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ABSTRACT
In this paper, we introduce a generic inference hybrid framework
for Convolutional Recurrent Neural Network (conv − RNN ) of
semantic modeling of text, seamless integrating the merits on ex-
tracting di�erent aspects of linguistic information from both convo-
lutional and recurrent neural network structures and thus strength-
ening the semantic understanding power of the new framework.
Besides, based on conv − RNN , we also propose a novel sentence
classi�cation model and an a�ention based answer selection model
with strengthening power for the sentence matching and classi�ca-
tion respectively. We validate the proposed models on a very wide
variety of data sets, including two challenging tasks of answer se-
lection (AS) and �ve benchmark datasets for sentence classi�cation
(SC). To the best of our knowledge, it is by far the most complete
comparison results in both AS and SC. We empirically show supe-
rior performances of conv − RNN in these di�erent challenging
tasks and benchmark datasets and also summarize insights on the
performances of other state-of-the-arts methodologies.

CCS CONCEPTS
•Computingmethodologies→Information extraction; Super-
vised learning by classi�cation; Neural networks; Lexical semantics;

KEYWORDS
Text Modeling, Recurrent Neural Network, Convolution Neural
Network, Answer Selection, Sentence Classi�cation, Hybrid Frame-
work

1 INTRODUCTION
Text modeling which represents the natural language as feature
vectors, is the critical step for natural language understanding tasks
such as question-answering, chat bot and user intent recognition.
Traditional natural language processing (NLP) approaches for text
modeling, e.g., n-gram, su�er from both large memory requirement
and data sparsity because of language ambiguity and the limited
amount of annotated data available. Distributed representations
based on deep neural networks, e.g, recurrent neural network (RNN)
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or convolution neural network (CNN), are recently widely used to
alleviate such sparsity [21, 22, 25]. Most previous neural network
approaches focus on mapping each input sentence into a �xed-
length vector and then performing sentence level comparisons. [5]
develops an encoder-decoder architecture, which utilizes CNN and
RNN as the sentence encoder and decoder respectively, to learn
distributed sentence representations by reconstructing the input
sentence, or predicting the future sentence. [12] trains an encoder-
decoder model that tries to reconstruct the surrounding sentence
of an encoded sentence using the continuity of text from books.
[15] proposes an unsupervised method named as Paragraph Vector
to represent input document by a dense vector which is trained
to predict words in the document. [29] trains the Long Short-
Term Memory (LSTM) in a weakly supervised manner on user
click-through data logged by a commercial web search engine and
further uses the resulted embedding vectors to perform document
retrieval.

�ere has been much development in the areas of question-
answer (QA)matching and sentence classi�cations (SC). [10] applies
CNN on top of pre-trained word vectors for various sentence-level
classi�cation tasks. [16] uses a RNN with multi-task learning to
jointly learn across multiple related text classi�cation tasks. [13]
proposes a CNN with coherent and reusable kernels that can be
shared by related tasks. [35] proposes CNN for learning an opti-
mal representation of question and answer sentences where the
relational information given by the matches between words from
the two members are also encoded as embeddings. [51] compares
several methods including traditional lexical semantic methods and
CNN based models on a new publicly available AS dataset WikiQA,
and demonstrates the superior performance of CNN. [4] tests vari-
ous architectures of CNN on a new non-factoid question answering
task InsuranceQA.

However, it has been found that using a single vector to encode
an entire sequence is not su�cient to capture all the important
information from the sequence, and therefore advanced techniques
such as a�ention mechanisms and memory networks have been
applied to sequence matching problems. [34, 52] focus on the pair-
wise a�ention mechanism for discriminative model training, where
it learns how to compute interactions between the input item pairs.
�ey �rst build an a�ention matrix for a sentence pair, and then di-
rectly take the a�ention matrix as a new channel of the CNNmodel.
[48] proposes to use the a�ention matrix in a di�erent manner,
where they decompose the original sentence matrix into a similar
component matrix and a dissimilar component matrix and then
feed these two matrices into a two-channel CNNmodel. �is model
focuses on characterizing the interactions between similarities and
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dissimilarities of a sentence pair. Recurrent neural networks (RNNs)
are powerful tools for modeling sequential data, yet training them
by back-propagation through time can be di�cult. [43] proposes to
add the a�ention before computing the sentence representation for
a�ention based RNN models. [17] shows that dependence models
set up from Markov random �eld can be naturally extended by as-
signing weights to concepts and demonstrate that the dependence
model can be trained using existing learning-to-rank techniques
with a relatively small number of training queries. [23] proposes
the key-value memory networks which are versatile models for
reading documents or knowledge bases and answering questions
about them, allowing to encode prior knowledge about the task at
hand in the key-value memories.

1.1 Contributions
�emajor contributions of this paper can be summarized as follows:

(1) We propose the hybrid conv − RNN framework that can
process the text using both convolutional and recurrent
neural networks, seamless integrating the merits on ex-
tracting di�erent aspects of linguistic information from
both structures and thus strengthening the matching and
classi�cation power of the framework.

(2) We extend the baseconv − RNN and propose novel frame-
works for SC and AS respectively.

