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ABSTRACT

Open pit mining operations require utilization of extremely expen-

sive equipment such as large trucks, shovels and loaders. To re-

main competitive, mining companies are under pressure to increase

equipment utilization and reduce operational costs. The key to this

in mining operations is to have sophisticated truck assignment

strategies which will ensure that equipment is utilized efficiently

with minimum operating cost. To address this problem, we have

implemented truck assignment approach which integrates machine

learning, linear/integer programming and simulation. Our truck

assignment approach takes into consideration the number of trucks

and their sizes, shovels and dump locations as well as stochastic

activity times during the operations. Machine learning is used to

predict probability distributions of equipment activity duration. We

have validated the approach using data collected from two open

pit mines. Our experimental results show that our approach offers

increase of 10% in efficiency. Presented results demonstrate that

machine learning can bring significant value to mining industry.
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1 INTRODUCTION

In mining operations, huge quantities of ore and waste material

at mine sites are transported using extremely large equipment 24

hours a day. Material transportation represents up to 50% of oper-

ating costs in open pit mining [9]. In order for mining companies

to have sustainable and economical mining operations, they must

do two things: (i) Constantly improve what is known as overall

equipment effectiveness (OEE) for their field equipment (ii)Reduce

operating costs. In the last decade, the focus has been on operating

cost reduction, and it has been been mainly achieved by increasing

the capacities of the equipment. Nowadays, with limited budgets

the focus is on improving OEE, where due to huge equipment op-

erational costs, even small gain in operational efficiency can result

in savings of 10s-100s million dollars depending on the mine size.

Improvement in OEE can be primarily achieved by two means: (i)

increase availability of equipment (ii) increase utilization of avail-

able equipment. In this paper, we focus on the latter problem, i.e.,

increasing equipment utilization by better planing and optimal

management of the equipment.

Major components of material handling are trucks, shovels and

loaders. Shovels and loaders are responsible for loading the trucks.

Shovels are extremely large and slow-moving equipment usually

located at digging site, while loaders are more mobile and located at

stockpiles. Trucks usually haul material from loading areas to one of

three types of destinations determined by material type and quality:

(i) waste - from digging site to dump area (ii) ore - from digging site

to stockpile or crusher (processing plant) (iii) ore - from stockpile

to crusher. One complete hauling cycle consists of productive as

well as non-productive truck activities (see Figure 1). Productive

truck activities during the haul cycle are done in following order:

driving empty from dump to shovel/loader; spotting (positioning)

at shovel/loader; loading by shovel/loader; hauling to dump area;

dumping. In terms of utilization, queuing is a major non-productive

activity for trucks. Queues can be formed in front of both shov-

els/loaders and dump areas. For shovels, the major non-productive

activity is starvation, i.e., waiting for trucks to arrive. Therefore, in

order to reduce non-productive activities, truck queuing and shovel

starvation should be reduced. Our approach to increase utilization

is to reduce time spent in non-productive activities by combining

machine learning with optimization and simulation.
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re-allocating process without guaranteed convergence. Simulation

and optimization are also used in [6] where linear programming

outcomes are evaluated using and simulation. Simulation is also

used in [8] for assessment of truck-shovel dispatching rules. Instead

of using simulation, work described in [5] uses queuing theory to

estimate production cost for different number of trucks. The op-

timum truck number is the one which minimizes the cost, which

implies searching through all possible truck allocations. This can

be time-consuming in case of large mines.

None of existing approaches use advantages of machine learning

techniques for activity time estimation. Accurate activity time esti-

mations are necessary for optimization in order to achieve better

truck allocation. Also in all existing approaches, potential queu-

ing durations are either estimated in advance as historical average

or ignored, whereas in real life they are dependent on the num-

ber of trucks used in the operations, truck assignments as well as

stochasticity of activity durations and as such cannot be accurately

estimated. Due to improper treatment of queuing problem, out-

puts of truck allocation algorithms are usually very optimistic. As

explained above, our solution addresses all these problems.

