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ABSTRACT
The mobile in-App service analysis, aiming at classifying mo-
bile internet traffic into different types of service usages, has
become a challenging and emergent task for mobile service
providers due to the increasing adoption of secure protocols
for in-App services. While some efforts have been made for
the classification of mobile internet traffic, existing methods
rely on complex feature construction and large storage cache,
which lead to low processing speed, and thus not practical
for online real-time scenarios. To this end, we develop an
iterative analyzer for classifying encrypted mobile traffic in
a real-time way. Specifically, we first select an optimal set
of most discriminative features from raw features extracted
from traffic packet sequences by a novel Maximizing Inner
activity similarity and M inimizing Different activity similar-
ity (MIMD) measurement. To develop the online analyzer,
we first represent a traffic flow with a series of time windows,
which are described by the optimal feature vector and are
updated iteratively at the packet level. Instead of extracting
feature elements from a series of raw traffic packets, our
feature elements are updated when a new traffic packet is
observed and the storage of raw traffic packets is not required.
The time windows generated from the same service usage ac-
tivity are grouped by our proposed method, namely, recursive
time continuity constrained KMeans clustering (rCKC). The
feature vectors of cluster centers are then fed into a random
forest classifier to identify corresponding service usages. Fi-
nally, we provide extensive experiments on real-world traffic
data from Wechat, Whatsapp, and Facebook to demonstrate
the effectiveness and efficiency of our approach. The results
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show that the proposed analyzer provides high accuracy in
real-world scenarios, and has low storage cache requirement
as well as fast processing speed.
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1 INTRODUCTION
With the wide spread use of mobile devices, the messaging
apps have been providing new ways of communication, such
as text messaging, muti-media messaging, broadcast messag-
ing, real-time chat, location sharing and moment post. This,
in turn, motivates the emergence of in-App service usage an-
alytics, which aims for understanding in-App user behaviors.
Indeed, in-App service usage analytics has recently become
critical for mobile companies to enhance user experiences and
for Internet providers to provide intelligent network resource
distributions [7]. A key task of In-App service usage analytics
is to effectively classify mobile Internet traffic into different
usage categories in a real-time manner. However, this is a
challenging task due to the increasing adoption of secure
protocols for in-App services. Moreover, as an online traffic
analyzer, it should be able to handle millions of traffic flows
from many users simultaneously. This requires fast processing
speed and low storage cache requirement.

There are traditional packet inspection methods for the
Internet traffic classification. These methods analyze the
protocol types, port numbers or protocol signatures with
the limited use of cache memory [9, 22, 29]. However, due
to the limited available information and the complexity of
packet encryption methods, the packet inspection method is
not applicable for mobile messaging Apps with secure com-
munication protocols. Recently, some researchers have tried
to tackle these issues with data mining solutions [2, 6, 7],
which first segment an Internet traffic flow into single-usage
subsequences and then discover distinctive traffic patterns
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for single-usage classification. While the patterns discovered
can help improve the classification accuracy, the feature ex-
traction process is very slow and both of the segmentation
algorithm and classifiers require the storage of a large set
of raw traffic packet data. Moreover, the segmentation al-
gorithm at the packet level is not accurate, and thus the
segmented subsequence is not single usage due to the packet
length variance. As a result, the features extracted from the
inaccurately segmented subsequence are from mixed service
usages that deteriorate classification performance.

To address these challenges, in this paper, we develop an
online iterative mobile app traffic analyzer that comprises
of a recursive time continuity constrained KMeans cluster-
ing (rCKC) algorithm for traffic flow segmentation and a
Random Forest classifier for segmented traffic classification
based on time window representation with adaptable features.
Specifically, we first discretize the incoming traffic flows with
a series of time windows, each of which is represented by
the iterateable feature vector selected by our MIMD feature
selection. The iterateable feature vector has the property that
each feature element can be updated and the packet is re-
leased once a new traffic packet is received. The time window
series are then grouped together by the rCKC segmentation
algorithm that the time windows within one cluster represent
the traffic flows generated from the same service usage. Fi-
nally, the cluster center feature vector is fed into a Random
Forest classifier for service usage activity classification. As a
result, the requirement for cache memory is reduced by more
than 1000 times and the processing speed is increased by
more than 10 times compared with existing studies. Moreover,
we also demonstrate the applications of our method on two
types of mobile Apps: Social Media Apps such as Facebook1

and messaging Apps such as Wechat2 and Whatsapp3. As
shown in the results, the proposed analyzer provides high
classification accuracy in real-world online scenarios, and has
low cache requirement as well as fast processing speed.

2 PROBLEM FORMULATION
In this section, we first define some preliminaries. Then, we
introduce the problem of Mobile App Traffic segmentation
and classification.

2.1 Preliminaries
Here, we first introduce some preliminaries, which will be
used throughout this paper.
Definition 1: Internet traffic flow. An internet traffic flow 𝑇 𝐹
consists of a sequence of encrypted internet packets denoted
by 𝑇 𝐹 = ({𝑡𝑖, 𝑃𝑖})𝐼𝑖=1 where 𝐼 is the total number of packets
and 𝑃𝑖 represents the 𝑖-th packet received at time 𝑡𝑖. Each
packet contains limited information including the packet
length 𝑃𝑖.𝑙, sender IP address 𝑃𝑖.𝑆𝐼𝑃 , receiver IP address
𝑃𝑖.𝑅𝐼𝑃 and protocol type 𝑃𝑖.𝑃 𝑟. An internet traffic flow
may contain one or more mobile user’s usage activities.