(3) We test empirically on a very wide variety of data sets,
including WikiQA[51], InsuranceQA[4] and several bench-
mark datasets of SC including movie reviewer (MR [31]),
Stanford sentiment treebank (SST [38]), IMDB [18] and
Subj [30]. For AS, the proposed model outperforms the
state-of-the-arts on both testing datasets; for SC, we achieve
the best performances in 4 out of the 5 tasks. To the best of
our knowledge, it is by far the most complete comparison
results in the �elds of AS and SC.

�e rest of the paper is organized as follows. In Section 2, we brie�y
review the related work on RNN, CNN and their hybrid framework.
�en in Section 3, we introduce the conv − RNN as well as the
SC model and the a�ention based AS mdoel. Section 4 presents
experimental results on extensive datasets and applications. Finally,
we conclude the paper in Section 5.

2 RELATEDWORK
2.1 Recurrent Neural Network (RNN)
Long short-term memory (LSTM) is a popular RNN model and has
been widely applied in various NLP problems. �e H dimensional
hidden state ht at the time step t is updated as follows:

it = σ (Wiwt +Uiht−1 + bi ), (1)
ft = σ (Wf wt +Uf ht−1 + bf ), (2)
ot = σ (Wowt +Uoht−1 + bo ), (3)
C̃t = tanh(Wcwt +Ucht−1 + bc ), (4)
Ct = it ∗ C̃t + ft ∗Ct−1, (5)
ht = ot ∗ tanh(Ct ), (6)

where there are three gates, input gate i , forget gate f and output
gate o, and a cell memory vector Ct . σ is the sigmoid function,

W ∈ RH×d ,U ∈ RH×H , andb ∈ RH×1 are the network parameters.
Single directional LSTMs su�er form the weakness that they cannot
utilize the contextual information from the future tokens. BI-LSTMs
solve this problem by using both the previous and future context
through processing the sequence in two directions, and generate
two sequences of output vectors. �e output for each token is the
concatenation of the two vectors from both directions.

�ere is another popular RNN unit, namely gated recurrent
unit (GRU)[1]. �e GRU is capable of capturing dependencies on
di�erent time scales adaptively. Similarly to the LSTM unit, the
GRU has gating units that modulate the �ow of information inside
the unit, however, without having a separate memory cell. �is
procedure of taking a linear sum between the existing state and
the newly computed state is similar to the LSTM unit. �e GRU,
however, does not have any mechanism to control the degree to
which its state is exposed, but exposes the whole state each time.
Hence it is more appropriate in our situation due to the imbalance
length between questions and answers in AS. �e hidden state ht
used for learning sentence representations is computed by

ht = (1 − zt ) ◦ ht−1 + zt ◦ h̃t , (7)
h̃t = σ (Wwt +U [rt ◦ ht−1] + b), (8)
zt = σ (Wzwt +Uzht−1 + bz ), (9)
rt = σ (Wrwt +Urht−1 + br ), (10)

whereW ,Wz ,Wr ∈ RH×d ;U ,Uz ,Ur ∈ RH×H and b,bz ,br ∈ RH×1
are network parameters.

2.2 Convolutional Neural Network (CNN)
A CNN leverages three important ideas that can help improve a
machine learning system: sparse interaction, parameter sharing
and equivariant representation. Sparse interaction contrasts with
traditional neural networks where each output is interactive with
each input. In a CNN, the �lter size (or kernel size) is usually much
smaller than the input size. As a result , the output is only interactive
with a narrow window of the input. Parameter sharing refers to
reusing the �lter parameters in the convolution operations, while
the element in the weight matrix of traditional neural network will
be used only once to calculate the output. Equivariant representation
is related to the idea of k-MaxPooling which is usually combined
with a CNN. So each �lter of the CNN represents some feature, and
a�er the convolution operation, the 1-MaxPooling value represents
the highest degree that the input contains the feature. �e position
of that feature in the input is irrelevant due to the convolution. �is
property is very useful for many NLP applications. Below is an
example to demonstrate the CNN implementation.

Assuming thatW ∈ Rn×d is the input sentence matrix, with
each word represented by a d-dimensional word embedding vector;
f ∈ Rm×d represents the �lter with sliding window sizem. �en
the convolutional output of the inputW and the �lter f is a n-
dimensional vector o:

oi =
m−1∑
k=0

d−1∑
j=0

fm−k−1, jWi−k, j . (11)

A�er the k-MaxPooling, the maximum of the k values will be kept
for the �lter f , which indicates the k highest degree that �lter f
matches the inputW .
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�ere are some fundamental di�erences between CNN and RNN
and thus can bring us di�erent bene�ts. Convoluational networks
can be stacked to represent large context sizes and extract hierarchi-
cal features over larger contexts with more abstractive features. On
the contrary, RNN views the input as a chain structure and therefore
requires a linear number O(N ) of operations. However, the la�er
is well designed for sequence modeling. Besides, in RNN, the next
output depends on the previous hidden state which is not suitable
for parallelization over the elements of a sequence. CNN, on the
other side, is very amenable to this computing paradigm since the
computation of all input words can be performed simultaneously.

