in the realm of darkweb mainly due to the lack of ade-
quate training data. In fact, for this kind of problem, it
is practically infeasible to create large volumes of human
annotated data through crowdsourcing (e.g., using Ama-
zon mTurk), as many onions may contain sensitive and
illicit content which are legally prohibited from distribu-
tion. ATOL implements a new supervised categorization
algorithm (ATOLClassify) that uses the keywords discov-
ered by ATOLKeyword to get a novel TFICF-based feature

weighting that gives substantial improvement in classi�er
performance, e.g., it gives a 12% improvement in F1-score
over an analyst-provided baseline on the LIGHTS dataset
(similar gains were also obtained on the 20 newsgroups
dataset).

(3) Clustering with external supervision: Unsupervised
document clustering techniques [6, 15, 29, 44] o�en pro-
vide a good start to problems that su�er from a lack of
labeled training data — a li�le supervision in the form of
a small amount of labeled ground truth [1] or some prior
known constraints [13, 40] can signi�cantly bias the clus-
tering process and drastically improve its performance.
ATOLCluster implements a novel semi-supervised cluster-
ing algorithm that extends existing semi-supervised clus-
tering approaches to be able to incorporate both labels
and constraints, derived from multiple external knowledge
bases, into the algorithm and improve the performance,
e.g., it gives a 7% improvement over state-of-the-art semi-
supervised clustering algorithms on the LIGHTS dataset
(similar gains were also obtained on the 20 newsgroups
dataset). We also show how a variant of ATOLCluster that
bootstraps from unsupervised clustering results (in the ab-
sence of domain knowledge) can give be�er results than
unsupervised clustering alone.

Roadmap. �e rest of this paper is organized as follows. Section 2
provides an overview of OnionCrawler and ATOL. Section 3, 4 and 5
describe ATOLKeyword, ATOLClassify, and ATOLCluster respec-
tively. Section 6 performs a thorough experimental evaluation of
ATOL using data collected from the darkweb, as well as on a public
dataset (20 newsgroups) for reproducibility. Section 7 discusses
some relevant related work, while Section 8 outlines how ATOL is
being deployed in actual systems. Section 9 concludes the paper
and outlines promising areas of future work.

2 SYSTEM AND DATA OVERVIEW
We �rst provide a brief overview of the LIGHTS acquisition in-
frastructure constructed to discover new onion websites, crawl
their content, and integrate them into our index repository. We
developed two tools, HSProbe (Tor Hidden Service Prober) and
OnionCrawler, to check the operational status of onion sites and
crawl active onions.

(1) HSProbe uses Tor’s stem API [39] for accessing onion
sites over the Tor protocol and interpret a broad range of
HS protocol-status messages to determine how to proceed,
as it encounters errors and unresponsive interactions with
target hidden services. HSProbe is equipped with a port
discovery function that can identify the virtual port used
by hidden services that do not use the default TCP/80 port.
Speci�cally, HSProbe is equipped with a con�gurable list
of commonly used virtual ports used by non-botnet hidden
services. Moreover, when Tor error codes suggest that a
hidden server exists but is not responding for the default
port, HSProbe a�empts to connect to these ports in turn
until it successfully establishes a connection to a hidden
service or all the ports are exhausted.
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(2) OnionCrawler is a fully automated crawling infrastruc-
ture to acquire new Tor onion domains (see Figure 1). We
employ the OnionCrawler system continually, twice per
day to address diurnal pa�erns in onion site availability.
Our sources of seed data include various published onion
datasets( [32], [5], [25], [22]), .onion references from a
large collection of recursive DNS resolvers [17], and an
open repository of (non-onion) web crawling data, called
Common Crawl [11]. Using these data sources as starting
points, we developed tools to acquire additional onion ad-
dresses from the onion web. OnionCrawler also employs
a web search engine to �nd web pages whose contents
contain onion addresses. A�er extracting onion addresses
from the content of pages returned by the open web search
engine and from the onion sites, OnionCrawler iteratively
queries the search engine using these onion addresses as
search terms to learn new onion addresses. Finally, the col-
lected data is parsed and indexed into an ElasticSearch [16]
database.

