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ABSTRACT
Diabetes is a serious disease a�ecting a large number of people. Al-
though there is no cure for diabetes, it can be managed. Especially,
with advances in sensor technology, lots of data may lead to the
improvement of diabetes management, if properly mined. However,
there usually exists noise or errors in the observed behavioral data
which poses challenges in extracting meaningful knowledge. To
overcome this challenge, we learn the latent state which represents
the patient’s condition. Such states should be inferred from the
behavioral data but unknown a priori. In this paper, we propose
a novel framework to capture the trajectory of latent states for
patients from behavioral data while exploiting their demographic
di�erences and similarities to other patients. We conduct a hypoth-
esis test to illustrate the importance of the demographic data in
diabetes management, and validate that each behavioral feature
follows an exponential or a Gaussian distribution. Integrating these
aspects, we use a Demographic feature restricted hidden Markov
model (DfrHMM) to estimate the trajectory of latent states by in-
tegrating the demographic and behavioral data. In DfrHMM, the
latent state is mainly determined by the previous state and the de-
mographic features in a nonlinear way. Markov Chain Monte Carlo
techniques are used for model parameter estimation. Experiments
on synthetic and real datasets show that DfrHMM is e�ective in
diabetes management.
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1 INTRODUCTION.
Diabetes is a progressive, chronic disease related to your body’s
challenges with regulating blood sugar. Treating Diabetes has at-
tracted lots of a�entions recently as more and more people are
being a�ected. Unfortunately, there is currently no cure. Hence,
treating diabetes is not to cure you from the condition. Instead, the
treatment of diabetes consists of an ongoing process of managing
your condition and then urging you to take actions on time. Among
existing treatments, insulin pump therapy becomes popular and
has been widely used by people of all ages because of its improve-
ment in glucose management. It does allow for more� exibility in
lifestyle and the potential to even out the wide blood sugar�uctua-
tions that are o�en experienced when injecting insulin. Especially,
with advances in sensor technology, a variety of sensor-augmented
insulin pumps have been developed for patients to have continuous,
real-time glucose readings (i.e. referred to as dynamic behavioral
features) that enhance the ability to monitor glucose, especially
when making decisions that involve food, exercise and sick-day
management. For instance, the insulin pump from Medtronic1
streams live data about a patient’s glucose and insulin levels via
the phone into the cloud. Coupled with other information from the
phone such as activity, location, food etc., they provide patients live
insights and recommendations to improve diabetes management.

One important task in diabetes management is to detect hyper-
glycemia and hypoglycemia, as they are dangerous conditions for
diabetes patients, which should be detected in advance.� is re-
quires a precise modeling to predict the glucose and insulin levels.
However, prediction is not easy, because there exists inevitably
noise or errors in the behavioral data, due to many reasons, such as
device faults, the carelessness of patients, etc.� us, the behavioral
data cannot be directly used for extracting meaningful knowledge
about the patient’s state. To overcome this challenge, we assume
that there exists K latent states on which the dynamic behavioral
data does rely.� e advantage of latent state learning [4, 9, 16, 24, 25]
is that it reduces the dimensionality of data, i.e., transforming the
high-dimensional and noisy dynamic behavioral data into low-
dimensional andmeaningful latent states. Moreover, the latent state
represents the inherent conditions of patients which captures the
characteristics of the behavioral data. Each latent state corresponds
to a distribution on which the behavioral data is generated. We

1h�p://www.medtronic.com/us-en/index.html
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propose to use hidden Markov model (HMM) to infer the trajectory
of latent states for each patient. Besides the dynamic behavioral
data, the demographic data of patients is also available, which plays
an important roles in diabetes states prediction. Although some ex-
isting methods incorporate demographic data in their model, they
do not provide explanations. Besides, they simply concatenate the
demographic and behavioral features together, which ignores the
di�erence between the demographic and behavioral features.

In this paper, we are the� rst to conduct a hypothesis testing to
demonstrate that diabetes is indeed a�ected by the demographic
data. We� rst run K-means to cluster patients using their demo-
graphic data, and then conduct a hypothesis testing to see whether
there exists distinction between the behavioral data from clusters.
More speci�cally, the null hypothesis is that the distributions of the
dynamic behavioral features for every pair of clusters, Ck and Ck 0 ,
are the same. Namely, H0 : FCk = FCk0 . If two distributions are the
same, they must share the same� rst and second moments.�us,
we reduce the origianl hypothesis testing to validate whether the
clusters Ck and Ck 0 share the same empirical variance and mean,
i.e., H�ar

0 : � 2
Ck = �

2
Ck0 and H

mean
0 : µCk = µCk0 .� e F-testing and

T-testing are adopted forH�ar
0 andHmean

0 , respectively.� e testing
results on the real DIAB-1000 data, collected by an enterprise from
about 1,000 patients over two years, con�rms that demographic
data is one important factor of diabetes conditions which should be
taken into consideration when predicting states of diabetes patients.

Another important contribution in this paper is that we pro-
pose to make prediction or clustering based on the trajectory of
latent states that is learnt from the dynamic behavioral and static
demographic data (i.e., raw data) rather than directly using the raw
data.� e latent states are learnt via the proposed Demographic
feature restricted hidden Markov model (DfrHMM). In DfrHMM,
the behavior data is mainly dependent on the latent state which
depends on the previous latent state and the demographic features.
Namely, di�erent patients with di�erent static demographic data
have di�erent transition pa�erns of latent states.� e e�ect of la-
tent state and demographic features is nonlinearly incorporated
into the transition function via a logistic function. In fact, a similar
idea was recently proposed by [25], where they proposed a higher-
order hidden Markov model and applied it in educational se�ing to
diagnose students’ learning trajectory. Each dynamic behavioral
feature follows an exponential or Gaussian distribution that is vali-
dated in the real data, and then the conditional distribution of each
parameter can be derived. As the posterior distribution is complex,
Markov Chain Monte Carlo (MCMC) simulation is used for model
parameter estimation. We present the overall algorithm to learn the
latent sate and predict the dynamic behavioral features in future
timestamps.� e proposed model is then tested on both synthetic
dataset and real dataset, DIAB-1000, which is collected from 993 pa-
tients over two years. Experimental results show that the proposed
method can outperform baselines in diabetes management.

