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ABSTRACT

Is there an optimal dimensionality reduction for k-means, revealing
the prominent cluster structure hidden in the data? We propose
SuBKMEANS, which extends the classic k-means algorithm. The
goal of this algorithm is twofold: find a sufficient k-means-style
clustering partition and transform the clusters onto a common
subspace, which is optimal for the cluster structure. Our solution is
able to pursue these two goals simultaneously. The dimensionality
of this subspace is found automatically and therefore the algorithm
comes without the burden of additional parameters. At the same
time this subspace helps to mitigate the curse of dimensionality.
The SUBKMEANS optimization algorithm is intriguingly simple and
efficient. It is easy to implement and can readily be adopted to the
current situation. Furthermore, it is compatible to many existing
extensions and improvements of k-means.
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1 INTRODUCTION

The k-means clustering algorithm is one of, if not the, most often
used partition based clustering algorithm. Our own community
voted it second of the top 10 data mining algorithms [31]. Its popu-
larity is largely a result of several intriguing properties: it is simple,
it can readily be adopted to different situations, it is fast and can
scale to very large datasets. Last but not least, its results are mostly
sufficient for a first analysis.

However, the interpretation of what the algorithm finds becomes
increasingly difficult with growing number of dimensions. Even in
lower dimensional spaces it is sometimes hard to tell what structure
the algorithm has found. In the following we propose SUBKMEANS,
a technique, which extends k-means. It finds a clustering partition
and simultaneously a transformation which highlights the structure
found in the dataset.

Let us consider a small, five-dimensional synthetic dataset con-
taining three clusters, as shown in Figure 1 (a). Let us assume for
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Figure 1: Diagram (a) shows the scatter plots of artificial data
set with color-coded ground truth. Diagram (b) shows the
PCA transformation with ground truth. Diagram (c) shows
the data transformed by SUBKMEANs. This method finds
the correct cluster partition and automatically identifies the
first two features in the transformed space—highlighted in
yellow—as important for the cluster structure.

a moment that the ground truth would be unknown and the scat-
ter plot monochrome. A data scientist inspecting these plots may
assume that the data contains some structure as it shines through
in some scatter plots. Yet, a clear structure does not present itself.
Driven by this idea the data scientist now may try out a Principal
Component Analysis (PCA) transformation, which reveals the di-
rections of most variance within this dataset. Figure 1 (b) shows the
result of this action. However, the result is somewhat disappointing.
The new perspective onto the data does not reveal a clear structure.
The next step may be to apply a simple clustering algorithm like
k-means, to shed some light into the data. Let us further assume
that this algorithm also finds the color-coded ground truth—which
k-means indeed does for this simple dataset.
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At this point, our scientist may have a second look on both
diagrams. But still, clear cluster boundaries are hardly visible and a
clear cluster structure does not present itself. It is hard to tell what
k-means actually found and if it is meaningful.

As a consequence, our researcher might turn to other, more
sophisticated methods like Independent Component Analysis (ICA)
or variants of non-linear manifold learning. These other techniques
may even be able to find transformations in such a dataset, revealing
more of the hidden structures. But, to the best of our knowledge,
none of these techniques tries to find an optimal dimensionality
reduction for k-means clustering. Therefore, in general, our data
scientist will have a hard time identifying the feature combinations,
which are most relevant for the overall found cluster structure.

The situation is completely different for the scatter plots shown
in Figure 1 (c). The data shown in the figure was partitioned and
transformed by our proposed algorithm SUBKMEANS. We can read-
ily identify three clusters supported by the first two features. Fur-
ther, we can see that only those two features provide relevant in-
formation for the overall cluster structure. The other three features
only present unimodal structures and do not provide any crucial
information. This algorithm takes—in contrast to a combination of
PCA and k-means—the local structure into account and is not only
able to partition the data, but also to simultaneously transform it
such that its inner structure is revealed to the data scientist. Further,
it identifies which of these newly revealed features are important
to the clustering by splitting the transformed data into two sub-
spaces. A clustered space, which contains all useful structure, and
a noise space, which contains the irrelevant (unimodal) structures.
Performing the partitioning in the clustered space has the additional
advantage that it mitigates the problem of the meaningfulness of
proximity in high-dimensional spaces.

Our main contributions are as follows:

(1) We extend k-means such that it incorporates a simultaneous
dimensionality reduction step.

(2) The dimensionality of the clustered space is determined au-
tomatically.

(3) We do not introduce an additional parameter. The only pa-
rameter needed is the number of clusters k.