ElasticSearch provides a query API for the indexed data, that we
used to generate some of the analysis describing in the forthcoming
sections. �e data that we use in this paper is a subset of the data
in the LIGHTS repository. Speci�cally, it includes upto 300 pages
of extracted HTTP data from each of the 23,585 onion sites that we
successfully deep-crawled. Due to the complex legal and ethical
considerations involved in crawling the darkweb, our measurement
study and resulting analysis was approved by our Institutional
Review Board (IRB).
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Figure 1: Overviewof the LIGHTS acquisition infrastructure

2.1 ATOL
�e onion network has some distinct characteristics for which we
have developed a custom analysis platform called ATOL. ATOL can

process the crawled onion sites in ElasticSearch and their underly-
ing graph structure to conduct di�erent types of analysis. In this
paper, we consider two instantiations of such analysis — keyword
discovery and categorization. Keyword discovery is used to discover
new keywords to characterize thematic categories — these key-
words can then be used to extract relevant and important terms
from onion sites. A key analysis task in ATOL is categorizing onions
in di�erent ways, e.g., according to their thematic labels, functional
roles (e.g., hosted by seller), content type (e.g., blog). For catego-
rization, we can use either classi�cation or clustering — the former
is more appropriate when we have a known set of categories and a
reasonable-sized labeled training dataset, and the la�er is relevant
when we want to discover new categories and when the labeled
dataset is small in size. We will discuss the details of the classi-
�cation and clustering components of ATOL in Sections 4 and 5,
especially a novel keyword-based classi�cation approach for the-
matic labeling and a novel semi-supervised clustering algorithm.

3 ATOL: KEYWORD DISCOVERY
For each onion category/theme, domain experts (analysts) initially
provided a manually-curated set of keywords, e.g., the “Weapons”
category has keywords like gun, glock, silencer, caliber, etc. �e
goal of ATOL in this case is to automatically discover relevant key-
words using data from multiple sources, e.g., title/content words
from onion text as well as existing manually-tuned keywords. We
do this using a method that we call ATOLKeyword.

Note that such list of keywords can also be automatically ex-
tracted from onions whose content and category label are known,
by doing natural language processing (NLP). We show how both
the approaches — using manually-curated keywords or completely
automated keywords — can be outperformed by the ATOL approach
that combines these two techniques. In ATOL, we start with a seed
list of keywords per category and use a bootstrapping mechanism
to augment the seed list with other relevant keywords for those
categories. Our experiments and analysis in Section 6 shows how
our bootstrapping approach gives the best empirical result. Algo-
rithm 1 shows the TFICF-based keyword-discovery algorithm used
in ATOL for that purpose. ATOL �nds the keywords with the highest
Term Frequency Inverse Class Frequency (TFICF) weights for a
given category, where TFICF is de�ned as the product of TF and
ICF scores, as shown below:

t f ic f (w ,c,C ) = t f (w ,c ) × ic f (w ,C ),where
t f (w ,c ) = f req(w ,c ),and

ic f (w ,C ) = log |C |

|c ∈ C : w ∈ c |

where w is a keyword, c is a category, C is the set of all categories,
and f req(w ,c ) counts the number of times w occurs across all
onions assigned to category c .

Intuitively, for a given keyword and category, TF (Term Fre-
quency) measures the popularity of the keyword in that category,
while ICF (Inverse Class Frequency) estimates the rarity of they
keyword across all categories — so, the product TFICF gives a high
weight to keywords that are common within a category, but not
common in other categories. �is helps to identify keywords that
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Algorithm 1: ATOL: TFICF Weighting for Keyword Discovery

1 function atolKeywords (Kexper t ,Ctrain ,Ltrain ,λ)

Input :Kexper t ← Seed list of keyword vectors (one vector
per category) from domain expert; Ctrain ← content
of onion sites where each onion d is represented as a
n-dimensional bag-of-words vector X ∈ Rn , n being
the vocabulary size; Ltrain ← set of class labels
assigned to the corpus based on rater labelings; λ ←
weight multiplier on title words.

Output :M ←Matrix where each row is a weighted vector of
keywords per category, with weight = TFICF score of
keyword in category.

// Populate category x keyword matrix M

2 M = []
3 for k ∈ Kexper t do
4 if existing keyword k is in category c then
5 M[c,k] += cateдoryCount (k ,c ) // count of

keyword in category

6 end
7 if onion d has labels c1 . . . cm in training data then
8 for category c ∈ {c1 . . . cm } do
9 for wordw ∈ d do

10 M[c,w] += onionCount (w ,d )/m // count
of word in onion, where m is the
number of labels for onion d

11 end
12 for word t ∈ title of d do
13 M[c,t] += λ × titleCount (t ,d )/m // count

of word in onion title, scaled up by
multiplier λ

14 end
15 end
16 end
17 end

// Compute TFICF scores per category, using M

18 for each wordw in col (M ) do
19 ICFw = 0
20 for each category c in row (M ) do
21 if M[c,w] > 0 then
22 ICFw += 1
23 end
24 end
25 if ICFw > 0 then
26 ICFw = log( |C |ICFw ) // |C | = number of

categories

27 end
28 for each category c in row (M ) do
29 M[w ,c] = M[w ,c] × ICFw // compute TF x ICF

30 end
31 end
32 return M

are more unique to a category, and hence be�er representatives of
the category. Note that the TFICF score is a variant of the TFIDF
score that is used extensively in information retrieval [30], where
we have de�ned (and used) the ICF score to compute the popularity
of a word across categories, instead of using the IDF score used in
TFIDF to compute the popularity of a word across documents.