2 METHODOLOGY.
We� rst introduce two de�nitions that will be used across the paper.

De�nition 2.1 (Dynamic Feature). A dynamic feature is an in-
dividual measurable property of a phenomenon being observed,
where the value of this property is dynamically changed over time.

De�nition 2.2 (Static Feature). A static feature is an individual
measurable property of a phenomenon being observed, where the
value of this property remain stable for a long time.

For example, the behavioral features capturing the patients’ glucose
and insulin levels are called dynamic features, because they are
evolving over time.� e demographic features, such as the patients
age or gender, are called static features, because they does not
change for a long time.

Next, we present the problem formulation in Section 2.1. We
will introduce the proposed Demographic feature restricted hidden
Markovmodel andMarkov chainMonte Carlo techniques for model
parameter estimation in Sections 2.2 and 2.3, respectively.

2.1 Temporal Latent Status Modeling.
Temporal data is commonly observed in many sensor applications.
In the se�ing of diabetes management, the Medtronic company
develop pumps for diabetes patients to monitor their behaviors.
�ese behavioral features could be bolus deliver status, number
of hypoglycemia events within a speci�c duration, number of low
glucose events, etc. Besides, the demographic information for all
patients is also available. To model the temporal latent status of
patients, we� rst make the following assumptions.� e validations
of these assumptions are deferred to Section 3.1.

A���������2.1. If patients i and j share the same latent status,
their behavioral features will not di�er a lot.

A���������2.2. If patients i and j share the same demographic
data, their behavioral features will not di�er a lot.

Given Assumptions 2.1 and 2.2, the dynamic features of a patient
are determined together by the e�ect of latent status as well as the
demographic features. Simple concatenation between behavioral
and demographic features cannot work. In the proposed model,
we incorporate the demographic data in the following way:�e
current latent state is determined by the previous latent state and
the patient’s demographic data. Namely, if two patients have the
same latent state at the previous timestamp and share similar de-
mographic features, they will have the same latent status at the
current timestamp. In return they share similar behavioral feature
values in a high probability. In this sense, for each patient, we will
learn the latent status trajectory from his temporal data. Specif-
ically, suppose there are N diabetes patients which are regularly
monitored.� eir temporal data over T timestamps are denoted as
Xi 2 RD⇥T (i = 1, · · · ,N ), where D is the dimension of dynamic
features andT is the total timestamps. For each patient i , we denote
by Xit 2 RD , his features collected at time t. As the status of the
patient i is dynamic, Xit may evolve over time.�us, Xi represents
the dynamic features that we observe at every timestamp.�e
demographic information of patient i is also collected, referred to
as the static feature, which is denoted as Zi 2 RM (i = 1, · · ·N ),
whereM is the dimension of static demographic features.

We assume that there areK latent status for each patient, denoted
as S = {S1, · · · , SK }. For the patient i , the trajectory of his latent
status up to T timestamps is �i = (�i1, · · · ,�iT ) (i = 1, · · · ,N ),
where �it 2 S denotes the latent status at time t . We summary the
notations in Table 1, where some notations will be introduced in
next subsection. Next, we introduce our model, restricted hidden
Markov model, to learn the latent status trajectories for patients.
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Table 1: Notations.
Notation De�nition

Xi the dynamic behavioral data for patient i
Xe
i the data following an exponential dist. for patient i

Xn
i the data following an Gaussian dist. for patient i
X the collection of behavioral data
Zi the static demographic data for patient i
Z the collection of demographic data
�i the trajectory of latent states for pateint i
S the space of latent state space, where |S| = K

� the coe�cient vector of demographic features
v the coe�cient vector of latent states
c the parameter vector of the exponential dist.
µ the mean of the Gaussian dist.
�2 the mean of the Gaussian dist.

Figure 1: Flow of the proposed DfrHMM.

2.2 DfrHMM.
Demographic feature restricted HiddenMarkovModel. HiddenMarkov
model is widely used to model the process where the behavior data
is dependent on some invisible latent status. However, in our sce-
nario, patients’ latent state is also a�ected by their demographic
features at each timestamp. Besides, the behavior data of patient
i at time t , Xit , are a�ected by both the demographic features Zi
and the corresponding latent state �it at the speci�c time.� e path
diagram in Figure 1 illustrates such a process, which we refer to as
Demographic feature estricted Hidden Markov Model (DfrHMM).
DfrHMM restricts the observation not only to rely on the latent
state at previous timestamp, like what the traditional HMM does,
but only to depend on the demographic data. DfrHMM incorporates
the demographic data into the modeling of transition probability.