1https://www.facebook.com/mobile/
2http://www.wechat.com/en/
3https://www.whatsapp.com/

Figure 1: Examples of Wechat traffic flow

Definition 2: Traffic Segment. A traffic segment 𝑆 =< 𝑠0, 𝑠𝑡 >
is a subsequence of an internet traffic flow from time 𝑠0 to 𝑠𝑡.
Segment operation 𝑇 (𝑆) extracts the segment time duration
𝑇 (𝑆) = 𝑠𝑡 − 𝑠0. Operation 𝑉 (𝑆) extracts the packet volume
𝑉 (𝑆) =

∑︀
𝑃𝑖∈𝑆 𝑃𝑖.𝑙.

Figure 1 shows an example of traffic flow consisting of two
activate traffic flows separated by a segment of idling traffic.
The idling traffic represents the traffic flows of background
packets when no service usage is activated. The second acti-
vate traffic flow includes three segments of traffic: browsing
moment, sending audio note, and sending picture.
Definition 3: Time Window Representation. Instead of seg-
menting an internet traffic flow by comparing adjacent pack-
ets which is time-consuming and also introduces large vari-
ance, we divide a traffic flow into a set of continuous time
windows. A time window 𝑊𝑛 records a portion of traffic
sequence starting from 𝑡𝑛

0 to 𝑡𝑛
𝑤𝑛 . The size of a time window

𝜏 is fixed, s.t. 𝑡𝑛
𝑤𝑛 − 𝑡𝑛

0 ≤ 𝜏 . There is a time gap ∆, s.t.
0 ≤ 𝑡𝑛+1

0 − 𝑡𝑛
𝑤𝑛 ≤ ∆, between two adjacent time windows to

ensure the smoothness of time window feature vector 𝐹𝑛.

2.2 Problem Definition
Given an incoming traffic flow 𝑇 𝐹 = ({𝑡𝑖, 𝑃𝑖})𝐼𝑖=1, the mobile
traffic analyzer is built to segment and classify a sequence of
in-App usage activities denoted by ({𝑏𝑛, 𝑒𝑛,𝑢𝑢𝑢𝑛})𝑁𝑛=1, where
𝑏𝑛, 𝑒𝑛, and 𝑢𝑢𝑢𝑛 respectively represent the begin time, the
end time, and the activity class. Essentially, there are two
major tasks: traffic flow segmentation and traffic segment
classification:

(1) traffic flow segmentation: the objective of our first
task is to segment the origin traffic flow into multiple traffic
segments 𝑇 𝐹 = {𝑆1, 𝑆2, ...𝑆𝑛}, such that the traffic packets
within each segment 𝑆 are generated from the same single-
usage activity.

(2) traffic classification: the second task is to classify the
major usage activity given a segmented traffic.
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Figure 2: The Framework Overview.

2.3 Framework Overview
Figure 2 shows the framework of our proposed method which
consists of two processes: offline training and online analysis.
Offline Training. The offline process is conducted to learn
the traffic patterns, test segmentation algorithm and train
classifiers with labeled traffic flows. As shown in Figure 2,
the offline process consists of four parts:
1) Labeled traffic collection. We collect the traffic flows of dif-
ferent mobile apps from a group of volunteers and employees
of leading ICP provider company. Each traffic flow contains a
sequence of packets with the corresponding packet receiving
time, packet length, and packet protocol type. The service
usage types, their start time and end time are reported by
the data collectors.
2) Traffic patterns extraction. Mobile traffic patterns are
extracted from a multi-view perspective: packet length related
features and packet time delay related features. Totally 30
features are extracted as a full feature set in this part.
3) MIMD feature selection. To reduce the workload of feature
extraction and save cache space for feature vectors, 6 most
discriminative traffic patterns are selected as the optimal
feature set using the MIMD feature selection criteria.
4) Classifier Training. The selected feature vectors and their
labeled service activities are used for the Random Forest
Classifier training. In this classifier, the major protocol types
(TCP or UDP) are first used to filter the traffic into two
major categories: VoIP (video call and voice call), and other
usages (other usage activities including text, picture, audio,
moment, etc). The usage services of each major category are
then classified respectively.
Online Analysis. The online process is designed to analyze
incoming streaming traffic flows. Different from the Offline
process, the online process constructs the time windows and
their feature vectors in an iterative way at traffic packet level.
For each received traffic packets, its information (time stamp,
packet length and protocol type) is collected to update the
feature vector of the current time window. And the packet is
released without the requirement of cache storage. Then the
rCKC segmentation separates time windows into different
groups and labels the time boundaries of single usage activity

traffic segment. The segmented traffic can be easily inferred
by incorporating the Random Forest Classifier learned in the
offline process.

3 DATA COLLECTION

Table 1: Usage Activities of Different Mobile Apps

U# Wechat Whatsapp Facebook
0 Audio Audio Moment
1 Location Picture Video upload
2 Picture Voice Call Video watch
3 Short Video Text Picture
4 Video Call Short Video New Video Upload
5 Moment Location
6 Text
7 Voice Call

To guarantee the data quality and facilitate our experi-
ments, we design and deploy the data collection platform for
off-line model training. With the cooperation of leading ICP
provider company, we recruit volunteers and employees who
are equipped with our specially configured smartphones with
brand new Android or IOS. The traffic flows are captured
by WireShark4, a well-known traffic packet sniffing and ana-
lyzer tool, and we utilize it to crawl the packet information
(packet time stamp, packet size, and protocol type) of traffic
flows transmitted through our specific Internet access point.
Meanwhile, data collectors report their corresponding usage
types and activate time range as ground-truth. Finally, both
the internet traffic and the reported usages are organized,
archived and stored in our data repository.