One of the key aspects of the TFICF score is how the TF score is
computed using data from multiple sources — Algorithm 1 outlines
that in the steps that populate the su�cient statistic matrix M ,
which is used to compute the �nal TFICF score. Each row of M
gives us the high-scoring keywords for a particular category, which
can then be used to discover new keywords for that category.

4 ATOL: CLASSIFICATION
We developed a new classi�cation approach in ATOL using which
we performed experiments on thematic categorization of onions.
Using the keyword weights inferred by the TFICF algorithm, ATOL
reweights the training data and uses that to train a classi�er to
predict the category of an onion. Di�erent classi�ers can be used
in this Stage (2) of the ATOL framework — in our experiments we
trained SVM, Naive Bayes, and Logistic Regression classi�ers, using
di�erent kinds of feature weighting schemes (e.g., BOW, TFIDF,
TFICF) to represent the training/test data points.

Algorithm 2 gives an outline of the classi�cation stage of the
ATOL algorithm. We compared how the performance of the thematic
category prediction stage of ATOL changed with di�erent classi�ers,
as well as di�erent keyword weighting schemes, i.e., whether using
TFICF weights gave improvements over the keywords manually
curated by the analysts — details of these experiments are outlined
in Section 6.

5 ATOL: CLUSTERING
In this section, we outline the approach of unsupervised and semi-
supervised clustering used in ATOL. Unsupervised clustering is used
in ATOL in the absence of labeled training data — when we have
small amounts of supervision available in the form of labels or
constraints, ATOL uses semi-supervised clustering. When we have
su�cient labeled training data to train a classi�er, we use the classi-
�cation approaches outlined in Section 4. Note that when we have
su�cient training data, both ATOLClassify and ATOLCluster give
comparable results, as shown in Section 6.5.

5.1 Problem Formulation
We �rst present the di�erent knowledge sources and then the over-
all objective function which we need to optimize.

(1) Onion sites: We represent the content of onions using nor-
malized TFIDF vectors [15, 27]. We denote these vectors
as Xi for i ∈ [1,N ], where N is the number of onions.

(2) Domain Expertise: For each category (cluster), the domain
experts provide a speci�c set of keywords (all with same
weights). We represent these set of words as a vector in the
same feature space as the onion sites and then normalize
them. We call these normalized vectors as manual topics,
denoting them by Mj for j ∈ [1,K], where K is the number
of clusters.
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Algorithm 2: ATOL: Classi�cation into �ematic Labels

1 function atolClassify (M ,Ctrain ,Ctest ,Cunlabeled ,T )

Input :M ←Matrix where each row is a weighted vector of
keywords in a category generated by the
tficfKeywords function; Ctrain ,Ctest ← Corpus of
training and test documents, where each document d
is represented by a n-dimensional bag-of-words
vector X ∈ Rn , n is the vocabulary size and l is the
class label assigned to d ; Cunlabeled ← Corpus of
unlabeled documents, for which ATOL will try to
discover categories; T ← threshold for category
discovery.

Output :ML ←ML classi�er trained using Ctrain ; Ltest ←
Labels assigned by ML for every onion d ∈ Ctest ;
accuracy ← onion classi�cation accuracy in Ctest .

2 Train:
3 Dtrain ← ∅

4 for d ∈ Ctrain do
5 X := Rn bag-of-words vector for d // Get BOW feature

vector for d

6 l := class label for d
7 Dtrain ← Dtrain

⋃
tficfFeature(X ,M ,l ) // Get

TFICF-weighted feature vector for d

8 end
9 Fit a classi�er ML on Dtrain .