Transition Probability Modeling. �e transition probability ma-
trix is de�ned as P 2 RK⇥K . Di�erent from traditional HMM
approaches where the transition probability matrix is represented
by a table with values residing in [0, 1], we adopt the idea from [25]
that each transition probability is measured by a concrete function.
More speci�cally, each element Pkk 0 of P represents the probability
of Sk ! Sk 0 , i.e., the probability of being S 0k at the current times-
tamp given Sk at previous timestamp. In the proposed DfrHMM,
we take the static feature Zi into consideration. We believe that
di�erent patients with di�erent static features will have di�erent
transition pa�ern. Namely,

Pkk 0 = P(�it+1 = Sk 0 |�it = Sk ,Zi ) ⌘ G (Zi ,�it ,�it+1), (1)

where G (Zi ,�it ,�it+1)is a link function. Similarly to [25], we
choose a commonly used logistic function, that is,

lo�it[G (Zi ,�it )] = �0 + � · Z>i +v · (�it ,�it+1)>, (2)

wherev = (�1,�2), and

• � is the coe�cient vector in which each entry represents
the contribution of a static feature to the change of status;

• �1 > 0 and �2 > 0 are the change rates for previous and
current underlying status, respectively.

In most conventional HMMs, P only depends on the latent states
at both previous and current timestamps. Di�ering with them, in
our scenario P is nonlinearly dependent on the latent states at both
previous and current timestamps as well as the demographic data,
as shown in Eq. (2). Next, we introduce an assumption about the
distribution of dynamic behavioral features. We defer the validation
of this assumption to Section 3.2.

A��������� 2.3 (D���D�����������). �e dynamic data X 2
RD can be split into two independent sets: Xe 2 RDe and X� 2 RDn ,
such that 1)X = (Xe ,X� ) withD = De+Dn , and 2)Xe ⇠̇Exponential(c ),
and X� ⇠̇Gaussian(µ,� ), where c 2 RDe and µ,� 2 RDn .

Here, Xe ⇠̇Exponential(c ) means that for each element it fol-
lows Xe (de ) ⇠ Exponential(cde ),8de  De . Similarly, we have
X� (dn ) ⇠ Gaussian(µdn ,�dn ),8dn  Dn . So, for each patient i at
time t , we have that Xit = (Xe

it ,X
�
it ) where X

e
it ⇠̇Exponential(c ),

andX�
it ⇠̇Gaussian(µ,� ).� ese two types of features are commonly

seen in the behavior data. For patients with di�erent latent state
k , they have di�erent model parameters ck , µk and �k to capture
dynamic features.� erefore, the probability that the behavioral
data of patient i at time t is Xit is as follows

P�it (Xit ) ⌘ P(Xit |�it ,c�it , µ�it ,��it )
= P(Xe

it |�it ,c�it )P(X
�
it |�it , µ�it ,��it ).

(3)

�e second equation holds because of Assumption 2.3. P�it (Xit )
measures the probability that the value of the dynamic feature
being Xit given the latent state of patient i being �it at time t .�e
likelihood function of patient i (i = 1, · · · ,N ) can be wri�en as:

P(Xi ,�i ,Zi |c�i , µ�i ,��i )
=
QT

t=2 P(Xit |�it ,c�it , µ�it ,��it )P(�it |�it�1,Zi )
⇥P (Xi1 |�i1,c�i1 , µ�i1 ,��i1 )P(�i1)

= P(�i1)
QT

t=1 P(Xit |�it ,c�it , µ�it ,��it )
QT

t=2 P(�it |�it�1,Zi )
Moreover, based on the total probability formula, the joint proba-
bility of both static and dynamic features of patient i is

P(Xi ,Zi |c�i , µ�i ,��i ) =
P
�i P(Xi ,�i ,Zi |c�i , µ�i ,��i ). (4)

Denote collections of dynamic features and static features as X =
{X1, · · · ,XN } andZ = {Z1, · · · ,ZN }, respectively.� en, the full
likelihood function of N patients over T timestamps is

L(X,Z,� ,�,v,c, µ,� )
= P(�)P(v )P(c )P(µ)P(� )

QN
i=1
PK
k=1 P(�i1 = k )

⇥QT
t=1 P(Xit |�it ,c�it , µ�it ,��it )

QT
t=2 P(�it |�it�1,Zi )

= P(�)P(v )P(c )P(µ)P(� )
QN

i=1
PK
k=1 �k

⇥QT
t=1 P(Xit |�it ,c�it , µ�it ,��it )

QT
t=2 P(�it |�it�1,Zi ),

(5)

where �k ⌘ P(�i1 = k ) measures the marginal probability of
the latent state being k at the initialization step for patient i (i =
1, · · · ,N ).� en, the joint posterior distribution of � , �, v , c , µ,
and � given X andZ is

P(� ,�,v,c, µ,� |X,Z)
/ P(X |� ,c, µ,� )P (� |Z,�,v )P(�)P(v )P(c )P(µ)P(� ). (6)
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Speci�cally, we have that

P(� ,�,v,c, µ,� |X,Z)
/QN

i=1
QT

t=1 P(Xit |�it ,c, µ,� )P(�it |�it�1,Zi ,�,v )
⇥P(�)P(v )P(c )P(µ)P(� )

/QN
i=1
QT

t=1 P(X
e
it |�it ,c�it )P(X

�
it |�it , µ�it ,��it )

⇥P(�it |�it�1,Zi ,�,v )P(�)P(v )P(c )P(µ)P(� )

(7)

Denote the parameter set � = {�,v,c, µ,� } and 8s 2 �, ��s ,
� \ s .� en, the full conditional distributions of each parameter in
� given the data and the rest of the parameters are as follows:

P(� |X, � , Z, ��� ) /
QN
i=1
QT
t=1 P(�it |�it�1, Zi , �, v )P(�); (8)

P(v |X, � , Z, ��v ) /QN
i=1
QT
t=1 P(�it |�it�1, Zi , �, v )P(v ); (9)

P(c |X, � , Z, ��c ) /
QN
i=1
QT
t=1 P(X

e
it |�it , c )P(c ); (10)