3 METHODOLOGY

The objective of truck assignment is to improve OEE while reduc-

ing the cost of mine operations over a operating window (e.g. one

shift) by maximizing an objective function. Accordingly, the objec-

tive in this paper is to find truck assignment which uses minimum

number of trucks such that utilization of shovels is above given

threshold with a certain confidence. This objective is reasonable

as shovels are the most expensive equipment in the field and their

utilization is directly proportional to production i.e. the amount

of material moved during the operations. Also finding minimum

number of trucks to reach the objective will provide reduction in

operational cost. For the sake of clarity we will focus on truck as-

signment problem using simplified constraints. The same approach

with additional constraints can be applied when considering real

complex production requirements. Pictorial representation of the

truck assignment problem is shown in Figure 2. In our approach

we consider the following:

• Trucks from different shovels can dump material at the same

place

• Trucks from multiple dumps can travel to the same shovel

 Hoǁ ŵaŶy trucks?

 shoǀels  duŵp area

Figure 2: Graph representation of truck assignment problem

• Trucks of certain sizes cannot travel between some shovel-

dump pairs because of shovel matching problem (equipment

size level constraint) or road constraints (route level con-

straint). Shovel matching problem refers to parameters such

as truck height, shovel bucket capacity, shovel reach etc.

Road constraints refers to the cases when some trucks can-

not travel on particular roads.

In order to solve truck assignment as an optimization problem we

first need to define objective function and constraints.

3.1 Optimization problem for truck assignment

Let us denote S as total number of shovels, D as total number of

dumps, and F as total number of truck fleets (or hauling sizes). The

overall goal is to minimize number of trucks such that utilization of

shovels is above the given threshold. If we let x(s,d, f ) be number

of trucks from the fleet (hauling size) f traveling between shovel

s and dump area d , the optimization problem is mathematically

expressed as

minimize
x

D∑

d=1

S∑

s=1

F∑

f =1

x(s,d, f )

subject to U (s) ≥ cs , s = 1, . . . , S

D∑

d=1

S∑

s=1

x(s,d, f ) ≤ N (f ), f = 1, . . . , F

∀(s,d, f ) x(s,d, f ) ≥ 0

∀(s,d, f ) ∈ R, x(s,d, f ) = 0

(1)

where U (s) is utilization of shovel s , cs is a pre-specified positive

constant between 0 and 1 which controls minimum accepted utiliza-

tion of shovels, N (f ) is the number of trucks from the fleet(hauling

size) f , and R is a specified set of nonviable triplets (s, f ,d) that

addresses the above-mentioned shovel matching problem and road

constraint.

The utilization of shovel over time period T is defined as

U (s) = 1 −
twait (s)

T
, s = 1 . . . S (2)

where twait is total waiting time of the shovel during period T .

Shovel waiting time is estimated based on number of hauling cycles

that each fleet(hauling size) can make over the periodT and loading

time for that fleet(hauling size) as

twait (s) = T −

D∑

d=1

F∑

f =1

T · x(s,d, f )

tcycle (s,d, f )
tload (s, f ) (3)

As described earlier, hauling cycle is composed of driving empty,

spotting in front of shovels, loading, hauling material, and dumping

as productive activities. Thus, hauling cycle time can be estimated

as

tcycle (s,d, f ) =tempty (s,d, f ) + tspot (f ) + tload (s, f )+

thaul (s,d, f ) + tdump (d, f )
(4)

Combining (2)- (4), it is clear that waiting time of shovels is

function of truck activity durations during the operations and thus

twait is stochastic variable. Due to stochasticity in shovel waiting

time and potential queuing, the first constraint in (1) can be satis-

fied only under some pre-specified confidence level. To meet the
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confidence level in shovel utilization set by a dispatcher and solve

the optimization problem we developed algorithm which follows

the following steps:

(1) Inputs: Select shovels, their loading locations, and dump

areas to be used in the next shift, minimum shovel utiliza-

tion cs and confidence level. Confidence level represents the

probability that achieved shovel utilization will be greater

than or equal to target value cs .

(2) Activity time predictions: Learn predictive models for ac-

tivity durations based on historical data. Then, predict ex-

pected values and other distribution parameters of activity

durations for the shift.

(3) Initial guess:Calculate first guess for truck allocationx(s, f ,d)

using expected values of activity durations obtained in Step

2.

(4) Simulation: Initialize mine simulator using x(s, f ,d) ob-

tained in Step 3 and predicted distributions of activity dura-

tions from Step 2. Run simulation multiple times (output of

multi-run simulation is the estimated confidence level for

shovel utilization that is calculated as percentage of simula-

tion runs in which utilization is greater or equal cs ).

(5) Re-assignment of trucks: If estimated confidence level is

below required value then: (1) number of trucks coming to

particular shovel will be increased by one; (2) re-assignment

of trucks will be done.

(6) Searching: Repeat Steps 4 and 5 until confidence require-

ments for all shovel utilization are satisfied.

Steps 2 to 5 are presented in detail in the following sections.