4 METHODOLOGY
In this section, we first present our MIMD feature selection
framework to select the most discriminative features. Then
we provide the technical details of our rCKC algorithm for
mobile APP traffic flow segmentation and Random Forest
Classifier for segmented traffic classification.

4.1 MIMD Feature Selection
A set of 28 feature elements has been analyzed in our previ-
ous work [7] which provides the best usage activity classifi-
cation accuracy. Here we list the 28 feature elements (more
details of the feature element definitions can be found in
[7]): Packet length related features: packet length maximal,
minimal, mean, variance, kurtosis, skewness, hopping count,
length of longest monotone (including increasing and decreas-
ing) subsequences, size percentiles (4 subranges), 3 set of
forward variances, 3 sets of backward variance, 3 most fre-
quent subsequences; Packet time delay related features: time
delay maximal, minimal, mean, variance, kurtosis, skewness.
In addition, we add two more features: the traffic packet den-
sity (number of packet per second) and traffic speed (average

4www.wireshark.org
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packet size per second) as our full feature set. However, al-
though these feature elements can help achieve a high traffic
flow classification accuracy, some of them are redundant and
most of them are not iterateable. In other words, in order to
extract the full set of features, the traffic analyzer needs to
store all the raw traffic data, which makes the analyzer inap-
plicable as an online streaming traffic tool. In the following,
we denote the feature set of 30 features as “full feature set”
and conduct a feature selection algorithm to select the most
representative feature set as our “optimal feature set”. Besides
that, the percentage of packets using TCP or UDP protocol
is calculated for VoIP traffic filtering in order to reduce the
problem complexity of the multi-class classification.

Motivated by the internal clustering validation measures
[18, 25, 30], the optimal feature set for segmentation is se-
lected to better group the packets that are generated from
the same activity (Compactness) and to separate the packets
from different activities (Separation) with the lowest time
consumption. In this the following, we describe the two crite-
ria of our recursive MIMD feature selection for the clustering
based traffic flow segmentation.
Feature Similarity Function. After Z-score feature standard-
ization, each feature element is rescaled to form a standard
normal distribution. The similarity distance between any two
feature vectors 𝐹 , 𝐹 ′ of dimension 𝑁 are defined as:

𝑆𝐷(F, F’) = 1
𝑁

𝑁∑︁
𝑛=1

𝑒−(𝐹𝑛−𝐹 ′
𝑛 )

2
(1)

Maximal Inner Activity Similarity (IAS). For the packets gen-
erated from the same activity, their lengths and time intervals
will vary. The features should not be sensitive to the inner
cluster packet variance. In other words, for the time windows
representing the continued activity, they should have high
similarities in feature domain such that the segmentation
algorithm will not mistakenly separate them as time win-
dows from different activities. Mathematically, given a traffic
flow from a single usage activity 𝑎𝑖 represented by 𝑛𝑎

𝑖 time
windows, the Maximal Inner Activity Similarity requires the
maximal feature distance between the time windows F𝑖,𝑘,
𝑘 = 1, 2, ..., 𝑛𝑎

𝑖 and their segment center F̄𝑎
𝑖 =

1
𝑛𝑎

𝑖

∑︀𝑛𝑎
𝑖

𝑘=1 F𝑖,𝑘:

max 𝐼𝐴𝑆 (𝐴; F), 𝐼𝐴𝑆 (𝑎𝑖; F) = 1
𝑛𝑎

𝑖

𝑛𝑎
𝑖∑︁

𝑘=1
𝑆𝐷(F𝑎

𝑖,𝑘, F̄𝑎
𝑖 ) (2)

Minimal Different Activity Similarity (DAS). The DAS mea-
sures how distinct that the feature vector representing one
usage activity is from that representing another. For the pack-
ets generated from different activities, the selected features
should be able to discriminate them by a large distance in
the feature domain.

min 𝐷𝐴𝑆 (𝐴 , 𝐴′; F), 𝐷𝐴𝑆 (𝑎𝑖, 𝑎′
𝑗 ; F) = 𝑆𝐷(F̄𝑎

𝑖 , F̄𝑎′

𝑗 ) (3)
Objective Function. We define the objective function Φ to
combine the average 𝐼𝐴𝑆 and 𝐷𝐴𝑆 calculated from our off-
line single activity traffic flows and optimize 𝐼𝐴𝑆 and 𝐷𝐴𝑆
simultaneously.

maxΦ(𝐼𝐴𝑆, 𝐷𝐴𝑆)), Φ(𝐼𝐴𝑆, 𝐷𝐴𝑆) = 𝐼𝐴𝑆 − 𝐷𝐴𝑆 (4)

Recursive Addition MIMD feature selection. When the full
feature set is large, considering all feature subset is time
costly. Therefore, we propose a recursive addition MIMD
feature selection to select the optimal feature set. Specifically,
we start with one feature that can maximize Φ(𝐼𝐴𝑆, 𝐷𝐴𝑆)
and recursively add one additional feature that can maximize
the objective function. The addition step is repeated until
the full set is reached. At last, we select the optimal feature
set that has the maximal objective compared to all feature
sets of different dimensions.

4.2 Traffic Flow Segmentation
Time series segmentation has been investigated to reduce the
complexity of time series analysis. However, traditional time
series segmentation algorithms such as Fourier Transforms,
Wavelets, Symbolic Mappings and Piecewise Linear Represen-
tation are not applicable for mobile APP traffic time series
due to the high density of Internet traffic flows and big vari-
ance of packet lengths. Motivated by the problem of image
segmentation that the segmented pixel region must be spatial
connected, in this paper, we propose a recursive Constrained
KMeans Clustering (rCKC) algorithm with time continuity
constraints for mobile App Internet traffic segmentation. To
the best of our knowledge, such kind of constrained clustering
algorithm has not been studied ever before in this problem.