10 t�cfFeature:
11 t f ic f f eatures ← ∅

12 for (k ,w ) ∈ M[l , :] do
13 if k ∈ X then
14 t f ic f f eatures[k] = w × X [k] // Scales up

counts of words in X by the corresponding
weight of matching keywords in M, for the
label l

15 end
16 end

17 Evaluate:
18 Ltest ← ∅

19 correct := 0
20 for d ∈ Ctest do
21 X := Rn bag-of-words vector for d
22 l := class label for d
23 l ′ := predict(ML, X ) // predict label for onion

24 Ltest ← Ltest
⋃
l ′

25 if l matches l ′ then
26 correct := correct+1 // correctly classified

27 end
28 end
29 accuracy ← correct

|Ctest |
// compute accuracy

30 return (ML,Ltest ,accuracy)

(3) Seeded Data: Some of the data points Xi are manually
annotated by the domain experts with labels Si — we will
use these points as data seeds in our clustering.

(4) Must-link constraints: During clustering, each data point
Xi are assigned their corresponding label Li . Data prove-
nance also sometimes indicates that two data points Xi
and Xj should be in the same cluster, i.e., there are must-
link constraints enforcing that Li and Lj should be same.
We represent the must-link constraints using an adjacency
matrix A where Ai j = 1 indicates must-link constraint
between i and j, Ai j = 0 otherwise. We consider must-
link constraints to be transitive in nature, so the transitive
closure on A represents the complete set of must-link con-
straints.

Based on the above sources of data, we present our overall objective
function whereC1:K represents the corresponding cluster centroids:

θ =
K∑
j=1

∑
i ∈cluster j

XTi Cj + λ1
K∑
j=1

CTj Mj+

λ2
∑

i ∈seeds
I [Si = Li ] + λ3

∑
i,j ∈must-link

I [Li = Lj ].

�e four terms in the objective function measures the following:
(1) closeness of points to centroids, (2) closeness of topics to initial
keyword lists, (3) satisfying seed constraints, and (4) satisfying
provenance constraints.

5.2 Semi-supervised clustering
ATOL uses a novel semi-supervised clustering algorithm. A key
feature that separates it from other semi-supervised clustering
approaches, is that during every iteration it a�empts to ensure that
the cluster center is closely aligned to the manual topic assigned by
the domain experts. �e manual topics are used in the initialization
as well as in the subsequent cluster assignment and center update
state, to direct the clustering process be�er. Algorithm 3 outlines
the novel semi-supervised clustering algorithm used in ATOL. In the
absence of supervision, the unsupervised version of ATOLCluster
has be�er performance than unsupervised clustering methods.

5.3 Convergence guarantee
�e traditional K-Means [29] method can be looked upon as a hard
assignment version of the Expectation Maximization algorithm
(EM algorithm) [1, 7, 14]. We show that our cluster assignment and
centroid update steps directly follows from the E-step and M-step of
the EM algorithm and this guarantees its theoretical convergence.
�e deduction is shown below:

In the objective function θ , we can rewrite
K∑
j=1

∑
i ∈cluster j

XTi Mj

as N − 1
2 ×

N∑
i=1

(Xi − CLi )
2. Now, to get the optimal cluster means

Cj , we take the partial derivative of θ w.r.t. Cj for each j and set it
to 0. �is gives us,

Cj ← [
∑
Li=j

Xi + λ1Mj ]/[
∑
Li=j

1]

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1797



�is is the cluster re-estimation step (M-step) presented in the above
algorithm — so in the M-step, the update gives us optimal cluster
centroids. Now, looking at the function θ — for each Xi , the Li
which maximizes its contribution to θ is given as,

Li ← argmaxk [XTi Ck+λ2∗I [Li = Si ]+λ3∗
∑

j<i and Ai j>0
I [Li = Lj ]

�is is the update in the cluster assignment step (E-step). �us,
in both the cluster centroid re-estimation and label assignment
steps, the objective function is maximized, thereby ensuring the
theoretical convergence of the algorithm to a local optimum of the
objective function.

Algorithm 3: ATOL: Multi-source Semi-supervised Clustering

1 function atolCluster (X,M,S ,A,K ,ϵ ,λ1,λ2,λ3)

Input :X1:N ← normalized TFIDF vectors for documents,
K ← number of clusters, M1:K ← manual topics
assigned by domain experts, S = ∪iSi ← labels of
seeded data points Xi , A← must-link constraints
presented as an adjacency matrix, λ1,λ2,λ3 ←
hyper-parameters

Output :C1:K ← Final centroids of clusters, L1:N ← �nal
cluster assignments of X1:N

2 C1:K ← M1:K
3 A← transitive closure(A)
4 t ← 0
5 θ t ← 0
6 for i ∈ [1,N ] do
7 Li ← argmaxk {XTi Ck + λ2 ∗ I [Li = Si ] + λ3 ∗∑

j<iandAi j>0
I [Li = Lj ]}

8 end
9 for j ∈ [1,K] do

10 Cj ← [ ∑
Li=j

Xi + λ1Mj ]/[
∑
Li=j

1]