3.2 Activity time predictions

In this step, our solution is dependent on historical operational

data collected from fleet management software. In order to perform

optimization and run the simulation we need predictors for activity

durations which can provide non-negative distribution as the out-

put. As more variance is expected for longer activities, we found

the use of Gamma distribution as appropriate because of its prop-

erty that it is non-negative and that the variance is proportional to

expected value. For the set of explanatory variables that are usually

available from an operational database , generalized linear model

with Gamma distribution and identity link function provided the

best fit to the data. It is worth noting that our truck assignment

algorithm can accept other machine learning techniques which are

capable of modeling non-negative distributions.

Different mines use fleet management systems from different

vendors and also they collect information about different vari-

ables.This is due to the fact that mines are located in different

geographical areas as well as that operations management have

different views on what variables are important to monitor from

an operational perspective. Models in our system are capable of

handling data from different mines which can provide different sets

of explanatory variables. Example of explanatory variables, that

are mostly available in fleet management system for modeling, are

as follows:

(1) Loading unit identifier,

(2) Dump location,

(3) Route profile (distance between loading locations and dump

areas, positive and negative elevations on the route),

(4) Shift,

(5) Truck size.

Explanatory variables can be both categorical and continuous.

Different models of loading units (shovels,loaders) usually have

different bucket sizes, which can influence loading time of the

truck. Shift is an important explanatory variable because operating

conditions are different between day and night shifts. Our predictor

is composed of separate predictive models built for each of the truck

productive activities. These models use different sets of explanatory

variables. Also, they provide an estimate for expected durations

and other distribution parameters of each activity.

All our models are in the form:

yi = f (xsi ,xi ) + ϵsi (5)

where xsi is an instance ofXs . Set Xs contains categorical variables

which are assumed to impose different relationships between ex-

planatory variables xi and target yi . An example for this variable

could be a truck size. If truck size belongs toXs then the assumption

is that trucks of different sizes follow different functional relation-

ships between activity time yi and explanatory variables xi as well

as have different parameters of error distribution. In he predictive

case, we assume that all variables from xi are available. In practice,

a problem arises if there is no observation in training set for a par-

ticular instance of categorical variable fromXs . For example, a mine

can buy a new truck to put in the production, which is of different

size than all other existing trucks. Our predictor has to handle this

case. To address this issue,we created a set of sub-models. Creating

sub-models for each subset of Xs can be time-consuming. Thus,

we introduce the priority of each variable in Xs . Full model will

include all variables from Xs while subsequent sub-models will

exclude a variable with the lowest priority until we reach an empty

set. For example, ifXs contains truck size and loading unit identifier

with assigned priority in the same order, our method will create

full model and two additional sub-models with:

(1) Xs = {truck size,loading unit identifier}

(2) Xs = {truck size}

(3) Xs = {}

Generalized linear models are used for each sub-model and defined

as:

ηsi = wsxi + ϵsi (6)

where ws represents model coefficients for each subset. We use

identity link function between ηsi and E(yi |xsi ) = µsi as

ηsi = µsi (7)

In prediction phase, the predictor will try to use full model first

to provide prediction. If full model is not capable of providing pre-

diction then the predictor will use sub-sequent models following

priority order until prediction is possible. To maintain good ac-

curacy as well as accommodate for concept drift, models should

be updated periodically. Update rate can be set by operator while

default values is once a week. Provided predictions are recorded in

the system for further use by optimization and simulation.
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3.3 Initial guess

In order to avoid searching over all possible number of trucks that

can be used in the mine as well as all possible truck assignment we

start from the initial guess for minimum number of trucks based on

optimization using expected values and neglecting queuing effect.

To completely formulate the optimization problem we first need to

define expected values of shovel waiting time over time periodT as

E[twait (s)] = T −

D∑

d=1

F∑

f =1

T · x(s,d, f )

E[tcycle (s,d, f )]
E[tload (s, f )] (8)

Expected value of total haul cycle time is defined as a sum of ex-

pected values of each of activity times based on (4)

E[tcycle (s,d, f )] = E[tempty (s,d, f )] + E[tspot (f )]+

E[tload (s, f )] + E[thaul (s,d, f )] + E[tdump (d, f )]
(9)

Note that these expected values are estimated using predictor for

activity times as discussed in the previous section. After combining

(1),(2), (8) and (9) we obtain the following optimization problem.

minimize
x

D∑

d=1

S∑

s=1

F∑

f =1

x(s,d, f )

subject to

D∑

d=1

F∑

f =1

x(s,d, f )E[tload (s, f )]

E[tcycle (s,d, f )]
≥ cs ,

s = 1, . . . , S

D∑

d=1

S∑

s=1

x(s,d, f ) ≤ N (f ), f = 1, . . . , F .