2.3 Hybrid Framework
With recent advances of neural network models in natural language
processing, a standard for sequence modeling now is to encode a
sequence of text as an embedding vector using models such as CNN
or RNN. For example, to match two sequences, a straightforward
approach is to encode each sequence as a vector and then to combine
the two vectors to make a decision. In a CNN, the �lter size (or
kernel size) is usually much smaller than the input size. As a result,
the output is only interactive with a narrow window of the input
and usually emphasizes the local lexical connections of the n-gram.
On the other hand, RNN is well designed for sequence modeling.
Especially long short-termmemory (LSTM) models can successfully
keep the useful information from long-range dependency but with
a tradeo� of ignoring the local n-gram coherence. Fundamentally,
recurrent and convolutional neural networks have their own pros
and cons, and it has been found that using a vector from either CNN
or RNN to encode an entire sequence is not su�cient to capture all
the important information sequence [8, 9].

�ere have been several trials to design a hybrid framework for
coherent combinations of CNNs and RNNs and enjoy the merits
from both. [40] developed hybrid models that process the text using
both convolutional and recurrent neural networks on extracting
linguistic information from both structures to address passage AS.
[6] proposed a novel neural network model based on a hybrid of
ConvNet and BI-LSTMs for the semantic textual similarity mea-
surement problem. Besides that, their pairwise word interaction
model and the similarity focus layer can be�er capture �ne-grained
semantic information, compared to previous sentence modeling
approaches that a�empt to ”cram” all sentence information into a
�xed-length vector. [44] proposed an e�cient hybrid model that
tackles the problem which combines a fast deep model with an ini-
tial information retrieval model to e�ectively and e�ciently handle
AS.

3 MODEL FORMULATION

3.1 conv − RNN
CNN with convolutional layers and nonlinear layers followed by a
pooling layer has been widely used for semantic representations
in text modeling in various NLP tasks, and has proven to gain bet-
ter performances than traditional NLP methods. However, CNN
emphasizes the local n-gram features and could not capture long
range interactions. On the other hand, RNN could e�ciently keep

Table 1: Notations used in conv − RNN

Notation and Description
wi the ith word in the input sentence
|s | the length of the input sentence
S the input sentence
V vocabulary
|V | the size of vocabulary
W the word embedding matrix

dw ,dr the dimension of word embedding and RNN cell
respectively

vi the word embedding of wordwi

r
f
t , r

b
t , rt the output of forward/backward RNN

units and BI-RNN layer respectively at time step t
h
f
|s | ,h

b
|s | the �nal hidden states of forward/backward RNN

units respectively
n the number of �lter vectors
fi the ith �lter vector used in convolution layer
cit the output of convolution layer with

�lter vector i at time step t
Aq the a�ention vector based on input question q
Xs the �nal semantic representation of input sentence S

Algorithm 1 conv − RNN Algorithm
Input: �e input sentence consists of a series of words:[

w1, ...,w |s |
]
, where wi is drawn from a �nite-sized vocab-

ulary V
1: Represent wi with its corresponding word embedding vi ∈

Rdw via a lookup table operation vi = LTW (wi ). De�ne
S =

[
v1, ...,v |s |

]
as the input sentence embedding matrix with

dimension Rdw×|s | .
2: Apply BI-RNN to process S to get outputs r ft , rbr ∈ Rdr and

�nal hidden states hf|s | ,h
b
|s | of forward and backward RNN

respectively at time step t . Concatenate r ft , rbr and get rt ∈
R2dr , denote rt =

[
r
f
t ; rbt

]
.

3: Use a set of n �lter vectors fi ∈ R2dr to process R and get C
where Cit = f Ti · rt

4: Adopt the recti�ed linear (ReLU) functionmax(0,x) to process
C with outputs A de�ned as Ait =max(0,Cit )

5: Applymax pooling to processA and getXs ∈ Rn whereXs [i] =
max(0,A [i, :]).

Output: Return Xs

the useful information from long-range dependency while empha-
sizing the local information at each time step t simultaneously.
Fundamentally, recurrent and convolutional neural networks have
their own pros and cons, and it has been found that using a vector
from either CNN or RNN to encode an entire sequence is not su�-
cient to capture all the important information from the sequence.
�us, we propose the following hybrid framework for coherent
combinations of CNNs and RNNs and enjoy the merits from both,
namely conv − RNN . Our model consists of the following four
types of layers: word embedding layer, BI-RNN layer, convolutional
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Figure 1: conv − RNN

layer and max-pooling layer. We summarize conv − RNN in Al-
gorithm 1 (the relevant notations are de�ned in Table 1) and detail
as following:

Word embedding layer �e original input is a sentence S
consisting of a sequence of words:

[
w1, ...,w |s |

]
, where

each word is drawn from a �nite-sized vocabulary V with
size |V |. Before ��ing into the next layer, each word
is transformed into a low-dimensional dense vector via
a lookup table operation: vi = LTW (wi ), where W ∈
Rdw×|V | is theword embeddingmatrix anddw is eachword
embedding dimension. As a result, the input sentence S is
represented as a matrix where each column corresponds
to a word embedding.