P(µ |X, � , Z, ��µ ) /
QN
i=1
QT
t=1 P(X

�
it |�it , µ, � )P(µ ); (11)

P(� |X, � , Z, ��� ) /QN
i=1
QT
t=1 P(X

�
it |�it , µ, � )P(� ). (12)

�e full conditional distribution for �it is

P(�it |Xi , Zi , � , � ) =
Q
k �̃
I (�i=k )
ik,t , (13)

where the estimation of the �̃ik,t (8i = 1, · · · ,N ,k = 1, · · · ,K , t =
1, · · · ,T ) takes the following forms in di�erent scenarios:
(1) When t = 1,

�̃ik,t =
�kP(Xit |�it=k,� )P
k0 �k0P(Xit |�it=k 0,� ) . (14)

(2) For 1 < t  T ,
�̃ik,t =

P(Xit |�it=k,� )P(�it=k |�it�1,Zi )P
k0 P(Xit |�it=k 0,� )P(�it=k 0 |�it�1,Zi ) . (15)

As the posterior distribution is complex, one e�cient approach to
obtain the estimation of the parameters is Markov chain Monte
Carlo (MCMC) simulation. Namely, we cannot obtain the closed
form for the full conditional distribution of parameters in �, but
samples for those type of parameters can be iteratively drawn from
their distributions for estimation.

2.3 MCMC for Model Parameter Estimation.
To apply Markov chain Monte Carlo (MCMC) techniques [25] for
estimating model parameters, we� rst introduce the following prior
distributions for all parameters in � that are used in the model.

�0 ⇠ Normal(µ�0 ,�
2
�0
);

�j ⇠ Lognormal(µ�j ,�
2
�j
),8, j = 1, · · ·DM ;

�j ⇠ Lognormal(µ�j ,� 2
�j ), j = 1, 2;

ck j ⇠ Gamma(�ck j , �ck j ),8j = 1, · · · ,De ,k = 1, · · · ,K ;
µk j ⇠ Normal(µµk j ,�

2
µk j

),8j = 1, · · · ,Dn ,k = 1, · · · ,K ;
�2
k j ⇠ Inverse � Gamma(�� 2

k j
, �� 2

k j
),8j = 1, · · · ,Dn ,k = 1, · · · ,K ;

� ⇠ DiscreteUniform(K );

For simplicity, the hyper parameter set is denoted as

� = {µ�j , µ�j ,��j ,�ck j , �ck j , µµk j ,�µk j ,�� 2
k j
, �� 2

k j
}, (16)

where subindexs are properly chosen. For any parameter vector
C 2 Rd , we denote that C�i represents all elements in C except
for ci ,8i = 1, · · · ,d .� en, the update at the r -th iteration of the
MCMC simulation is shown as follows.

2.3.1 Update �j 2 v,8j = 1, 2. v is the coe�cient parameter
vector in (2) which captures the e�ect of latent status in both previ-
ous and current timestamps. To update �j , we� rst draw �

⇤
j from

Uniform(�r�1j � ��j ,�r�1j + ��j ), and accept �⇤j with probability

� (�⇤j ,�
r�1
j ) =

QN
i=1
QT

t=1 P(�
r�1
it |� r�1it�1,Zi ,�

r�1,vr�1
�j ,�⇤j )P(�

⇤
j )QN

i=1
QT

t=1 P(�
r�1
it |� r�1it�1,Zi ,�

r�1,vr�1 )P(�r�1j )
. (17)

Here, P(�⇤j ) is the marginal p.d.f. of choosing �⇤j .

2.3.2 Update �j 2 �,8j = 0, · · · ,DM . Note that �0 is the inter-
section and �j (j = 1, · · · ,DM ) is a coe�cient which represents the
contribution of the static demographic feature in the link function
(2). To update �j , we� rst draw �

⇤
j from a Uniform distribution, i.e.,

Uniform(�r�1j � ��j , �r�1j + ��j ), and accept �⇤j with probability

� (�⇤j , �
r�1
j ) =

QN
i=1
QT

t=1 P(�
r�1
it |� r�1it�1,Zi ,�

r�1
�j ,vr�1,�⇤j )P(�

⇤
j )QN

i=1
QT

t=1 P(�
r�1
it |� r�1it�1,Zi ,�r�1,vr�1 )P(�r�1j )

. (18)

Here, P(�⇤j ) is the marginal p.d.f. of choosing �⇤j .

2.3.3 Update ck j 2 ck ,8j = 1, · · · ,De ;k = 1, · · · ,K . Note
that the prior of ck j is Gamma distribution which is a conjugate
distribution in terms of the exponential likelihood function.�us,
the posterior of ck j is Lomax distribution with parameters (�̂, �̂ ):

D� = �ck j +
P
i,t
I (�it = k ); D

� = �ck j +
P
i,t
X

e
it I (�it = k ). (19)

�us, ck j is sampled following a two-step procedure:
(a) Sample � ⇠ Gamma( 1

�̂
, �̂ );

(b) Sample ck j ⇠ Exponential(�).
(20)

Note that the Lomax distribution arises as a mixture of exponential
distributions where the mixing distribution of the rate is a gamma
distribution. Namely, if � ⇠ Gamma(k,� )and X ⇠ Exponential(�),
then the marginal distribution of X is Lomax( 1k ,� ).