∀(s,d, f ) x(s,d, f ) ≥ 0.

∀(s,d, f ) ∈ R, x(s,d, f ) = 0.

(10)

The straightforward way to find solution is to use integer op-

timization. This might work for smaller mines where number of

shovels and dumps in limited. On the other hand, if applied to larger

mines integer programming is time-consuming (can take several

hours), which is impractical. To reduce computation complexity,

we applied linear programming to solve this problem and obtain

minimum number of trucks and their assignment by rounding as

it is done in [15]. In the case that this solution does not meet tar-

get and confidence levels requirements, more trucks are required,

which introduces additional optimization for a truck assignment.

3.4 Re-assignment of trucks

For the case that current truck assignment solution does not meet

confidence requirements additional trucks and new optimization

problem are introduced. New optimization is constrained such that

only one new truck can be added to a shovel. The objective of new

optimization is to maximize shovel utilization for a given number

of trucks. We differ two sets of shovels in the optimization: S1 that

satisfy confidence level; S2 that does not satisfy confidence level.

New optimization problem is defined as

maximize
x

D∑

d=1

F∑

f =1

x(s,d, f )E[tload (s, f )]

E[tcycle (s,d, f )]
)

subject to

D∑

d=1

S∑

s=1

x(s,d, f ) ≤ N (f ), f = 1, . . . , F .

∀(s,d, f ) x(s,d, f ) ≥ xp (s,d, f ) − 1

∀(s,d, f ) x(s,d, f ) ≥ 0

∀(s,d, f ) ∈ R, x(s,d, f ) = 0

∀s ∈ S1,

D∑

d=1

F∑

f =1

x(s,d, f ) =

D∑

d=1

F∑

f =1

xp (s,d, f )

∀s ∈ S2,

D∑

d=1

F∑

f =1

x(s,d, f ) =

D∑

d=1

F∑

f =1

xp (s,d, f ) + 1

(11)

where xp (s,d, f ) is truck assignment which is obtained either from

initial guess in case of first run of re-assignment optimization or

previous iteration of re-assignment optimization in all other cases

(see Section 3.1). Last two constraints control total number of trucks

that are coming to a particular shovel. In this case we have to use

integer programming [12] to solve the problem and obtain assign-

ment which can be passed to the simulator. The second constraint

makes integer programming feasible compared to optimization (10).

With this constraint we impose that new assignment should not

deviate much from the solution of previous iteration.

3.5 Mine simulator

A mine simulator is built to emulate future mining operations. It

serves as an estimate of future operational outcomes while testing

different what-if scenario. In this paper, what-if scenarios represent

different truck assignments obtained from either (10) or (11). In or-

der to use simulation outcomes for planning or dispatcher training

purposes simulator outcomes should be as close as possible to real-

ity. To build realistic simulator we support many features such as:

dynamic dispatch, material transportation, equipment breakdowns,

lunch breaks, etc. Experimental design of this paper is focused on

truck allocation with queuing effect and thus these features will be

excluded from simulator to avoid their influence on the outcome.

Mine simulator is developed in our laboratory using ExtendSim

simulation software.Our simulation is capable of recording all activ-

ities relevant to the operations. In this paper, we are recording and

reporting truck waiting time in queues and utilization of shovels

during each simulation run.

From optimization perspective, simulation is excellent tool for

providing feedback on queuing effect. Using multi-run simulation

we can estimate the confidence on equipment utilization. The confi-

dence is calculated as percentage of simulation runs in which shovel

utilization target cs is met. Mine simulator along with activity time

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1985



 

Figure 3: Truck assignment system

predictor and optimization is part of a complex system for truck

assignment.

4 SYSTEM FOR TRUCK ASSIGNMENT

Our system for truck assignment is shown in Figure 3. Part of the

system related to this paper is inside red dashed box. Fleet man-

agement system is responsible for real-time data collection from

the equipment. In our solution, equipment sensor data collected

by fleet management system is processed through a complex event

processing (CEP)/streaming engine in real time. This engine gen-

erates a trigger when a new truck assignment is necessary. For

example, trigger can be generated if a shovel breaks down or new

shift is about to begin. There could be more triggers as discussed

in [15]. Fleet management software stores sensor data along with

operational data in relational database (DB). After trigger is gen-

erated, the most recent data is retrieved from DB and supplied to

generalized linear models in order to predict: (i) expected values for

activity durations (ii) distribution parameters of activity durations.