BI-RNN layer �e sentence matrix is then ��ed into the
BI-RNN layer with dimension dr . Single direction RNN is
insu�cient and su�ers from not utilizing the contextual
information from the future words. �e BI-directional RNN
utilizes both previous and future contexts by processing
the sequence on both forward and backward directions. At
each time step t , the output rt is the concatenation of the
two output vectors r ft and rbt from both directions. Besides,
the �nal hidden states hf|s | ,h

b
|s | from both directions are

usually used for representing the whole sentences. We
apply a�ention mechanism using hf|s | ,h

b
|s | for AS.

Convolution layer Given the output of BI-RNN layer, R ∈
R |s |×2dr , the convolution layer uses a set of n �lter vectors
fi ∈ R2mdr with sliding window size m to process it by

Figure 2: conv − RNN based sentence classi�cation.

a linear convolution operation. Formally, let Ri :i+j refer
to the concatenation of ri , ri+1, ..., ri+j . �e linear con-
volution operation takes the dot product of fi with each
m-gram in the sentence S shown as follows:

Cit = f Ti · Rt−m+1:t (12)

In particular, the width of �lter mapsm in conv − RNN is
set to 1, as the BI-RNN layer could already capture depen-
dencies on di�erent time scales adaptively. �erefore, we
don’t need to set a �xed size sliding window size, which
might be a bo�leneck of CNN [52]. �e simpli�ed convo-
lution operation is shown as follows:

Cit = f Ti · rt (13)

where C ∈ Rn×|s | . To enable the learning of non-linear
decision boundaries, a non-linear activation function is
used to process C . In this paper, we used a recti�ed linear
(ReLU) function as the non-linear activation function.

Pooling layer Pooling, including max-pooling, min-pooling
and average-pooling, is usually used to extract robust fea-
tures from the results of convolution operation. In this
paper, we propose to apply max-pooling for each �lter to
capture the most signi�cant signal. Formally, we extract
the max value from each row ofC , which will generate the
�nal representation vector Xs ∈ Rn for the input sentence
S

3.2 conv − RNN for Sentence Classi�cation
In this section, we provide a simple but very e�ective sentence
classi�cation model as illustrated in Figure 2 based on the pro-
posed conv − RNN . �e e�ectiveness of semantic representation
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Figure 3: conv − RNN based question-answer matching net-
work.

of input sentences is critical to the performance of sentence clas-
si�cation tasks. conv − RNN is adopted to extract the semantic
information of the input texts, which are then used to predict its
classes. Speci�cally, there is a joint layers on top of conv − RNN .
�is joint layer concatenates the output of conv − RNN , Xq , and
two �nal hidden states from the forward and backward RNN units
respectively into X join =

[
h
f
|s |
′,X ′q ,h

b
|s |
′
] ′
, which is used as the �-

nal representation of input texts. �is model includes an additional
hidden layer on top of the joint layer to allow for modeling inter-
actions between the components of intermediate representations.
On top of the whole model, there is a so�max classi�cation layer,
which generates a distribution over the class labels.

3.3 Attention Based conv − RNN for Answer
Selection

We further proposed an a�ention based conv − RNN for AS as
illustrated in Figure 3. �e problem is formulated as follows: assum-
ing that a question q is associated with a set of candidate answers
{a1, ...,an } accompanied with their judgements {y1, ...,yn }, where
yi = 1 if the answer is correct and yi = 0 otherwise. To be�er cap-
ture QA relationship, we augmented the input word embeddings
with additional dimensions to represent the semantic similarity
between the words of question and answer sentences. Formally, for

each wordwq
i in question q, we augment its word embedding vqi

with an overlapping score oqi which is the maximum inner prod-
uct of vqi with any word embedding in the answer ; similarly for
each word wa

i in answer a, we augment its word embedding vai
with an overlapping score oai which is the maximum inner prod-
uct of vai with any word embedding in the question. �is word
matching feature was inspired by [45]. Given a wordwi , the �nal
word representation is obtained by concatenating the original word
embedding and the corresponding overlapping score.

We use separate BI-RNN layers to process the questions and
answers respectively but adopt a shared convolutional layer. �is
is because questions and answers usually have very di�erent struc-
tures, e.g. the lengths of answers are usually much longer than
that of questions. It has shown signi�cant improvement on per-
formance and convergence rate by using weight-sharing layers on
top of embedding layers [4]. �e intuition behind this is that the
corresponding elements in q and a are guaranteed to represent the
same topic in a shared convolutional layer but there is no such
constraint with separate layers.

In addition, we develop a simple but e�ective a�ention mech-
anism to improve the semantic representations for the answers
based on the questions. In QA pairs, the answers might be much
longer than questions and contain lots of words that are irrelevant
to the questions. Hence totally separate encoding of questions and
answers might result in answer sentence representations distracted
by irrelevant information. We add external information from ques-
tion BI-RNN encoder to the input of the conv − RNN for answer
sentence encoding. In the recurrent neural networks, the �nal hid-
den states h |s | or the average of all hidden states 1

|s |
∑ |s |
t=1 ht is

usually adopted as the question representation. In this paper, we
add the �nal hidden states hf|s | ,h

b
|s | from forward and backward

RNN units respectively to get the a�ention vector Aq . We apply
the gated recurrent unit (GRU)[1] as the RNN unit. Formally, given
Aq , the hidden state ht used for learning answer representations is
computed by

ht = (1 − zt ) ◦ ht−1 + zt ◦ h̃t , (14)
h̃t = σ (Wvt +U [rt ◦ ht−1] +CAq + b), (15)
zt = σ (Wzvt +Uzht−1 +CzAq + bz ), (16)
rt = σ (Wrvt +Urht−1 +CrAq + br ), (17)

whereW ,Wz ,Wr ∈ Rdr×dw ;U ,Uz ,Ur ∈ Rdr×dr ;C,Cz ,Cr ∈ Rdr×dr
and b,bz ,br ∈ Rdr are weight matrices. σ is non-linear activation
function. �is a�ention mechanism is designed to focus on the
words in the answer sentences that are strongly connected to the
questions.