2.3.4 Update µk j and �2
k j , 8j = 1, · · · ,Dn ;k = 1, · · · ,K . �e

conjugate prior distribution of µk j and �k j follows a Normal-
inverse gamma distribution with parameters (µµk j , 1,��k j , ��k j ).
As the likelihood is normal function, the posterior of µk j and �k j
also follows a Normal-inverse gamma distribution with posterior
hyperparameters (µ̂, �̂, �̂ , �̂ ), where

µ̂ =
µµk j +X̄it

1+Nk
, �̂ = 1 + Nk , �̂ = ��k j +

Nk
2 ,

�̂ = ��k j +
1
2
PNk
i=1 (Xit � X̄it )2 +

Nk
1+Nk

(X̄it�µµk j )
2

2 ).
(21)

Here, X̄�
it =

1
Nk

P
it X

�
it I (�it = k ), D� 2 = 1

Nk

P
it (X

�
it � X̄

�
it )

2, and
Nk is the total number of patients’ status being k .�us, µk j and
�k j are jointly generated as follows:

(a) Sample �k j ⇠ Inverse-Gamma(�̂ , �̂ );
(b) Sample µk j ⇠ Normal(µ̂, �k j

Nk+1 ).
(22)

2.3.5 Update �it 2 �i ,8i = 1, · · · ,N ,8t = 1, · · · ,T . Note that
�it is a discrete distribution with values from {S1, · · · , SK }.

(a) Draw �

⇤
i1 from the discrete distribution with probability

�̃ik,1 based on Equation (14);
(b) Draw �

⇤
it ,8t = 2, · · · ,T from the discrete distribution with

probability �̃ik,t based on Equation (15).
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�e previous steps 1 ⇠ 5 iteratively proceed until the convergence
condition is satis�ed.� e pseudo code of the restricted hidden
Markov model is presented in Algorithm 1.

Algorithm 1 DfrHMM

Input: Xe , Xn , and hyperparameters �.
Output: � 2 RN⇥K .
1: while � does not change do
2: Sample �⇤j ⇠ Uniform(�r�1j � ��j ,�r�1j + ��j ) and accept �⇤j

with probability (1(b)), 8j = 1, 2;
3: Sample �⇤j ⇠ Uniform(�r�1j � ��j , �r�1j + ��j ) and accept �⇤j

with probability (1(a)), 8j = 1, · · · ,DM + 1;
4: Calculate the hyperparameters according to (1(e)), and sam-

ple ck j according to (20);
5: Calculate the hyperparameters according to (21), and jointly

sample µk j and �k j according to (22);
6: Update �it according to (14) and (15) properly.
7: end while
8: return � .

3 DIAB-1000 DATA.
�e diabetes dataset, Diab-1000, is collected by an enterprise that
monitors about 1000 patients over two years using sensors. Diab-
1000 contains two types of data: dynamic behavioral data and
static demographic data.� e notations of the features in dynamic
and static data are presented in Tables 2 and 3, respectively. In
behavioral data, the details of all features are as follows:
• Label represents whether a patient has at least one hypo-

glycemia event a�er the current bolus. For example, if label2hr
equals to 1 means that there is at least one hypoglycemia event
a�er the patient takes the bolus.
• Hypoglycemia Events, i.e., Hypo Events, records how many

times that hypoglycemia has occurred during days t1 ⇠ t2 for a
patient.
• LGA is abbreviation of Low Glucose Alerts records the number

of low glucose events during days t1 ⇠ t2.
• Sensor Glucose, abbreviated as SG, is measured with� nger stick

method while blood glucose is taken from blood. For SG, we record
its total amount, the latest amount, and other statistics within a
period, such as mean, deviation, and minimum slop.� e length of
the trajectory of the dynamic features for patient i is Ti .� e range
of Ti (i = 1, · · · ,N ) is 31 ⇠ 5786.

3.1 Importance of Demographic Data
According to the ”National Diabetes Statistics Report” [5], there
exists great diversity in the demographic data of diabetes patients,
such as age, gender. As stated in Assumption 2.2, patients with sim-
ilar demographic features share the similar behavioral features of
diabetes. We make hypothesis testings to validate the reasonability
of Assumption 2.2 using the Diab-1000 data. In this dataset, there
are 6 features related to the demography, including age, gender,
height, weight, years on insulin, and diabetes on set age.

To do this, we� rst run K-means clustering on the data and
then conduct hypothesis testing between pairs of clusters.�e
underlying principle is that if two patients are from two distinct
clusters, their dynamic behavioral features are generated from the

Table 2: Dynamic behavioral features.
Types # Details
Label 3 label2hr, label3hr, label4hr

Hypo Events 9
Hypo-t -Day, t 2 {30, 14, 7, 3, 1}
Hypo-t1-to-t2-Day,
t1 2 {1, 3, 7, 14}, t2 2 {3, 7, 14, 30}

Low Glucose Alert
(LGA) 9

LGA-t -Day, t 2 {1, 3, 7, 14, 30}
LGA-t1-to-t2-Day,
t1 2 {1, 3, 7, 14},t2 2 {3, 7, 14, 30}

Sensor Glucose
(SG) 17

Total Number, SGlatest
30min: SGmean, SGsdev, SGmin, slope
2hr: SGmean, SGsdev, SGmin, slope
4hr: SGmean, SGsdev, SGmin, slope
2hr: SG2-4, SG30-2 SG0-30

Total number of features = 39

Table 3: Static demographic features.
Types Details
Age

Physiological featuresGender
Weight
Height

Years on Insulin number of years taking insulin
Diabetes on set Age how old when diagnosed as diabetes

Total number of features = 6

same type of distributions but with di�erent parameters. So, to
tell whether the static demographic features make a di�erence in
the diabetes states, we need to con�rm that the distribution from
di�erent clusters is distinguishable.� us, for any pair of clusters
(Ck ,Ck 0 ), we conduct the following hypothesis testing:

null hypothesis: H0 : FCk = FCk0 , (23)

where F denotes the distribution of a speci�c cluster. To conduct
the hypothesis testing (23), we can conduct the following two hy-
pothesis testings step by step:

null hypothesis: H�ar
0 : � 2

Ck = �

2
Ck0 ; (24)

and

null hypothesis: Hmean
0 : µCk = µCk0 ; (25)

where �

2 and µ denote the variance and mean of every cluster,
respectively.� e reason is that if two distributions have either
di�erent� rst moments (i.e., mean) or di�erent second moments
(i.e., variance), they cannot be the same distributions. Namely,
H�ar
0 and Hmean

0 are the necessary conditions for H0.�us, H0 is
rejected as long as either H�ar

0 or Hmean
0 is rejected.