After the time window representation, the problem of the
traffic flow segmentation is to group a sequence of time win-
dows {𝑤𝑖 (F; 𝑡𝑖), 𝑖 = 1, 2, ..., 𝑁} into multiple clusters within
which the time windows are the observation of traffic flows
generated from the same usage service. In addition to the
general clustering objective that within each cluster the dis-
tances between each time window are small and the distance
between cluster centers are large, we add the time continu-
ity constraints that the time windows within a cluster are
timely connected as a link (𝑤𝑖,𝑤𝑖+1). Algorithm 1 presents
the proposed CKC algorithm that recursively segments the
origin traffic flows: Step 1 checks if the 𝐼𝐴𝑆 of segment 𝑆
is below the single activity 𝐼𝐴𝑆 threshold 𝛿. If the segment
is identified as a single activity segment, no segment split
is required and the feature vector of this segment center is
output for classification. A segment with small 𝐼𝐴𝑆 indicates
a high probability that this segment contains more than one
activity and should be split into sub-segment. The threshold
𝛿 is chosen as the lower bond of IAS that is calculated by
the feature selection off-line. The segment split starts in step
4 with initiating 𝐾 sub-segment centers by maximizing the
distance between adjacent segment centers 𝐷(𝑐𝑗 , 𝑐𝑗+1). Step
7 assigns the time windows to each segment centers such that
the average distance from the time windows to its segment
center is minimized. Step 8 recalculates the segment center.
Step 7 and 8 are repeated until the segment centers do not
change and the segment is separated into 𝐾 sub-segments
{𝑆𝑗 , 𝑗 = 1, 2, ..., 𝐾}. The algorithm acts on each sub-segment
to check if further segment split is necessary in step 9 and
10. In our experiments, we set 𝐾 = 2.
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Algorithm 1 𝑟𝐶𝐾𝐶(𝑆 = {𝑤𝑖, 𝑖 = 1, 2, ..., 𝑁},𝐾)
Require: Input: {𝑤𝑖 (𝐹𝑖; 𝑡𝑖), 𝑖 = 1, 2, ..., 𝑁}

1: if 𝐼𝐴𝑆 (𝑆) > 𝛿 then
2: output 𝑆 = {𝑤𝑖, 𝑖 = 1, 2, ..., 𝑁 ; 𝐹 (𝑆)}
3: else
4: Initial: 𝐶0 = arg max

𝑐𝑗 ∈W

∑︀𝐾

𝑗=1 𝐷𝐴𝑆 (𝑐𝑗 , 𝑐𝑗+1)

5: while 𝐶𝑝 , 𝐶𝑝+1 do
6: 𝑝 → 𝑝 + 1 %next iteration
7: 𝑏𝑝 = arg max

𝑏𝑝
𝐼𝐴𝑆 (𝑆 (𝑤𝑏𝑝 : 𝑤𝑁 ));

8: 𝐶𝑝
1 =

1
𝑏𝑝

∑︀𝑏𝑝

𝑖=1 (𝑤𝑖)

9: end while
10: for 𝑗 = 1 : 𝐾 do
11: rCKC(𝑆𝑗 , 𝐾)
12: end for
13: end if

4.3 Segmented Traffic Classification
By feature extraction, we can output a set of vectorized traffic
segments 𝑆 = (𝑠𝑠𝑠𝑗 )

𝐽
𝑗=1 where each is represented by a feature

vector. To predict 𝐶 types of service usages, we exploit the
ensemble power of Random Forest with filtering (denoted
as FRF). Specifically, by observing the traffic patterns, the
traffic density and traffic speed can directly discriminative
the VoIP activity (video call and voice call) from the rest. We
first apply the filtering technology that separates the VoIP
activity directly and the classification for the rest is conducted
using the general technique of bagging of tree learners. By
doing this, the 𝐶 class classification task is simplified as a
𝐶′ < 𝐶 class classification problem. Let 𝐵 denote the number
of trees, given a set of labeled traffic segments 𝑆 = (𝑠𝑠𝑠𝑗 )

𝐽
𝑗=1

with usage types 𝑈 = (𝑢𝑗 )
𝐽
𝑗=1 where 𝑢𝑗 ∈ 1, 2, .., 𝐶′, we

repeatedly select a random sample with replacement of the
labeled traffic segments, and respectively fit 𝐵 decision trees
to the 𝐵 samples. After training, predictions for unknown
traffic segment 𝑑

′
can be made by averaging the predictions

from all the individual decision trees on the traffic segment
𝑑

′
. In particular, the random forest gives the probability

estimation for each class 𝑐 as follows:

𝑃 (𝑐|𝑠
′
) =

1
𝐵

𝐵∑︁
𝑏=1

𝑃𝑏 (𝑐|𝑠
′
) (5)

where 𝑃𝑏 (𝑐|𝑠
′
) is the probability estimation of usage type 𝑐

given by the 𝑏-th tree. It is estimated by computing the ratio
that usage type 𝑐 gets votes from the leaves of the 𝑏-th tree.
The overall decision function of random forest is defined as:

𝑢
′
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃 (𝑐|𝑠

′
) (6)

5 EXPERIMENTAL RESULTS
To validate the efficiency and effectiveness of our proposed
method, extensive experiments are performed on real-world
traffic data from three mobile applications: Wechat, What-
sapp, and Facebook. For each application, we first collect a

Table 2: Statistics of the WeChat Training data.