Given the resulting vector representations Xq and Xa , the Geo-
metric mean of Euclidean and Sigmoid Dot (GESD)[4] is used to
measure the relatedness between the two representations:

Xsim =
1

1 + ‖x − y‖ ×
1

1 + exp(−γ (xyT + c))
. (18)

It has been proved that GESD could achieve superior performance
than simple cosine similarity. On top of the GESD layer and two
blocks, there is a joint layer which concatenates Xq ,Xa and Xsim
into a single vector: X join = [X ′q ,X ′a ,X ′sim ]

′.�is vector is then
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Table 2: Summary Statistics of SC Datasets.

Data c l N |V |
��Vpre �� Test

MR 2 20 106,62 18,765 16,448 CV
SST-1 5 53 11,855 17,836 16,262 2,210
SST-2 2 53 9,613 16,188 14,827 1,821
Subj 2 23 10,000 21,323 17,913 CV
IMDB 2 251 50,000 102,896 58962 25,000

Note: c: Number of classes. l: Average sentence length. N: Size of
dataset. |V |: Vocabulary size.

��Vpre ��: Number of words present in
the set of pre-trained word embeddings. Test: Test set size. CV

(cross validation): No standard train/test split and thus 10 fold CV
was used.

passed through two layers of full-connected neural networks, which
generates a distribution over the class labels.

4 EXPERIMENTS AND EVALUATIONS
4.1 Sentence Classi�cation

4.1.1 Experimental Datasets. We tested conv − RNN for SC
(proposed in Section 3.2) on �ve widely used datasets summarized
as following:

• MR: Short movie review dataset with one sentence per re-
view. Each review was labeled with their overall sentiment
polarity (positive or negative).

• SST-1: Stanford Sentiment Treebank 1, an extension of
movie review dataset. It includes �ne-grained labels (very-
positive, positive, neutral, negative, very-negative) for
215,154 phrases in the parse trees of 11,855 sentences,
which is more convenient for applications of recursive
neural network (RecNN).

• SST-2: Similar to SST-1 but with only binary labels (positive
or negative, neutral reviews removed).

• Subj: Subjectivity dataset containing sentences labeled
with respect to their subjectivity status (subjective or ob-
jective).

• IMDB: A large Internet movie database for binary senti-
ment classi�cation. It includes 50k full-length labeled re-
views with provided training and testing splits. Besides, it
provides 50k unlabeled reviews for unsupervised learning.

�e samples of the �rst 4 tasks are short snippets with an average
length less than 60. IMDB is a much larger dataset containing
reviews with an average length more than 250. Summary statistics
of these datasets are given in Table 2. We preprocessed the texts
so that punctuations are treated as separate tokens and tokenized
the text by space. We did not truncate the sentences to speci�c
length. Besides, all the characters are converted to lower case.
For comparison with other published results, the standard splits
are used when they are available; for MR and Subj, 10-fold cross-
validation was used for comparison.

4.1.2 Baseline Competitors. We did a very extensive compar-
isonswith the state-of-the-artsmethodologies, which can be broadly
divided into the following categories:

Traditional Machine Learning (ML) [3] studied a statisti-
cal parsing framework for sentence-level sentiment clas-
si�cation; [46] identi�ed that simple Naive Bayes (NB)
and Support Vector Machine (SVM) variants outperform
most published results on sentiment analysis datasets; [47]
showed how to do fast dropout training by sampling from
or integrating a Gaussian approximation, which is justi-
�ed by the central limit theorem and empirical evidence,
and it results in an order of magnitude speedup and more
stability; [42] also showed that the dropout regularizer
is �rst-order equivalent to an L2 regularizer applied a�er
scaling the features by an estimate of the inverse diagonal
Fisher information matrix; [19] compared several machine
learning approaches in the �eld of Sentiment analysis, and
combined them to achieve be�er performance.

Deep Learning (DL) [14] extended word2vec with a new
method called Paragraph-Vec, which is an unsupervised
algorithm that learns �xed-length feature representations
from variable-length pieces of texts, such as sentences,
paragraphs, and documents. [36–38] are various exten-
sions of recursive networks; [26] proposed to incorporate
generic and target domain embeddings in CNN for SC;
[45] proposed a general “compare-aggregate” framework
that performs word-level matching followed by aggrega-
tion using CNN; [10] reported on a series of experiments
with CNNs trained on top of pre-trained word vectors for
sentence-level classi�cation tasks; [13] empirically studied
desirable properties such as semantic coherence, a�ention
mechanism and kernel reusability in CNNs for learning SC
tasks; [2] presented two approaches that use unlabeled data
to improve sequence learning with recurrent networks; [7]
leveraged the Combinatory Categorial Grammar (CCG)
combinatory operators to guide a non-linear transforma-
tion of meaning within a sentence; [27] proposed novel
approaches that use both word embeddings created from
generic and target domain corpora when it is di�cult to
�nd a domain corpus that is large enough for creating
e�ective word embeddings.