For null hypothesis H�ar
0 , F-testing is adopted and T-testing is

used for Hmean
0 . For each hypothesis testing, we will obtain an

h 2 {0, 1} score where the null hypothesis is accepted if h = 1
otherwise the null hypothesis is rejected.� e importance of the
demographic data is de�ned as follows:

IM =
#(hH�ar0

� hHmean
0

, 0)

K

2 � K , (26)

where � is the element-wise product. IM 2 [0, 1], that is, demo-
graphic data is the least important when IM = 0 and the most
important when IM = 1. We conduct experiments on the demo-
graphic data in Diab-1000 dataset. We change the cluster number
K from 5 to 11 and repeat K-means for 30 times.� e result of IM
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Figure 3:� e empirical distributions of features, f1 ⇠ f38.� e histogram is coded in blue and the corresponding distribution� tting is coded
in red. For f1 ⇠ f21, each feature follows an exponential distribution while for the rest of features each one follows a Gaussian distribution.
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Figure 2: Importance of demographic data w.r.t. Cluster #, K .

measure is reported in Figure 2. From Figure 2, we can see that IM
can achieve .7 when K = 5 or K = 6. In other cases, the average
of IM remains .5.� is phenomenon shows that there exists great
distinction between some clusters. We show a case study when
Table 4: A case study: Importance of demographic data when K = 5.

C1 C2 C3 C4 C5
C1 0 1 1 0 1
C2 1 0 1 0 0
C3 1 1 0 1 1
C4 0 0 1 0 0
C5 1 0 1 0 0

K = 5 in Table 4. We can see that C1 is di�erent from C2, C3, and
C5. C3 is di�erent from the rest of clusters. In this sense, we cannot
treat C1 or C3 with other clusters as the same. Similar results can
be obtained in other scenarios.� us, the importance of using the
demographic data in diabetes state prediction is obvious, which in
return validates the proposed restricted hidden Markov model.

3.2 Distribution Validation
In this part, we validate the distribution assumption (i.e. Assump-
tion 2.3) introduced in Section 2.2, that is, any dynamic feature
follows either an exponential distribution or a Gaussian distribu-
tion. Note that we have totally 42 dynamic behavioral features in
Diab-1000 dataset. For each patient, we average his feature values
over 31 timestamps.� en, for each feature, we plot its histogram
and their corresponding distribution�� ing in Figure 3. From Figure
3, we can see that each of the� rst 25 features follows an exponential

distribution.� ey contains 3 types of dynamic behavioral features:
Label, Hypo Events and Low Glucose Alert (as shown in Table 2),
each of which has integer values. For the rest two types of features,
RHD and SG, each of them follows a gaussian distribution whose
value is continuous.

4 EXPERIMENTS.
In previous section, we have validated Assumptions 2.1 and 2.2,
which are about the importance of demographic data, and Assump-
tion 2.3 that each behavioral feature follows an exponential or a
Gaussian distribution. Next, we will test the e�ectiveness of the
proposed DfrHMM in both synthetic and real datasets in diabetes
management when compared with baselines.

4.1 Experiment Setup.
In this part, we introduce the evaluation measures and the baselines.
Evaluation measures we use are:
• MAE. Mean of Absolute Error (MAE) measures the L1-norm

between the real values and the predicted ones. MAE tends to
penalize more on small errors.
• RMSE. Root of Mean Square Error (RMSE) measures the L1-

norm between the real values and the predicted values. RMSE pe-
nalizes more on the large di�erence and less on the small di�erence
comparing with MAE.
• Accuracy. Accuracy is de�ned as the percentage of matched

status between real latent status and the estimated one.
�e accuracy of latent status is only used in synthetic data experi-

ments, because no real state is available in real data. For Accuracy,
the higher the be�er; while for MAE and RMSE, the lower the be�er.

For model comparison, we implement the following methods.
HMM. Hidden Markov model (HMM) is a widely used tool for

estimating the sequence of states the model goes through to gener-
ate the observed data. HMM can estimate the emission distribution
for each latent state. For each individual patient, HMM learns a
speci�c trajectory of this latent status, as well as the emission dis-
tribution related to di�erent latent status. Note that, HMM does
not take the demographic data into consideration.

HMM+Clustering. �e goal of HMM+Clustering is also to
learn the trajectory of latent status for each patient. However, in
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Figure 4: Markov Chain Monte Carlo mean of absolute error of models parameters: (a) �, (b)v , (c) µ, (d) � , and (e) c .

this scenario, we assume that patients belong to K

0 groups and
patients within each group share the same sequence of status.�e
group information can be obtained from the demographic data.
So, HMM+Clustering �rst clusters patients into several groups
based on their static demographic features, and then estimate the
trajectory of latent status for each patient groups using the dynamic
behavior data.� e emission distribution of di�erent latent states
is estimated.� erefore, the trajectory of each individual patient is
the same as that of the group this patient belongs to.