# Usage Type Records Packets Traffic Tra/min
1 audio 136 44K 23.53M 208K
2 location 112 119K 31.79M 348K
3 picture 100 132K 103.2M 986K
4 sight 63 163K 141.11M 1.33M
5 video call 100 1,170K 239.76M 2.17M
6 moment 67 7K 1.18M 50K
7 text 229 30K 4.5M 32K
8 voice call 105 265K 32.54 758K

Table 3: Statistics of the Whatsapp Training data.

# Usage Type Records Packets Traffic Tra/min
1 audio 176 72K 26.62M 436K
2 picture 197 178K 141.5M 2.26M
3 call 194 143K 21.64M 287K
4 text 202 34K 3.22M 42K
5 video 173 483K 472M 11.06M
6 location 80 11.52K 8.03M 47.77K

Table 4: Statistics of the Facebook Training data.

# Usage Type Records Packets Traffic Tra/min
1 moment 101 40K 21.65M 607K
2 videoup 75 21K 6.56M 238K
3 video watch 108 1,216K 1,326M 42M
4 picture 97 57K 51M 2.26M
5 new video 77 844K 825M 10M

set of single activity traffic for feature selection and classi-
fier training, and another set of traffic flows containing two
activities (including one type activity with idling traffic) for
traffic flow segmentation & classification testing. After the
off-line model training and testing, an online performance
test is conducted. All experiments are conducted on a PC
with an Intel(R) Core i7-4790 CPU, 3.6 GHz, and 16 GB
RAM running 64-bit Windows 10 system.

5.1 Experimental Data
Table 2, 3 and 4 show the basic statistics of our collected single
activity traffic data of different types of service usages with
respect to WeChat, WhatsApp and Facebook. In addition
to this single activity traffic data, we collect two-activity
traffic data that contains a segment of one activity traffic
flow followed by another segment of traffic generated from
a different service usage. Each activity-activity pair has 30
records and the time duration for each segment ranges from
5 seconds to 120 seconds.

5.2 Feature Engineering
Feature selection. The recursive addition MIMD feature se-
lection progress is presented in Figure 3. As the dimension of
the optimal feature set increases from 1 to 30 (full set), both
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of the IAS (red circle dot line) and the DAS (blue circle dot
line) firstly increase and then decrease. The IAS reaches its
maximum at the feature set of dimension 7 when the inner
cluster time windows have the least variations. However, the
DAS increases significantly which makes different segments
less discriminative. By combining these two criterions, we find
the objective (black circle dot line) Φ reaches its maximum at
the feature set of dimension 6. Moreover, the cross-validation
score (green square dot line) at dimension 6 is slightly lower
(0.55%) than its highest value at dimension 25. Considering
a higher dimension of features requires more memory and
time consumption in feature extraction. Here in our following
experiments, we use the feature set of dimension 6 as our
optimal feature set. From a time window observation of 𝑁
packets {(𝑡1, 𝑃1), (𝑡2, 𝑃2), ..., (𝑡𝑁 , 𝑃𝑁 )}, the feature elements
are defined and calculated as follows:

1 Percentile 25% 𝑃25: percentage of packets with packet
length smaller than 25% maximum packet length 𝐿𝑚𝑎𝑥.
Mathematically, 𝑃25 =

1
𝑁

∑︀𝑁
𝑖=1 𝛿(𝑃𝑖.𝑙 < 25%𝐿𝑚𝑎𝑥).

Where 𝛿(.) is the delta function that equals to 1 if the
condition is true.

2 Percentile 75% 𝑁75: percentage of packets with packet
length larger than 75% maximum packet length. Math-
ematically, 𝑃75 =

1
𝑁

∑︀𝑁
𝑖=1 𝛿(𝑃𝑖.𝑙 > 75%𝐿𝑚𝑎𝑥).

3 Top frequent continuous subsequence 𝑇 𝐶𝑆: the highest
repeating frequency of packet subsequence of length 3
(see detailed calculation in [7]).

4 Packet length variance 𝑣𝑎𝑟: the variance of packet
length: 𝑣𝑎𝑟 = 1

𝑁 (
∑︀

𝑖=1 𝑁𝑃𝑖.𝑙
2) − ( 1

𝑁

∑︀𝑁
𝑖=1 𝑃𝑖)

2

5 Traffic density 𝑇 𝐷: the average number of packets per
unit time (second): 𝑇 𝐷 = 𝑁

𝑡𝑁 −𝑡1
.

6 Traffic speed 𝑇 𝑆: the average packet lengthes per unit

time (second): 𝑇 𝑆 =

∑︀𝑁

𝑖=1 𝑃𝑖.𝑙

𝑡𝑁 −𝑡1
.

The ratio 𝑅𝑝𝑟 of packets number using UDP 𝑁𝑇 and TCP
𝑁𝑈 is collected for VoIP traffic filtering. After we determine
the optimal feature set, the rCKC stopping threshold 𝛿 =
0.813 is chosen to be the lower bond of 𝐼𝐴𝑆 at dimension 6.
Iterative feature update. The iteratively time window feature
update is illustrated in Algorithm 2. To achieve the feature
iteration, two sets of small temporal vectors 𝑡𝑒𝑚, 𝑡𝑒𝑚′ are
iteratively updated. Once the analyzer receives a packet 𝑃 ,
step 2 determines if a time window of packets (𝜏 seconds of
traffic flow) are observed. step 3 updates the 𝑡𝑒𝑚 vector to
fill more packet information if the time window is not full.
Step 5 updates the bottom half time window information for
next time window updates. Once the time window is filled
up, the feature vector is calculated and stored in Step 7∼9.
The bottom half time window information is used as the top
half of the next new time window. After these updates, the
packet 𝑃 is released. As a result, the raw packets are not
stored in the cache which significantly reduces the storage
requirement. Once the memory stores a number of time
window features, these time windows are used for traffic
analysis (segmentation and classification) and the memory is
released for new incoming time windows.