Hybrid Framework of ML and DL [28] presented a depen-
dency tree-based method for sentiment classi�cation of
Japanese and English subjective sentences using condi-
tional random �elds with hidden variables. [39] intro-
duced a generalization of LSTMs to tree-structured net-
work topologies; [16] used the multi-task learning frame-
work to jointly learn across multiple related tasks based
on recurrent neural network.

4.1.3 Experimental Setup.

Pre-trained Word Vectors For all of the SC tasks, we use
the publicly pretrainedword2vec [21, 22] vectors trained
on part of Google News dataset (about 100 billion words).
�is word embedding model was trained using the con-
tinuous bag-of-words architecture and contains 300 di-
mensional vectors for 3 million words and phrases. For
words that are not present in the set of word2vec , uni-
form distribution was used to generate the vector repre-
sentations. Preliminary experiments shown that randomly
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Table 3: Hyper-parameter Con�gurations for Grid Search

RNN model GRU or LSTM
Dimension of RNN unit dr 100, 150, 200

Number of �lters n 150, 200, 300
Dimension of hidden layer 200, 400, 600

weight of L2-norm 10−5, 10−4, 10−3, 10−2

generated vectors are be�er to have same variance as pre-
trained ones. Uniform distribution between [−0.25, 0.25]
was used to generate random vectors for words that are
not present inword2vec . [35] has shown that it is be�er
to keep the word embeddings static if the dataset is too
small to �ne-tune the word matrix. On the other hand,
�ne-tuning the word matrix along with the model may
gain an improvement in �nal results for larger datasets.
As a result, we used two sets of word embeddings, static
and �ne tuned. �e two sets of vectors are concatenated
to represent each word. During training, gradients are
back-propagated only through one word matrix. Hence
the model could be able to �ne-tune one word matrix while
keeping another static. Both word matrix are initialized
withword2vec or by uniform distribution for words that
are not present inword2vec .

Training and Hyper-parameter settings Similarly to [10],
we used a grid search on the SST-2 dev set to determine
the best con�gurations, but there is no �ne tuning for the
le� tasks. In particular, we tuned the hyper-parameters
combinations as shown in Table 3. We carried out ex-
periments on the hyper-parameter combinations over the
whole grid. As a result, we used LSTM with 150 dimension
as the RNN unit. �e number of �lters n in convolution
layer is set to 200. �e dimension of the hidden layer is
200. We also added L2 regularisation term to the loss func-
tion, and the weight of L2-norm is set to 10−3. For MR and
Subj, we also utilize dropout on the word embedding layer,
BI-RNN layer and max-pooling layer respectively. �e
optimal dropout rate is set to 0.2, which is selected from
{0.2, 0.4, 0.6, 0.8}. �e dropout rate was optimized along
with other hyper-parameters shown above by grid search
forMR and Subj. �e overall network is trained tominimise
the cross-entropy of the predicted and true labels. �e
model is trained with mini-batches by back-propagation
using Adam optimization methods [11]. Batch size is set to
16, which is tested and chosen from {16, 32, 64, 128}. �e
learning rate is set to 5 × 10−4, which is optimized from
{10−4, 5 × 10−4, 10−3}. Overall, we do not perform any
task-speci�c tuning except dropout.

4.1.4 Results and Discussions. Table 4 lists the test accuracy
results of our model compared to other published methods on the
5 benchmark datasets. For MR/SST-2, the best performances are
achieved by CNN based models; for SST-1, LSTM based models
behave be�er overall. Interestingly, for Subj and IMDB, simple
models such as Naive Bayes/SVM with bag of word features would
gain excellent performance, and none of the deep learning models
could do signi�cantly be�er. Speci�cally, the best result for IMDB

Table 4: Comparison Results of conv − RNN on sentence
classi�cation tasks.

Model MR SST-1 SST-2 Subj IMDB
Sent-Parser [3] 79.5 - - - -
NBSVM [46] 79.4 - - 93.2 91.32
MNB [46] 79.0 - - 93.6 86.59
G-Dropout[47] 79.0 - - 93.4 91.2
F-Dropout [47] 79.1 - - 93.6 91.1
Drop-Bi [42] - - - - 91.98
NB-SVM Trigram [19] - - - - 91.87
Paragraph-Vec [14] - 48.7 87.7 - 92.58
RAE [37] 77.7 43.2 82.4 - -
MV-RNN [36] 79.0 44.4 82.9 - -
RNTN [38] - 45.7 85.4 - -
DCNN [26] - 48.5 86.8 - -
CNN-non-static [10] 81.5 48.0 87.2 93.4 -
CNN-multichannel [10] 81.1 47.4 88.1 93.2 -
SA-LSTM [2] - - - - 92.76
WkA + 25% �exible [13] 80.02 46.11 84.29 92.68 90.16
�lters (FF)
Fully Connected [27] 81.59 - - - -
Layer Combination
Tree-CRF [28] 77.3 - - - -
Tree-LSTM [39] - 50.6 86.9 - -
Multi-Task [16] - 49.6 87.9 94.1 91.3
CCAE [7] 77.8 - - - -
conv − RNN 81.99 51.67 88.91 94.13 90.39