11 Normalize Cj
12 end
13 θ t+1 ← Objective function value
14 Repeat till |θ t+1 − θ t | ≤ ϵ
15 return (C,L)

5.4 Unsupervised ATOLCluster
When domain knowledge is unavailable, we perform unsupervised
topic modeling using Latent Dirichlet Allocation [6, 24] or Non-
negative Matrix Factorization [44] using the same number of topics
as clusters. We follow an unsupervised strategy to bootstrap and
generate initial domain expertise using the output of generative
models like LDA or NMF. �e output from the LDA or NMF model
is used as supervision in ATOLCluster. �is bootstrap strategy
of generating domain knowledge beats unsupervised clustering
methods, as we will show in Section 6.

6 EXPERIMENTAL RESULTS
We ran experiments to evaluate the e�ectiveness of ATOLClassify
and ATOLCluster. �is section describes the di�erent experiments
and analyses performed using ATOL code, which has been made
available at: h�p://www.csl.sri.com/users/shalini/atol/.

6.1 Methodology
For the experiments using OnionCrawler data, we considered a
dataset sampled from the LIGHTS repository snapshot of February
19th, 2016. Analysts annotated a sample of 481 onion sites with
3 labels — 163 sites labeled as Drugs, 255 as Hacker and 63 as
Weapons. Note that the labels were provided at the site-level —
each site had multiple associated pages, and the label was provided
for the dominant category related to the content of those pages.
Since, this was an expensive and time consuming process that could
not be farmed o� to crowd-sourcing services like Amazon mTurk
(due to data sensitivity issues), only a small amount of ground truth
could be generated. However, as indicated by our experimental
results, even a small fraction of the labeled data can lead to good
performance of the ATOLClassify and ATOLCluster algorithms.

We ran experiments with 5-fold cross-validation and strati�ed
sampling of the labels. For the keyword discovery in Section 6.3 we
use an existing training/test split used by the analysts. Our domain
experts explicitly provided a speci�c set of keywords and phrases for
all the three categories, which was used for both the classi�cation
and clustering algorithms (examples in Table 1. Furthermore, we
computed must-link constraints [13, 40] for this data set from the
Bitcoin transaction provenance data, which were used in the semi-
supervised clustering algorithm.

Table 1: Keywords for di�erent categories in the LIGHTS
data, speci�ed by analysts.

Category Keywords/Phrases
Weapons paperwork, background check, �rearms, ak-47, kel-tek, bullet, armor

piercing, weapons, luger, ruger, ri�e, silencer, caliber
Drugs psychedelic, hallucination, hanfplantage, steroids, cannabis,

drugs, seed, weed, drugstore, hash, marijuana, lsd
Hacker covertly, intercepts, con�dential, secret, anonymity, crypto, encryption,

security, keystroke logging, trojans, virus, malware, hackerware, warez, ransom

Both ATOLClassify and ATOLCluster have multiple hyper-parameters
— we performed grid search on the parameters using a small valida-
tion data sample, and the results reported below are for the optimal
set of hyperparameters.

6.2 �ematic Labeling with ATOLClassify
Table 2 shows the test-set performance of the algorithms using
di�erent feature weighting schemes.

As outlined in Section 4, we have 2 phases of ATOLClassify—
keyword generation and core classi�cation. As shown in Table 2,
we compare 4 methods of keyword generation:

(1) Baseline: �e list of keywords provided by the analyst,
based on their domain expertise.

(2) BOW: Keywords obtained by simple tokenization of the
onion documents related to a category label, and then con-
sidering the bag-of-words vector of the words in a category
as the relevant keywords.
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Table 2: Test-set performance of ATOL classi�ers on onion
category prediction.

Features Classi�er 5-fold Accuracy
BOW Multinomial Naive Bayes 0.802 ± 0.038

Linear SVM (Stochastic Gradient Descent) 0.822 ± 0.069
Logistic Regression 0.771 ± 0.099

TFIDF Multinomial Naive Bayes 0.857 ± 0.072
Linear SVM (Stochastic Gradient Descent) 0.853 ± 0.083

Logistic Regression 0.819 ± 0.077
TFICF Multinomial Naive Bayes 0.964 ± 0.029

Linear SVM (Stochastic Gradient Descent) 0.942 ± 0.060
Logistic Regression 0.918 ± 0.074

CosineSim + So�max 0.884 ± 0.047
Baseline (Analyst) CosineSim + So�max 0.858 ± 0.044

(3) TFIDF: Considers BOW representation, but additionally
applies the TFIDF algorithm [30] to give feature weights
to the words.