(4) We propose an optimization algorithm, SUBKMEANS, which
is very easy to implement and can readily be adopted to
different situations. It is fast, even without sophisticated
performance optimizations.

(5) SuBKMEANS is compatible to many proposed extensions of
k-means.

2 SUBSPACE K-MEANS

In the following we describe our proposed method SUBKMEANS.
We describe our algorithm, for the sake of brevity, as a simple
extension of the well-known Lloyd’s algorithm [21] with its EM-
style alternating assignment and update steps. Though, it is possible
to incorporate many other k-means extensions and modifications
for performance optimization. A non-exhaustive list of these can be
found in Section 4. Table 1 shows the used symbols and definitions.

1

Implementation and supplementary available under: http://dmm.dbs.ifi.lmu.de/
downloads/

366

KDD’17, August 13-17, 2017, Halifax, NS, Canada

Table 1: Symbols and Definitions

Symbol Interpretation

deN Dimensionality of original space

meN Dimensionality of the clustered space

keN Number of Clusters

D Set of all objects

Ci Set of objects assigned to cluster i

x € R4 A data point or object

Uy € R4 Dataset mean in the original space

y; €R™ Mean of cluster i in the original space

Sp € Rdxd Scatter matrix of the dataset in the original space
S; e Rxd Scatter matrix of cluster i in the original space
3 € RAxd See definition in Formula 3

P. € R™ Projection onto the first m attributes

Py € Rd-mxd Projection onto the last d — m attributes

V e R4xd (orthonormal) matrix of a rigid transformation
I; I x I identity matrix

0, I X r zero matrix

2.1 Cost Function

In the classic version of the k-means algorithm, we want to find a
set of k clusters C;, which partitions the data such that the sum of
squared errors is minimized,

k
2
N T
i=1x€eC;
where || - || represents the Euclidean norm.

We extend this basic idea in SUBKMEANS by the assumption that
the cluster structure is contained in a lower dimensional subspace.
That is, we assume that the data space can be split into two arbitrar-
ily oriented subspaces. The first m-dimensional, subspace contains
all structural information of the k clusters. We call this subspace
the clustered space.

The orthogonal complement of this subspace builds a second,
(d — m)-dimensional, subspace. It does not contain any structural
information important for the clustering. The expectation within
this subspace is that the data point values for each feature are drawn
from the same unimodal symmetric distribution (See also Section
2.5). We call this the noise space, since its feature values do not help
to distinguish between the different clusters in the clustered space.
As we are not interested in the actual distribution of the noise, we
assume that this space can be described by a single cluster.

Further, we assume that we can find an orthonormal (rigid)
transformation matrix V, which rotates (and reflects) the original
space in such a way that the first m features in the transformed
space correspond to the clustered space and the last (d — m) features
correspond to the noise space. We can use two simple projections
to split these features into their respective subspaces:

Pc = , Py= ’ .
¢ [Od—m, m N Id—m
A data point x can then be projected onto the clustered space by

Pg VTx. The projection onto the noise space is performed similarly
using Py.
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Algorithm 1: SubKmeans

1 Input: dataset O; number of clusters k

2 Output: clusters {Cy,...,Cr};
3 rotation matrix V;
4 dimensionality of clustered space m
// Initialization:
5 V « random orthonormal matrix
6 m < some initial value, e.g. % or \/;l
7 Hp < ﬁ 2xeD X
8 Sp — XxeD (X—Ilo) (X—FD)T
9 Vi € [1,k] : p; < random data point of D
10 repeat
// Assignment step
1 Ci<—0
12 Vx € D:
13 Jj— alrgmin“PCTVTx—PCTVTpi“2
i€[1,k]
14 Cj « Cj U {x}
// Update step
15 Vi€ [1,k]:

1
16 Hi — [Cil ZXEC,- X

Si & Yxec; (x— 1) (x= )
// Eigendecomposition:
// &: list of eigenvalues in ascending order
// V: corresponding eigenvectors

V.E « eig (X, 5) Sn)
m « |{ele € &E Ae < 0}
o until convergence;

17

18

19

N

Combining these assumption we get the following cost function,
which we want to minimize:

7-I3 Y

i=1xeC;
+ 2,
xeD

This cost function builds a trade-off between the two subspaces.
Our expectation is that this trade-off ’squeezes’ all structural infor-
mation out of the noise space into the clustered space. Combinations
of features of the original space, which contain information regard-
ing the clusters, are better represented by the first term. Yet, combi-
nations of features that do not contain the structural information
are better represented by the second term. Thus by optimizing this
objective function, we can find the optimal subspace for k-means.