We use blue to highlight wins and use ‘-’ to represent results that
are not provided.

was achieved by SA-LSTM with additional unlabeled data. [46]
explored this situation with follow up discussions1. We argue
that IMDB is a such larger dataset containing reviews with average
length more than 250 and maximum length 2,635. [24] also suggests
that “statistical methods” work well for datasets with hundreds of
words in each example but they cannot handle snippets with few
sentences. Deep neural networks are limited in representations
of large size of text, which is a worthy direction of further study.
When there are su�cient contents, simple methods such as bag of
words (BOW) are good enough.

As we can see, in 4 out of 5 tasks, our model with li�le task-
speci�c hyper-parameter tuning exceeds all the other state-of-art
methods. Notice that previous state-of-the-arts cover di�erent do-
mains, traditional ML, DL, and the hybrid framework of ML and DL.
For MR/Subj, the number of sentences is one order of magnitude
smaller than that of parameters in our model, hence regulariza-
tion has a great e�ect on the performance. We use L2-norm and
dropout to control over��ing. Dropout has been proved to be
such a powerful regularizer that enables us to use a large enough
network. Consistently, dropout achieved 2%-3% relative be�er per-
formances while L2-norm could only gain slightly be�er results
1h�ps://github.com/sidaw/nbsvm
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Table 5: Summary statistics of AS dataset.

InsuranceQA WikiQA
Train Dev Test Train Dev Test

#Q 12887 1000 1800*2 832 126 243
#C 50 500 500 10 9 10

#w in Q 7.2 7.2 7.2 6.5 6.5 6.4
#w in A 92.1 92.1 92.1 25.5 24.7 25.1

Note: #Q: Number of questions. #C: Average number of answers
per question. #w in Q: Average number of words per question. #w

in A: Average number of words per answer

(usually less than 1%). For SST-1/SST-2, the marked labels are pro-
vided at the phrase-level with more than 200k samples train models,
and regularizations are not very important to avoid over��ing in
this situation.

4.2 Answer Selection
4.2.1 Datasets. To test the performances of the proposed a�en-

tion based conv − RNN in Section 3.3, we focus on the following
two widely used benchmark datasets with summary statistics in
Table 5.

• WikiQA: An open-domain AS dataset containing 3,047
questions originally sampled from Bing query logs. �e
candidate answers were extracted from the summay para-
graphs of associatedWikipedia pages, with labels onwhether
the sentence is a correct answer to the question provided
by crowdsourcing workers. 20.3% of the answers in the
WikiQA dataset share no content words with questions
and is constructed in a natural and realistic manner. We
followed the same pre-processing steps as [50] and adopted
the standard setup of only considering questions having
correct answers for training and evaluation.

• InsuranceQA: A large-scale non-factoid QA dataset. All
of the pairs are from the insurance domain. It provides a
training set, a validation set and two test sets. For each
question in test sets and dev set, there is a set of 500 can-
didate answers, which include the ground-truth answers
and randomly selected negative answers.

4.2.2 Baseline Competitors. [51] released theWikiQA dataset
and compared methods that achieve very competitive results. Other
methods can be categorized into Information Retrieval, DNN and
the recently popular A�ention Based DNN as following:

Information Retrieval [23] introduced a new method, Key-
Value Memory Networks, that makes reading documents
more viable by utilizing di�erent encodings in the address-
ing and output stages of the memory read operation; [49]
presented an information retrieval approach for chatbot en-
gines that can leverage unstructured documents, instead of
Q-R pairs, to respond to u�erances. [17] showed that one of
the most e�ective existing term dependence models could
be naturally extended by assigning weights to concepts and
demonstrated that the weighted dependence model could

be trained using existing learning-to-rank techniques, even
with a relatively small number of training queries.

DNN [6] presented a hybrid deep learning network to ex-
plicitly model pairwise word interactions and present a
novel similarity focus mechanism to identify important
correspondences for be�er similarity measurement; [20]
introduced a generic variational inference framework for
generative and conditional models of text and validated
this framework on two very di�erent text modelling ap-
plications, generative document modelling and supervised
question answering; [48] designed a model to take into
account both the similarities and dissimilarities by decom-
posing and composing lexical semantics over sentences;
[35] used the relational information given by the matches
between words from the two members of the pair through
CNN.

Attention Based DNN [34] proposedA�entive Pooling (AP),
a two-way a�ention mechanism for discriminative model
training; [52] presented a similar general A�ention Based
CNN (ABCNN) for modeling a pair of sentences. [43] an-
alyzed the de�ciency of traditional a�ention based RNN
models quantitatively and qualitatively and presented three
new RNN models that added a�ention information before
RNN hidden representation.