(4) TFICF: Applies the feature weighting scheme outlined in
Algorithm 1 to the BOW representation, to get a set of
keywords with associated weights.

Let us analyze the results of Table 2 in more detail. Using the
analyst-provided keywords in Baseline, we compute the cosine
similarity of a new onion with the keyword vector for a category,
followed by so�max transform, to estimate the probability of the
onion belonging to the category probabilities — we use this to
predict the most probable category for an onion. �is gives an
accuracy of 0.858 (± 0.044). We use di�erent classi�ers2 in ATOL:

(1) Multinomial Naive Bayes Classi�cation: Naive Bayes Clas-
si�er (NBC) that uses the multinomial distribution on dis-
crete features.

(2) Linear SVM (Stochastic Gradient Descent): Linear SVM
classi�er that is trained using Stochastic Gradient Descent
(SGD) learning, using hinge loss and L2 regularizer.

(3) Logistic Regression: Logistic regression classi�er that uses
L2 regularizer, using a Stochastic Average Gradient (SAG)
descent solver.

When we trained these classi�ers on the Bag of Words (BOW)
and TFIDF weighted keywords, the results were comparable to the
Baseline performance — in some cases we got be�er results on av-
erage accuracy, but the con�dence intervals overlapped. However,
when we used these classi�ers along with the TFICF weighting,
the Multinomial NBC classi�er gave an accuracy of 0.964 (± 0.029),
which was a statistically signi�cant improvement over Baseline
(non-overlapping con�dence intervals). Comparing the average ac-
curacy values, we get a 12% improvement with MultinomialNBC +
TFICF compared to So�max + Baseline, showing the high accuracy
of the ATOL thematic labeling classi�er approach.

6.3 Keyword Discovery with ATOLClassify
Table 3 shows the top 10 keywords (sorted by TFICF) that were
found by the keyword discovery algorithm in ATOL for the Hacker
category when run on the analyst-provided train/test split, with
explanations of why the discovered keywords are relevant for the
corresponding categories. Similar keywords were also discovered
for the Drugs and Weapons categories.
2using SciKit-Learn (h�p://scikit-learn.org)

Table 3: Top 10 keywords discovered in the “Hacker” cate-
gory by ATOLClassify on the LIGHTS data.

Word Explanation
scam Strong indicator for hacker topic

mitgliedjoined German for “member joined”
pa�ernjuggled github.com/pjstorm – hosts crypto so�ware
phpcredlocker Secure repository for credentials
dekryptering Swedish for encryption
moneymail Money maker website
altergold Online payment gateway

cryptostormteam Team of cryptostorm
cryptohavennet pure.cryptohaven.net - security darknet team
darkwebscience Strong indicator for hacker topic

6.4 Comparative analysis of ATOLCluster
In our �rst experiment with semi-supervised clustering, we com-
pare the performance of ATOLCluster to existing semi-supervised
approaches viz. Unsupervised KMeans [29], Seeded KMeans [1],
Constrained KMeans [2], COP-KMeans [40], and their combina-
tions. �e results are reported in Table 4. �e evaluation metrics
we used here are pairwise precision, pairwise recall and pairwise
F1 score, where these metrics aim to see how accurately we can
predict that two points that are in the same category in the ground
truth are also in the same cluster in the clustering output. �ese
pairwise measures are more appropriate for evaluating clustering
algorithms [2].

�e provenance-based versions use the must-link constraints
from the bitcoin provenance data. As the results show, using just
the domain expertise (without any seeded data or provenance in-
formation), ATOLCluster obtains almost 2% higher in F1-score
than the its best competitor. Combining all the knowledge sources,
ATOLCluster yields a F1-score which is at least 7% higher than
other semi-supervised approaches, and signi�cantly more than
unsupervised KMeans.

Note that unsupervised ATOLCluster, which uses the output of
unsupervised topic modeling to bootstrap the ATOLCluster algo-
rithm in the absence of supervised data, gives signi�cant perfor-
mance improvement over unsupervised KMeans — this can be a
promising categorization approach in the absence of labeled train-
ing data.

Table 4: Comparison of ATOLCluster to other clustering al-
gorithms on the LIGHTS data.