Figure 3: Feature Selection Progress.

The 𝑡𝑒𝑚 vector update function 𝑈𝑝𝑑𝑎𝑡𝑒(𝑡𝑒𝑚, 𝑃 ) works as
follows: when a packet 𝑃 of length 𝑃.𝑙 arrives, variable 𝑁
records the number of packets in current window and updates
as 𝑁+ = 1; variable 𝑁25 (𝑁75) records the number of packets
within < 25% (> 75%) maximum packet length and updates
as 𝑁25+ = 𝛿(𝑃𝑖.𝑙 < 380), 𝑁75+ = 𝛿(𝑃𝑖.𝑙 > 1135); variable
𝐹 𝐶𝑆 is a dictionary records the accumulate frequency of se-
quence (𝑃−2.𝑙, 𝑃−1.𝑙, 𝑃.𝑙); variable 𝑁𝑇 , 𝑁𝑈 records the num-
ber of packet using 𝑇 𝐶𝑃 (𝑈𝐷𝑃 ) protocol and updates as
𝑁𝑇+ = 𝛿(𝑃.𝑝𝑟 =′ 𝑇 𝐶𝑃 ′), 𝑁𝑈+ = 𝛿(𝑃.𝑝𝑟 =′ 𝑈𝐷𝑃 ′), where
𝛿(.) is the delta function which equals to 1 if the condi-
tion is TRUE otherwise 0; 𝐿, 𝐿2 records the summation of
packet length and the square of packet length and updates
as 𝐿+ = 𝑃.𝑙, 𝐿2+ = 𝑃.𝑙2. The packet is used for updating the
𝑡𝑒𝑚 vector only. Once the packet information is extracted,
it is released without storage which significantly reduces the
cache storage requirement for online traffic analyzer.

5.3 Baselines & Metric
5.3.1 Study of Single Activity Classifier. The single traffic

flow activity classifier proposed in our work is denoted as the
hierarchical random forest classifier (HRF). To confirm the
effectiveness, we use the following four baseline algorithms
for performance comparison: 1. Random Forest (RF); 2. Sup-
port Vector Classifier (SVC): The multi-class SVC builds
a set of one-to-one classifiers and choose the class that is
selected by the most classifiers [8]; 3. K-Nearest Neighbors
classifier (KNN); and 4. Gaussian Naive Bayesian (GNB).
The baselines are We measure the classification performance
of different classifiers using the evaluation metrics of overall
accuracy for all classes, and the Precision, Recall, F-Measure
for each individual service usage category.
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Algorithm 2 Iteratively update feature and time window
Require: Temple variable (initial 0):

𝑡𝑒𝑚=(𝑁, 𝑁25, 𝑁𝑇 , 𝑁𝑈 , 𝐿, 𝐿2, 𝑇 𝐶𝑆)
𝑡𝑒𝑚′=(𝑁 ′, 𝑁 ′

25, 𝑁 ′
𝑇 , 𝑁 ′

𝑈 , 𝐿′, 𝐿2, 𝑇 𝐶𝑆′)
1: while Receive packet 𝑃 do
2: if 𝑃.𝑡 − 𝑇0 ≤ 𝜏 then
3: 𝑈𝑝𝑑𝑎𝑡𝑒(𝑡𝑒𝑚, 𝑃 ), 𝑇𝑡 = 𝑃.𝑡
4: if 𝑃.𝑡 − 𝑇0 ≥ ∆ then
5: 𝑈𝑝𝑑𝑎𝑡𝑒(𝑡𝑒𝑚′, 𝑃 )
6: end if
7: else
8: 𝑁25 =

𝑁25
𝑁 , 𝑁75 =

𝑁75
𝑁 , 𝑣𝑎𝑟 = 𝐿2

𝑁 − 𝜇2

9: 𝑇 𝐶𝑆 = max𝐿∈𝐹 𝐶𝑆 𝐹 𝐶𝑆 (𝐿)

10: 𝑇 𝑆 = 𝐿
𝑇.𝑡−𝑇0

, 𝑇 𝐷 = 𝑁
𝑇.𝑡−𝑇0

, 𝑅𝑝𝑟 =
𝑁𝑈
𝑁𝑇

11: Store feature: 𝑁25, 𝑁75, 𝑣𝑎𝑟, 𝑇 𝑆, 𝑇 𝐷, 𝑅𝑝𝑟

12: 𝑡𝑒𝑚 = 𝑡𝑒𝑚′, 𝑡𝑒𝑚′ = 0, 𝑈𝑝𝑑𝑎𝑡𝑒(𝑡𝑒𝑚, 𝑃 ), 𝑇0=𝑃.𝑡
13: end if
14: end while

5.3.2 Study of traffic flow analyzer. The mobile traffic flow
analyzer proposed in our work compromises of rCKC seg-
mentation and Random Forest Classifier with filtering and is
denoted as (rCKC+FRF). In order to confirm the effective-
ness of our models, we conduct experiments to compare our
methods with the following baselines:

∙ AC+RF [6]. This analyzer consists of an Agglomera-
tive Connectivity Constrained Clustering (AC) and a
Random Forest Classifier. The segmentation groups
the timely adjacent time windows from bottom to up
until a specific number of clusters is achieved.