4.2.3 Experimental Setup. For AS tasks, we utilize the Global
Vectors for Word Representation (Glove)[32]. Speci�cally, We use
the provided model Common Crawl with 300 dimensional vectors
and 2.2M vocabulary to initialize the word matrix. For InsuranceQA,
we used two sets of word embeddings during training: static and
�ne-tuned. �ese two sets of vectors are concatenated to represent
the corresponding words. As for WikiQA, we only use the static
embedding due to the reason that theWikiQA is an open-domain
dataset and its train/dev/test sets contain separate questions from
di�erent domains. Hence there are much fewer overlapping words
among train/dev/test sets. Besides,WikiQA is much smaller com-
pared to InsuranceQA, hence �ne-tuning the word matrix during
training would easily leads to over��ing and has a negative e�ect
on the �nal outputs.

Similarly to the set up of SC experiments, a grid search on Wik-
iQA is used to determine the best con�gurations but no tuning for
InsuranceQA. In particular, we tuned the same hyper-parameters
shown in 4.1.3. As a result, we utilize GRU as RNN unit in Bi-RNN
to encode questions and answers respectively. �estions and an-
swers share the same convolution layer and max-pooling layer. �e
dimension of GRU dr is set to 150 , and the number of �lters is set
to 200. �e parameter of GESD, γ and c , are both set to 1.0. �e
cross-entropy between the predicted and true distributions is the
objective function to be optimized. L2-norm is also added to loss
function for regularization and the regularizer is set to 10−4. We use
dropout on the Bi-LSTM layer and joint layer, and the dropout rate
is set to 0.8. We use two layers of full-connected neural networks
on top of X join to predict the probability distribution over classes,
and the hidden size is 200. Training is done via stochastic gradient
descent (SGD) over shu�ed mini-batches updated through Adam.
�e learning rate is set to 5×10−4 and batch size is set to 64. We use
mean average precision (MAP) and mean reciprocal rank (MRR) for
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Table 6: Comparison Results of conv − RNN on WikiQA.

Model MAP MRR
Word Cnt [51] 0.4891 0.4924
Wgt Word Cnt [51] 0.5099 0.5132
LCLR [51] 0.5993 0.6086
Key-Value Memory Network [23] 0.7069 0.7265
DocChat+(2) [49] 0.7008 0.7222
Paragraph-Vec [51] 0.5110 0.5160
CNN [51] 0.6190 0.6281
Paragraph-Vec-Cnt [51] 0.5976 0.6058
CNN-Cnt [51] 0.6520 0.6652
CubeCNN [6] 0.7090 0.7234
NASM + Cnt [20] 0.689 0.707
L.D.C [48] 0.7058 0.7226
CNNr [35] 0.6951 0.7107
IARNN-Occam(context) [43] 0.7341 0.7418
PairwiseRank+SentLevel [33] 0.701 0.718
AP-CNN [34] 0.6886 0.6957
ABCNN [52] 0.6914 0.7127
conv − RNN 0.7427 0.7504

We use blue to highlight wins.

the ranked set of answers to measure the performance on WikiQA.
For InsuranceQA, performance is measured using top-one accuracy.

4.2.4 Results and Discussions. Table 6 and 7 summarize the re-
sults of the proposed a�ention based conv − RNN . ForWikiQA,
it is clear that the sentence semantic models based on deep neural
networks (CNN or RNN) signi�cantly outperform traditional infor-
mation retrieval methods, suggesting that semantic understanding
beyond lexical semantics is important for AS tasks. Much previous
work [20, 51] has demonstrated signi�cant accuracy boosting with
the result obtained from the combination of a lexical overlapping
feature and the output from the deep semantic model. Results from
a�ention based neural network models verify the e�ectiveness of at-
tention mechanism for AS tasks. Our a�ention based conv − RNN
also demonstrates its e�ectiveness in semantic representation in
this task. Notice that the comparisons also revealed that a�ention
is important for semantic matching of questions and answers. �e
proposed a�ention mechanism could consistently boost 1.0%-2.0%
for MAP measure of WikiQA on average.

5 CONCLUSIONS
We propose a generic inference hybrid framework for text model-
ing, namely conv − RNN , which seamlessly integrates the merits
from both CNN and RNN. Besides, based on conv − RNN , we
also propose a novel sentence classi�cation model and an a�ention
based answer selection model, both of which utilize the e�ective-
ness of conv − RNN on semantic understanding to strengthen the
sentence classi�cation and matching power respectively. We test
empirically on a very wide variety of datasets on sentence clas-
si�cation and answer selection and empirically demonstrate the
e�ectiveness of conv − RNN .

Table 7: Comparison Results of conv − RNN on Insur-
anceQA.

Model dev test1 test2
IR model [17] 52.7 55.1 50.8
QA-LSTM with a�ention [41] 68.4 68.1 62.2
CNN with GESD [4] 65.4 65.3 61.0
A�entive LSTM [40] 68.9 69.0 64.8
IARNN-Occam [43] 69.1 68.9 65.1
IARNN-Gate [43] 70.0 70.1 62.8
AP-BILSTM [34] 68.4 71.7 66.4
conv − RNN 71.7 71.4 68.3
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