Outputs of the generalized linear models along with operational

data are used as input parameters for optimization module. Opti-

mization module will receive required utilization of shovels as well

as corresponding confidence level from the dispatcher. Optimiza-

tion module will start from initial guess solution and iterate using

simulation feedback and re-assignment optimization until target

utilization with given confidence is achieved. Then optimal truck

assignment will be displayed on a dashboard and proposed to the

dispatcher. Dispatcher also has a choice to run his own schedule

and compare with proposed solution. With all these features in our

system, dispatcher will be confident that he/she will make right

choices on truck allocation.

5 EXPERIMENTS AND RESULTS

Experiments are performed on real data generated by fleet man-

agement system in open pit mines. We obtained two years of data

to demonstrate the improvements and benefits of our system com-

pared to the current practice. As initial step in experimental analysis

we report summary on productive and non-productive activities

in the mine. Aggregate values for shovels and trucks are shown in

Figures 4 and 5 respectively. Definitely, shovel waiting and truck

queuing take a significant portion of activity times which indicates

that the mine operations can benefit from improvements regarding

truck assignment.

In the first experiment we will evaluate generalized linear mod-

els as predictors of future activity times versus baselines which are

used in practice today. We have chosen hauling activity to test our

predictor as it involves the greatest number of explanatory vari-

ables and it is most difficult to predict. Like many other industrial

datasets, this data requires data cleaning and preprocessing as well.

In preprocessing step we perform data transformation and outlier

removal. For outlier removal we used interquartile range (IQR) [16]

on a single attribute as well as model based outlier removal [1]that

involves all attributes used for modeling.

Test set: For testing purpose, we have randomly sampled 100

operating shifts from the database to be a test set. We have chosen

shift level data because one operating shift is reasonable unit for

short term planning. Final test set contained about 76,000 data

points.

Training set:In the absence of weather data and in order to

capture seasonal patterns, we restricted model learning to be per-

formed on the most recent observations preceding a shift from test

set. Therefore, each shift will have separate training set. We used

one month window prior to the selected shift to retrieve training

data.

Baselines: Mean and random walk predictors are commonly

used in practice and we use them as baselines. We created mean

predictor model to follow similar sub-model strategy as GLM, as

described in Section 3.2. Full mean model computes the average of

hauling activity durations for each truck hauling size and a logical

route(loading location, dump area) in training data. Priority is used
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shovels are kept at utilization 0.5. For each of target utilizations, we

found schedule by applying initial guess optimization. In Figure 11,

we report: (i) projected shovel utilization, (ii) simulated shovel uti-

lization with confidence levels and (iii) ideal shovel utilization that

is equal to target utilization. We calculated projected utilization

using deterministic equations (2) and (8). Simulated utilization and

confidence levels are calculated based on outputs from 100 simula-

tion runs. Confidence is presented using squares in the plot where

the width of a square is proportional to confidence level. We can

notice that projected utilization is always greater than what is tar-

geted. This is possible as the number of trucks are integers. Also,

when target utilization is in lower range it is possible to achieve it

with high confidence only using initial guess optimization. As tar-

get utilization increases confidence drops to 0 because of queuing

which is more likely to happen when more trucks are involved in

operations. This indicates that additional trucks needs to be added

to initial guess solution to meet utilization and confidence levels,

which validates necessity for re-assignment optimization in our

approach.

In the last experiment we use a setup of 7 shovels at loading

location and 5 dump area. We changed shovel target utilization

from 0.5 to 0.9 in steps of 0.1. Required confidence was set to 90%.

We calculate number of additional trucks needed to meet the con-

fidence level. We also measured execution time of our algorithm

to reach that confidence. Results are reported in Figure 12. Again,

as utilization requirement increases more trucks are needed com-

pared to initial guess. For utilizations of 80% and 90% utilization

re-assignment optimization was invoked two times while for the

rest cases only one time. Our algorithm took the longest time of

about 30 seconds which is tolerable from operational perspective.

6 CONCLUSION AND FUTUREWORK

In this paper we demonstrated novel approach for truck allocation

in open pit mines which integrates machine learning, optimiza-

tion and simulation. Our approach addresses stochasticity in travel

times and queuing effect that were not previously addressed. Ex-

perimental results have shown benefit of using machine learning

techniques to improve prediction accuracy of activity times in min-

ing operation. Also experiments indicate that our approach can

improve OEE by 10% when compared to the current dispatching

software. The proposed solution is applicable to mines which use

large numbers of shovels and dumps. This was achieved by using

linear programming to approximate initial solution. Then initial

solution was tuned to meet objective shovel utilization with a given

confidence by using integer programming and simulation. We be-

lieve that integration of machine learning with operational research

can make mines smarter and bring significant values to the mining

industry.
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