∙ CUMMA [7]. The CUMMA traffic analyzer consists of
adjacent packet merging strategy at packet level for
traffic segmentation and a Random Forest Classifier
for segmented traffic classification.

∙ SW+RF [11]. The sliding window (SW) based seg-
mentation compares similarities between adjacent time
windows in feature domain and combine the windows
with a local search strategy. The average feature vector
of adjacent time windows with high similarities are fed
into the Random Forest Classifier.

The metrics we adopt to measure the performance are traffic
duration accuracy (TDA) and traffic volume accuracy (TVA).
The traffic duration accuracy evaluates the total correct ser-
vice usage activity time durations and the traffic volume
accuracy evaluates the total packet lengths that are correctly
labeled. Given a traffic flow 𝑇 𝐹 containing {𝑆} traffic seg-
ments, their ground truth activities {�̂�𝑠}, our segmented
traffic {𝑆} and predicted activities {𝑎𝑠}, the two evaluation
metrics TDA and TVA are formally formulated as follows:

𝑇 𝐷𝐴 =
1

𝑇 (𝑇 𝐹 )

∑︁
𝑆

∑︁
𝑆

𝛿(𝑎𝑠 − �̂�𝑠)𝑇 (𝑆 ∩ 𝑆) (7)

𝑇 𝑉 𝐴 =
1

𝑉 (𝑇 𝐹 )

∑︁
𝑆

∑︁
𝑆

𝛿(𝑎𝑠 − �̂�𝑠)𝑉 (𝑆 ∩ 𝑆) (8)

Where 𝛿(𝑎𝑠 − �̂�𝑠) is the delta function that equals to 1 if 𝑎𝑠

equals �̂�𝑠 otherwise equals to 0. The intersection operation
𝑆1 ∩ 𝑆2 captures the traffic segment shared by both segment
𝑆1 and segment 𝑆2.

5.4 Off-line Performance Test
Results on Wechat. The overall accuracy of different classi-
fiers for Wechat single activity classification based on full
feature set and optimal feature set is presented in Figure 4(a).
As can be seen, our method outperforms the baselines with
significant improvement using both feature sets. Moreover,
by choosing the optimal feature set, our proposed method
achieves an overall accuracy of 94.01%, slightly lower (-0.3%)
than the overall accuracy using full feature set. Our 𝐻𝑅𝐹
achieves a better accuracy than the 𝑅𝐹 algorithm indicates
the VoIP-noVoIP separation can help boost the classifier
performance by reducing the classes size. Figure 4(b) ∼ 4(d)
shows the results of each approach in terms of precision, recall,
and f-measure respectively using the optimal feature set. Com-
paring to the baseline algorithms, our method achieves the
highest precision, recall and f-measure, indicating a balanced
accuracy for each specific usage service. Among the eight
usage activities, all classifiers have the worst performance on
U5 (moment). The moment usage activity of Wechat APP
is similar to that of browsers, and is the most challenging
class for single activity prediction since it contains mixed
traffics ranging from browsing (or posting) pictures to text
only moment. Our method still achieves a f-measure of 0.7843
for this specific challenging task. Figure 4(e) presents the
overall 𝑇 𝐷𝐴 and 𝑇 𝑉 𝐴 of different traffic analyzer tests on
the 2-activity pair traffic flows and our proposed analyzer
significantly outperforms the state-of-the-art baselines with
an overall 𝑇 𝐷𝐴 of 0.8366 and an overall 𝑇 𝑉 𝐴 of 0.8935.

A more detailed 𝑇 𝐷𝐴 and 𝑇 𝑉 𝐴 of 2-activity traffic flows
are presented in Figure 5 that contains 8*8 sub-figures la-
beled by two usage activities. For example, the sub-figure
“audio-picture” shows the performance test on two-activity
traffic flow including a segment of audio traffic followed by a
segment of picture traffic. The diagonal sub-figures shows the
performance of our analyzer on short single activity traffic
flows. As can be seen, our proposed traffic analyzer out-
performs other baselines in all usage service environments.

Results on Whatsapp. The Whatsapp traffic flow has very
similar traffic patterns compared to Wechat. The performance
tests on Whatsapp is presented in Figure 6. The overall accu-
racy of our proposed classifier achieves an overall accuracy of
90.47% based on the optimal feature set and 93.56% based on
the full feature set. Figure 6(b) ∼ 6(d) shows the significance
of our classifier in terms of precision, recall and f-measure
respectively using optimal feature set. Only 6 usage activities
are tested for Whatsapp APP and our proposed classifier
achieves the best performance on each single specific usage
activity. Among all the 6 service usage classes, the test on
Voice Call (U2) has the best performance since it is the only
VoIP usage activity in our testing class.
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(a) Accuracy (b) Precision (c) Recall (d) F-Measure (e) TDA-TVA

Figure 4: Performance Comparison of Wechat
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Figure 5: Performance Test on 2-activity traffic flows.

Similar to the Wechat performance test, we test our pro-
posed analyzer on the 2-activity Whatsapp traffic flows. The
analyzer performance comparison in Figure 6(e) illustrates
that our analyzer improves the accuracy with an overall 𝑇 𝐷𝐴
of 0.9076 and an overall 𝑇 𝑉 𝐴 of 0.966.
Results on Facebook. Figure 7 presents the offline test of our
proposed classifier on Facebook Internet traffic flows. Differ-
ent from the messaging APPs, there is no VoIP traffic flow
tested on the Facebook APP and our 𝐻𝑅𝐹 classifier is re-
duced to the traditional 𝑅𝐹 classifier. The overall accuracy of
the 𝑅𝐹 classifier achieves the best overall accuracy of 92.48%
among all other baselines based the optimal feature set and
95.87% based on the full feature set. The analyzer also works
better on Facebook traffic flows with a high 𝑇 𝐷𝐴(0.9147)
and 𝑇 𝑉 𝐴(0.9654) present in Figure 7(e).