Clustering Method Pairwise Pairwise Pairwise
Precision Recall F1 Score

Unsupervised KMeans 51.83 41.63 45.77
Seeded KMeans 63.96 70.14 66.91

Seeded + Constrained KMeans 64.30 70.20 67.12
Provenance-based COP-KMeans 56.63 50.70 53.50

Seeded + Provenance-based
COP-KMeans 63.78 69.71 66.61

Seeded + Constrained +
Provenance-based COP-KMeans 64.11 69.77 66.82
ATOLCluster (unsupervised) 61.68 71.75 68.66

ATOLCluster (using only domain expertise) 65.26 72.88 68.86
ATOLCluster (using all sources) 70.21 77.40 73.63

We also did two more studies measuring the performance of
ATOLCluster: (a) As we increase the fraction of labeled training
data, ATOLCluster reached high F1-score with a small label fraction
and then the performance saturated. (b) As we increased label noise
(by randomly permuting labels) ATOLCluster su�ers only from
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minor performance degradation, demonstrating the robustness of
ATOLCluster to noise.

6.5 Comparing ATOLCluster to ATOLClassify
Note that the precision, recall and F1 scores used to evaluate ATOLClassify
are not directly comparable to the corresponding pairwise metrics
used in ATOLCluster. Moreover, ATOLClassify and ATOLCluster
are used in 2 di�erent scenarios — the former is used when we
have enough labeled data and �xed set of categories, while the
la�er is used in the absence of labeled training data (or when the
amount of labeled data is small) or when the number of categories
to discover in the data is not �xed apriori. However, to compare the
performance of ATOLClassify and ATOLCluster, we consider the
LIGHTS data where enough labeled training data is available. We
already know the F1 score for ATOLClassify on this dataset (96%).
From the ATOLCluster results, we map the clusters to the majority
class labels and use that to compute the F1 score based on the la-
bels — we see that the ATOLCluster algorithm using all the labels
and constraints gives us accuracy of 95%, which is comparable in
performance to ATOLClassify.

6.6 20 Newsgroups (20NG) dataset
We also evaluated ATOL on the publicly available 20 Newsgroups
(20NG) dataset,3 which has been widely used in many previous
works [1, 13]. �is dataset contains document (in form of emails)
from 20 di�erent categories. In order to rigorously evaluate ATOL on
the 20 Newsgroups dataset, we selected 3 similar categories that are
di�cult to categorize — comp.graphics, comp.os.ms-windows.misc,
and comp.windows.x — having overall 2938 documents (973 in
graphics, 980 in windows.misc, and 985 in windows.x). We used
the header information present in each of these emails (speci�cally,
the sender’s email address) to deduce the must-link constraints.

6.6.1 ATOLClassify on 20NG data. We ran Multinomial Naive
Bayes with TFICF weighting, the best-performing ATOLClassify
algorithm in the onion analysis, on the 20NG data subset. Table 5
shows the comparison of performance of ATOLClassify to Multi-
nomial Naive Bayes with BOW and TFIDF feature weighting, using
1 run on a 4:1 train/test split.

Table 5: Test-set performance of ATOL classi�ers on 20NG.

Features Classi�er Precision Recall F-measure
BOW Multinomial Naive Bayes 0.844 0.814 0.810
TFIDF Multinomial Naive Bayes 0.880 0.879 0.879
TFICF Multinomial Naive Bayes 0.897 0.893 0.893

6.6.2 ATOLCluster on 20NG data. Table 6 compares the results
of di�erent variants of the semi-supervised ATOLCluster algorithm
on the 20NG dataset. As we saw for the LIGHTS dataset, the full
ATOLCluster algorithm that uses all sources of data (seeds, con-
straints) gives the best overall performance in terms of pairwise F1
score. When we ablate di�erent parts of this overall algorithm (e.g.,
seeded initialization, constraints), the performance degrades.

3h�p://qwone.com/∼jason/20Newsgroups

Table 6: Comparison of ATOLCluster to other clustering al-
gorithms on 20NG data.

Clustering Method Pairwise Pairwise Pairwise
Precision Recall F1 Score

Unsupervised KMeans 55.22 58.07 56.61
Seeded KMeans 64.47 66.37 65.41

Seeded Constrained KMeans 64.47 66.37 65.41
ATOLCluster (unsupervised) 67.42 68.57 67.99

ATOLCluster (using only domain expertise) 69.42 69.82 69.62
ATOLCluster (using all sources) 70.20 71.43 70.68