DfrHMM. �e restricted hidden Markov model (DfrHMM) is
the proposed model. In DfrHMM, we incorporate the demographic
data to model the transition probability between latent states.�e
emission distribution of di�erent latent states is estimated.

When we want to predict the value at a future timestamp t , all
methods will� rst learn the latent state at t and then sample the value
from the corresponding emission distribution.

4.2 Experiments on Synthetic Data.
4.2.1 Data Generation. We� rst randomly generate the hyper

parameters � 2 RDM+1, v 2 R2, c 2 RDe⇥K , µd ,�d 2 RDn⇥K

and µs ,� s 2 RDM⇥K 0 . Here, K is the number of latent status, K 0
is the number of clusters in static data, De is the dimensionality
of dynamic features which follow the exponential distribution and
Dn is the dimensionality of dynamic features following Gaussian
distribution. Given the static data clustering label k 0, for each
patient i (i = 1, · · · ,N ), its static data Zi is randomly generated
from a Gaussian distribution Gaussian(µsk 0 ,�

s
k 0 ). Given the ini-

tialized latent status, the trajectory of all patients status over T
timestamps is determined by the link function (2). Based on the
� , Xe

it ⇠ Exponential(ck j ) and Xn
it ⇠ Gaussian(µdk j ,�

d
k j ). We set

N = 200 and T = 100, and K is changed from 2 to 4.

4.2.2 Result Analysis. Since the real latent status of each patient
at every timestamp is known, we can calculate the accuracy of
the predicted latent state returned by all methods.� e accuracy
comparison is presented in Figure 5. From Figure 5, we can draw
the following conclusions. (1) HMM method only considers the
dynamic data, and thus its accuracy is the lowest. It indicates that
the static data is indeed helpful in recovering the latent status. (2)
�e proposed DfrHMM outperforms baselines in terms of accuracy.

Parameters Estimation. We also test the ability of the pro-
posed DfrHMM in recovering the model parameters. As the real
value of the model parameters are known as ground truths, we can
report the error between the estimated value and the true value
of model parameters. We have� ve sets of parameters, that is, �,
v , µ, � , and c . Note that each set of model parameters is a vector.
Instead of reporting the error for each element of each set, we use

K=2 K=3 K=4
0.5

0.6

0.7

0.8

0.9

1

Number of Latent Status

A
c
c
u

r
a
c
y

 

 

HMM

HMM+Clustering

DfrHMM

Figure 5: Comparison on Synthetic Data with di�erent K .

the mean of absolute errors to measure the overall deviation.�e
MAE of� ve parameter sets are presented in Figure 4. From Figure
4, we can see that a�er the burn-in step, the estimated values of all
model parameters are consistently close to the true ones. It shows
the e�ectiveness of the proposed DfrHMM.

Table 5: RMSE and MAE comparison on synthetic data w.r.t K .
DfrHMM HMM HMM+Clustering

K = 2 RMSE .8200 1.325 .9768
MAE .7365 1.092 .8107

K = 3 RMSE .8339 1.402 1.013
MAE .6929 1.137 .8156

K = 4 RMSE .7899 1.354 .9670
MAE .6968 1.080 .7754

Prediction. We test the performance of all methods on the
e�ectiveness of behavioral prediction. We� rst report the RMSE
and MAE of all methods on prediction that is made for the next
timestamp in Table 5. In this experiment, we use the data from
1 ⇠ T � 1 timestamps as input and predict the behavioral value
at time T .� e results are reported in Table 5. From Table 5, we
can see that the proposed DfrHMM framework outperforms HMM
and HMM+Clustering methods in terms of both RMSE and MAE.
Moreover, Table 5 also shows the performance of all methods in
terms of the number of latent status. For HMM, it has the best
performance when K = 2. For DfrHMM and HMM+Clustering,
they achieves best results when K = 4. Further, we show the results
on predicting behavioral data at more than one timestamps in Figure
6. In this experiment, when we predict the value at time t+1, we use
the predicted value at t time as input. In Figure 6, we present both
RMSE and MAE on T = 10 timestamps. From Figure 6, we can see
that the proposed DfrHMM outperforms baselines in all scenarios
in terms of both RMSE and MAE. Moreover, for all methods, the
prediction error overT timestamps is stable. One possible reason is
due to the procedure of generating the predicted value used by these
methods: We� rst estimate the the latent status, along with their
emission distributions.� en, based on the emission distribution, the
behavioral data is sampled and treated as the predicted value. Once
the latent status is correctly obtained, the sampled value is close to
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Table 6: RMSE and MAE Comparison on Prediction on Diab-1000 data for 5 timestamps.
RMSE MAE

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5
HMM 860.2 1203.3 - - - 583.2 982.4 - - -

HMM+Clustering 30.25 30.05 29.48 30.45 29.97 16.22 16.13 15.98 16.37 16.15
DfrHMM 14.26 8.27 9.33 9.61 11.04 10.36 5.890 6.256 5.65 7.96
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1 2 3 4 5 6 7 8 9 10

1

1.5

2

Timestamp

R
M

S
E

 

 

HMM

HMM+Clustering

DfrHMM

1 2 3 4 5 6 7 8 9 10

0.8

1

1.2

1.4

1.6

Timestamp

M
A

E

 

 

HMM

HMM+Clustering

DfrHMM

(c) Latent Status K = 4

Figure 6: RMSE and MAE comparison on all methods on synthetic data in prediction that are made for the next 10 timestamps when (a) the number of latent
status K = 2, (b) K = 3, and (c) K = 4.

the real value.� erefore, both Table 5 and Figure 6 demonstrate the
e�ectiveness of the proposed DfrHMM in predicting the behavioral
value for future timestamps.