5.5 Online Performance Test
After we train and test our mobile traffic analyzer off-line
with simple cases, we implement it online and test a continu-
ous traffic flow of 2126 seconds during which the mobile user
keeps switching service usage activities. The incoming traffic

with labeled segment is shown in Figure 8(a). The average
processing speed (number of packets processed per second) of
different traffic analyzers is present in Figure 8(b). As can be
seen, our designed analyzer is achieves an average processing
speed of 8840 packets per second which is 14.3 times faster
than the most competitive baseline, 7.14 times faster than
CUMMA. Moreover, by choosing the optimal feature set, the
processing speed increase almost 4 times for all analyzers.
Figure 8(c) compares the 𝑇 𝐷𝐴 and 𝑇 𝑉 𝐴 of different ana-
lyzers using the optimal feature set. Our proposed analyzer
achieves a 𝑇 𝐷𝐴 of 86.82% and a 𝑇 𝑉 𝐴 of 91.21%, which
outperforms other baselines with significant margin. Due to
the simplicity and local search strategy of SW+RF Internet
traffic analyzer, it achieves a faster processing speed (1.94
times faster than our proposed method) but the overall 𝑇 𝐷𝐴
and 𝑇 𝑉 𝐴 are only 35.42% and 53.96%.

6 RELATED WORK
Below we describe some related studies that have been ac-
complished on Internet traffic flow analysis.
Internet Traffic Segmentation. The mobile Internet traffic flow
segmentation is basically a time series segmentation. In the
past, several high level time series segmentation algorithms
have been proposed, including Fourier Transformations [10],
Wavelets [3], Symbolic Mappings [20], hierarchical bottom
to up [13], top-down approach [15] and the most frequently
used Piecewise Linear Representation (PLR) [14, 19]. These
algorithms, based on time series element similarities, are
supposed to support fast and dynamic implementation [12].
However, for the problem of Internet Streaming traffic flow
segmentation, these algorithms are not applicable due to the
large variance of the adjacent packet length and high traffic
densities. To reduce the effect of packet level variance, a
number of data mining techniques are proposed to extract
time series patterns from a subset of traffic flows (time window
representation) and calculate the traffic similarities based on
the subflows. The most efficient one is the sliding window
algorithm [4] that attempts to approximate the incoming
subflows with similar traffic patterns. This algorithm works
fast and can reduce the effect of packet length variances,
however, as a local similarity search based algorithm, it suffers
from the stability of Internet traffic flows. Most recently, a
group of data mining researchers [1, 6, 16, 17, 23, 24] segment
time series with clustering based algorithms in different time
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Figure 6: Performance Comparison of Whatsapp

(a) Overall (b) Precision (c) Recall (d) F-Measure (e) TDA-TVA

Figure 7: Performance Comparison of Facebook

(a) Ground Truth Traffic Flow

(b) Efficiency (c) Accuracy

Figure 8: Online Efficiency and Effectiveness Test

series analysis problems, however, most of these clustering
based segmentation algorithms require a pre-specified number
of segments and a set of complex high dimension feature
vectors that can hardly be calculated iteratively as online
time series segmentation algorithm. We further improve the
time series segmentation algorithm with our rCKC algorithm

that constructs time windows iteratively and finds the optimal
number of segment recursively.
Mobile Service Activity Classification. Our work has a close
connection with mobile service classification [27]. Falaki, etc.
in [5] proposed a custom logging tool so as to enhance the
classification of mobile App service usages. The authors also
observed that the behaviors of people using mobile Apps are
substantially diverse. Xu, etc. [28] collected the networking
traces at anonymized IP-level from a large tier-1 cellular
network and classified the traffic from different Apps by ex-
ploring signatures from HTTP headers. A novel approach that
exploits the cross-layer interaction among various network
layers for classifying usage of mobile Apps was developed by
Qian, etc [21]. The work in [26] used the advertising traffic
originating from the Apps as usage patterns for the classifi-
cation of mobile service activities. The performances of these
classifiers are limited due to the big variance of the traffic
patterns extracted at packet level. Finally, our previous work
in [7] proposed a step-by-step analytic method including traf-
fic clustering, traffic classification using existing classifiers
which provide a promising mobile service usage classification
accuracy. However, since this classifier relies on a complex
set of traffic patterns, the processing speed of this classifier
is too low to meet the online efficiency requirement.

7 CONCLUSION
In this paper, we developed an online mobile app traffic an-
alyzer for classifying mobile app traffic into different types
of service usages. Specifically, we first proposed an optimal
set of packet-level iterable features to reduce the cache mem-
ory requirement and to improve the processing speed. The
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received traffic packets from incoming traffic flows are then
transferred into a series of time windows represented by the
feature vectors, which is selected according to our MIMD
criteria. Then, with the consideration of time continuity con-
straints, the time windows are clustered together with our
rCKC clustering algorithm, by which the time windows gen-
erated from the same service activity traffic flow are grouped
together. In this way, the service usage activities are identi-
fied for each segmented traffic flow. Finally, we provided the
extensive experiments on real-world traffic flow data from
Wechat, Whatsapp, and Facebook. The results show that the
proposed method has the advantages of low storage cache
requirement and fast processing speed. Also, our method can
classify mobile app traffic with high accuracy in a real-time
manner.
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