7 RELATEDWORK
Darkweb: �ere have been a few prior measurement studies of
content present in the onion ecosystem. �ese include measure-
ment studies and analysis of the dynamics of onion drug mar-
ketplaces [10, 37], as well as studies that have exploited �aws in
Tor’s hidden service design of onion domains [4, 5, 34], to reveal
private .onion domains, including botnet C&Cs. Systems like Deep-
Dive [33], which have been used to analyze content of the darkweb,
need the crawled content to be available before doing any analysis.
Christin et al., conducted a comprehensive analysis of the sellers
of SilkRoad marketplace [10]. Soska et al., follow up by conduct-
ing a longer term measurement study of vendor activity across
marketplaces. Biryuokov et al., exploited �aws in Tor’s hidden
service protocol to measure the popularity of onion services and
deanonymize them. �ey follow up with an analysis of hidden
service content [4] from 3050 HTTP services, �nding that the most
popular services are from botnets. Unlike these prior e�orts, we
do not rely on HSDir harvesting (i.e., se�ing up HSDir relay nodes
for the purpose of harvesting onion addresses). Instead we rely on
strategies, such as open as dark web crawling as well as DNS traces
to acquire onion addresses, that conform to Tor’s ethical research
guidelines [38]. Hence our results on popular content are also dif-
ferent. Furthermore, to the best of our knowledge, our approach of
combining OnionCrawler and ATOL is the �rst a�empt to develop
a principled framework for crawling and classifying onion sites.

ML for cyber-security: Machine learning (ML) research in
cyber-security has focused on di�erent applications of ML to the
openweb, e.g., modeling threat propagation for detecting mali-
cious activities [9], adaptive trust modeling for cyber security [35],
game-theoretic modeling of cyber security threats like information
leakage [43], adaptive a�acker strategy evolution [41], privacy-
preserving data analysis [18], a�acks on ML classi�ers [8], or de-
tecting user authenticity and spammy names in social networks [19,
20, 42]. However, not a lot of work has been done on analyzing the
darkweb. Sabbah et al. [36] have proposed a keyword-weighting
and classi�cation scheme for dark web classi�cation — however
they focus on combining di�erent feature weighting schemes for
a binary classi�cation task. In contrast, the TFICF-based keyword
weighting scheme can use prior keyword distributions e�ectively.

8 DEPLOYMENT AND EXTERNAL
EVALUATION

�e LIGHTS system has been operationally deployed at SRI for over
two years and has approximately 100 users across various organiza-
tions. �e (OnionCrawler and ATOL) systems were evaluated in a
DARPA 2016 Hackathon. �e task was to come up with a prioritized
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Figure 2: LIGHTS architecture for DARPA Hackathon.

list of new weapons-related domains based on 3rd-party-provided
seed keywords, which were then assessed by independent 3rd-party
evaluators. Each team could make use of image, text, site metadata
or any other salient factors associated with 3rd-party-labeled seeds,
to propose new sites that are potential locations for illegal weapons
sales. Figure 2 shows the overall architecture of the LIGHTS crawl-
ing + analysis framework used in the Hackathon. ATOL provided
>22% false positive reduction over the classi�cation provided by
the rest of the system. In addition, it identi�ed a signi�cant number
of weapon-relevant sites and successfully completed the Hackathon
evaluation task. �e prototypes for the core algorithms in ATOL
will be open sourced and made available soon.

9 CONCLUSIONS AND FUTUREWORK
�is paper presented an automated system for crawling and ana-
lyzing content in the public Tor HS ecosystem. During the last two
years, the combination of OnionCrawler (for extracting darkweb
content) and ATOL (for analyzing the onion content) has automati-
cally crawled and thematically categorized millions of pages in the
darkweb. Our empirical evaluation on a snapshot of the LIGHTS
repository shows the e�ectiveness of our keyword discovery algo-
rithm. We demonstrate how ATOL’s novel classi�cation algorithms
signi�cantly outperform a keyword-based baseline algorithm used
by analysts. We also developed a novel semi-supervised clustering
framework, which shows promising initial results in the presence
of limited or no training data. Empirical evaluation on the publicly
available 20 Newsgroup dataset (for reproducibility) con�rmed the
e�cacy of the ATOLClassify and ATOLCluster algorithms. Our
experiments on the LIGHTS dataset showed that ATOLClassify
gives a 12% performance gain over an analyst-provided baseline,
while ATOLCluster gives a 7% improvement over state-of-the-art
semi-supervised clustering algorithms.

In the future, we would like to extend the categorization frame-
work of ATOL to include sequence analysis approaches such as
LSTMs [23] and contextual LSTMs [21]. We would like to use the
automated categorization in ATOL for automated portal generation,
where sites (e.g., blogs, forums, wikis) can be added automatically

to portals of di�erent categories. Topic-driven extraction of var-
ious search terms can enable persona tracking on the darkweb
(e.g., �nding email or IM handles that are associated with weapons
sales). We can also use ATOL for multi-classi�er analysis, theme
learning, graph analysis, and thematic census mining, leading to
other far-reaching applications in darkweb analysis.
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