4.3 Experiments on Diab-1000 Data.
In this section, we test the proposed DfrHMM framework on the
real data, Diab-1000.� e details of Diab-1000 can be found in
Section 3.
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Figure 7: Visualization of the clustering based on the trajectory of latent state.

Prediction. Note that Diab-1000 collects data for all the patients
over 31 timestamps. We use the data until the 26-th timestamp as
input and predict the value at the remaining 5 timestamps. We
report the average of RMSE and MAE over 20 repetitions in Ta-
ble 6. From Table 6, we can have the following conclusions. (1)
HMM has the worst performance. Especially, a�er prediction that
made for the next two timestamps, the error becomes larger than
1000. (2) For both HMM+clustering and RHMM, their prediction
error is stable and both HMM+clustering and DfrHMM outperform
HMM. One possible reason is that the variance obtained by HMM
in Diab-1000 data is very large.� e average of variance over 42 fea-
tures is around 850, while that of HMM+Clustering and DfrHMM
is about one digit.� e outperformance of HMM+Clustering and
DfrHMM emphasizes the importance of demographic data. More-
over,DfrHMM achieves the best performance. Table 6 demonstrates
the e�ectiveness of the proposed HMM in prediction.

Based on the trajectory of latent status, we can cluster the pa-
tients for be�er treatment.� is is a by-product of the proposed
method. We use K-means clustering method to group the similar
patients. To be�er visualize the cluster results, we� rst apply princi-
ple component analysis on the trajectory of latent status, and then

Table 7: Hypothesis testing results on the clustering results.
C1 C2 C3 C4

C1 0 0 1 1
C2 0 0 1 1
C3 1 1 0 0
C4 1 0 1 0

plot the clustering results in Figure 7. In Figure 7, the X-axis and
Y-axis are the� rst and second principle components, respectively.
We can see that all patients are clearly partitioned into 4 clusters.
Next, similar to the procedure of testing the importance of demo-
graphic data in Section 3.1, we also conduct hypothesis to test the
deviations between clusters.� e goal of the hypothesis is to tell
whether the data from di�erent clusters are indeed di�erent. We
use the F-testing and T-testing to tell whether the variance and
mean of di�erent clusters are di�erent, respectively.� e� nal test
results are obtained by following Equation (2) which combines the
results of both F-test and T-test.� e results are reported in Table 7.
�e� rst two rows of Table 7 show that (1) C1 ⌧ C3 and C1 ⌧ C4,
(2) C2 ⌧ C3 and C2 ⌧ C4.

5 RELATEDWORK.
Latent variable model [4, 9, 15, 16] is a statistical model that relates
a set of observed variables to a set of latent ones. One popular
model is hidden Markov model (HMM), which was� rst intro-
duced in the 1970s as a tool for speech recognition [7, 18]. Re-
cently, the popularity of HMM has increased in bioinformatics
domain [1, 6, 17, 19, 22, 26] primarily because of its strong mathe-
matical basis and the ability to adapt to unknown data. In [6], a data
clustering algorithm based on a single HMM has been proposed to
identify the number of clusters in a dataset and also label the data
item to its respective clusters. [17] use a HMM with four exercise
levels as hidden states and the blood glucose levels (and insulin
dosages) as observable data for activity prediction task. In [19],
the authors use HMMs to characterize disability states and use
mixed-e�ects ordinal logistic regression to estimate the probability
of functional decline for type 2 diabetes patients. [26] proposes to
model the linear block dependency in the SNP data using HMMs
and further develop a compound decision-theoretic framework for
testing HMM-dependent hypothesis. All these work only deals
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with behavioral data and does not consider demographic data. In
our proposed DfrHMM, however, we propose to incorporate the
demographic data into the link function between transition status.

Another relevant topic is diabetes prediction, which has a�racted
lots of a�ention in past decades [8, 11, 13, 14, 20, 21, 23]. In [23],
the authors identify that a 62-locus genotype risk score (GRSt) can
improve type 2 diabetes. [21] propose to use multiple metabolic
and genetic markers to improve the prediction of type 2 diabetes.
In contrast, in this paper we propose a novel framework DfrHMM
to predict the behavioral data for diabetes patients, which is not
discussed in these works.

�is paper is also related to multi-source or multi-view task
learning [2, 3, 10, 12, 27, 29]. In [2, 27, 29], the authors propose
to simultaneously decompose dynamic data from multiple sources
with consensus constraints for anomaly detection task.� ese work
clusters the timestamps into a pre-�xed number of clusters, which
ignores the importance of the order of timestamps. In contrast,
in the proposed DfrHMM, we use the link function to model the
transition of status between every di�erent pair of timestamps.
�e importance of the timestamp order is naturally captured via
DfrHMM. In [3, 10, 12, 28], di�erent models for multi-view cluster-
ing are proposed. However, these work treat the data from di�erent
views or di�erent sources equally important.

6 CONCLUSIONS.
In this paper, we propose a Demographic feature restricted hidden
markov model (DfrHMM) based framework for the task of dia-
betes management by combining both behavioral and demographic
data. Using the proposed DfrHMM model, we can learn the trajec-
tory of latent status for each patient. Di�erent from conventional
HMM, we take the demographic data into consideration when
modeling the transition between di�erent status. To estimate the
model parameters, we propose to use Markov Chain Monte Carlo
techniques. Moreover, we conduct hypothesis testing on the real
data, Diab-1000, to test the importance of demographic data on the
patients’ behavioral data. Experiments on synthetic and Dial-1000
data demonstrates the e�ectiveness of the proposed DfrHMM.
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