2
PlvTx - PCTVTpi”

2
ngTx—PIEVTyDH . (1)

2.2 Optimization Algorithm

We can optimize this objective function with a modified version of
Lloyd algorithm. The full algorithm is shown in Algorithm 1. Like
the classic version, it is only able to find local minima and therefore
has to be run multiple times—with different initializations—for a
sufficient clustering solution.
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As a first step we have to initialize V with an random orthonor-
mal matrix. For instance, we could perform a QR decomposition
of a random matrix and use the resulting orthonormal matrix Q
as the initial value. Further, we need the initial dimensionality of
the clustered space m. It should be noted that this value may not
be chosen too big or too small, as it balances the probability that
the initial clustered space contains parts of the cluster structure we
want to find and the expressiveness of the similarity measure. For
simplicity, we use in our implementation d/2 as it depends on d.
Yet, it is also possible to let the user choose an initial value. The
optimal value for m is subsequently found during the optimization.
Last but not least, the initial cluster centers could for example be
picked randomly from the dataset or set by k-means++.

The assignment step is nearly equivalent to the classic version.
We keep the parameters of V, m, and p; fixed and assign each data
point to the cluster for which the squared distance to the mean in
the clustered space is minimized,

2

PgVTx—PCTVTpi|

arg min
i

This minimizes the cost function with respect to the fixed parame-
ters.

In the update step we keep the data point assignment fixed
and determine the parameter values, for which the cost function is
minimized. The following sections discuss in detail the steps taken
and the correctness of each step.

2.2.1 Estimation of the cluster centers p;. We can determine the
estimator for the cluster centers by setting the partial derivative
with respect to p; equal to zero:

2,

x€C;

0 0

9 L_ 0 PTvTx - pTV Ty,
a”ij an, cV X— LV I

2
=

We shorten this simple prove at this point for brevity. The result
of this calculation shows what one would intuitively expect: the
cluster mean Pg Vi ; in the clustered space is simply the mean value
of all data points assigned to this cluster (in the original space) and
can be calculated with the well-known formula:

1
ZHZX.

x€C;

Hi

We would like to emphasize that this formula is independent of V
and m.

2.2.2 Estimation of the transformation matrix V. Next we need
to estimate the value of V. For now, we assume that m is a fixed but
arbitrary integer value in the range [0 : d]. Instead of taking the
endeavor using a partial derivative, we prove that with some tricks
we can rewrite the cost function such that it yields an eigen decom-
position problem. Solving this eigenvalue problem also minimizes
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the objective function:

k
= ngTx—ngTpiHZ
>i=1 x€C;
'y ‘P,IVTx—P,IVTpDHZ
xeD
- i
=1> > (PCTVTX—PCTVTpi) (PgVTx—PgVTy,—)
-i=1 xeC;
£y (PI\T,VTX—PI\T,VTFD)T (ngTx—PJVTpD)
xeD
[ &
= Z Z (x = p;) VPRIV (x = ;)
»i:l x€eC;
+ ) (x=pup) VARV (x - pp)
xeD
k
=3 2 T (= p) VERIVT (x - py))
i=1x€eC;

+ 3 T ((x- ) VRGPV (x - pp)). @

xeD
where we apply in the last part of the equation the trace-trick. It
exploits the fact that a scalar is also a 1 X 1 matrix. We can utilize
the addition and cyclic permutation properties of trace to further
rewrite the function:

k
=Tr (P PIV' Z Z (= p1y) (= pr) " |V
i=1xeC;
=:5;
+Tr(PNPI-\erT Z (x=pp) (x—pp)" |V
xeD
=:Sp
k
:Tr(PCPCTVT Si|v|+Tr (PNpgstDV)
i=1

Next we have to apply a second trick. First we should note that
P.P] is a diagonal matrix where the first m entries are ones and
the rest are zeros:
PPl = diag(1,---1, 0,---0 )
——— ———
m—times (d—m)—times

and equivalently for the noise projection:

P PJ = diag(0,---0, 1,---1 )
—_— ——
m~—times (d—m)—times
Since the trace of a matrix is the sum of its diagonal elements,
we can use it to bring the two diagonal matrices P, P} and P, P}
into a relationship:

Tr(P Pl A) = Tr(A) — Te(P. Pl A),

where A is an arbitrary d X d matrix.
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Further, we note that the trace of a matrix is also the sum of its
eigenvalues and V is defined as an orthonormal matrix. Therefore,
the transformation of the scatter matrix, V1S pV, only changes
the direction of the eigenvectors, but does not change the eigen-
values itself. This means, that the trace of such a transformation,
Tr(VTSpV), has to be constant for all possible values of the or-
thonormal matrix V, and we can ignore this term for the estimation
of V. We can use these properties to further rewrite the cost func-
tion:

[ k
Tr [P PVT | Y s V)+Tr (PNpgstDV)
Li=1
[ k
=Te (P PIVT Y 5| V| - (PCP(IVTSDV)+Tr(VTSDV)
Li=1
k
=Tr(PCP§VT Zsi —SD)V)+Tr(VTSDV), 3)
i=1

| S——
const. wrt. V

=3

Since PP/ leaves the upper left mx m matrix untouched and sets
all other values to zero, it is possible to minimize the function (1),
for a fixed partition, fixed p; and arbitrary but fixed m, by putting
the eigenvectors of X into V’s columns such that the m-eigenvectors
corresponding to the m-smallest eigenvalues project the data into
the clustered space and the other (d — m) eigenvectors project the
data onto the noise space. We therefore perform an eigenvalue
decomposition of ¥ and use the eigenvectors—sorted ascending to
their corresponding eigenvalue—as columns in V. We should note
that ¥ is symmetric and therefore it is orthogonal diagonalizable
and all its eigenvalues are real. Of course this only holds under
the assumption that ¥ has full rank, much like we assume for a
Gaussian mixture model that its covariance matrices have full rank.

2.2.3  Estimation of the dimensionality m of the clustered space.
Since we sort the eigenvalues in V in ascending order and the
constant term in Formula 3 does not depend on m, the estimation
of V is independent of the actual m (As long as we sort V ascending
to the corresponding eigenvalues). This gives us the ability to also
optimize m within each update step.

We can use the rewritten cost function in Formula 3 also to mini-
mize the costs with respect to m. We note that the equation depends
on m only through Pc. Since the trace is the sum of all eigenvalues
and we want to minimize this sum, we can only minimize it, if
we sum up all negative eigenvalues (which ¥ may has because in
general it is indefinite). This means, we let all eigenvectors corre-
sponding to a negative eigenvalue project onto the clustered space.
If the eigenvalues are all positive, we can minimize the trace only
by setting m equal to zero. That is we do not have a clustered space
because we cannot find any structure in the data following the
current partition and the dataset is better explained by a single
cluster. Eigenvectors with corresponding eigenvalues greater than
zero have to project onto the noise space. If the eigenvalue is zero
we are indifferent with respect to the cost function. Yet, from a clus-
tering perspective we prefer to have a smaller clustered space and
therefore it makes sense to let those eigenvectors also project onto
the noise space. Consequently, we can optimize the cost function
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for a given V by setting m to the number of negative eigenvalues of
3. Though, in practice, we might also want to assign eigenvectors
with a negative eigenvalue close to zero (e.g. > —171%) to the noise
space for the same reasons as components with an eigenvalue equal
to zero.

We would like to note that the eigenvalues of ¥ also give rise to
a notion of how important the corresponding eigenvector is for the
clustering structure: the smaller it is, the better the cluster structure
is represented by it. Sorting the eigenvectors in V ascending by their
eigenvalue therefore means that we also sort them by importance
with respect to the cluster structure.

2.3 Convergence

The convergence of our modified algorithm is quite simple to see.
The cost function is decreasing in each update and assignment step
and it is bounded from below. Thus, the algorithm has to converge
towards a (local) minimum.

2.4 Complexity

The complexity of our algorithm depends on the complexity of
the classic Lloyd algorithm O(Idk|D|), where I is the number of
iterations. Additionally, it depends on the complexity of eigenvalue
decomposition O(d?) and the calculation of the scatter matrices
O(d?| D) for each iteration of the loop. Combining these yields
a total complexity of O(I(mk|D| + d?|D| + d*)) and is therefore
comparable to most classical subspace clustering algorithms with
respect to the cubic runtime in the dimensionality.

Yet, the cubic runtime of the eigen decomposition is nearly a
non-issue with modern technology. Currrent GPUs provide high-
level APIs for such tasks and distributed computing frameworks
allow the decomposition of matrices with millions of entries in
mere seconds.?

2.5 Relationship to Mixture Models

A further justification for our cost function can be found by ex-
ploring the relationships to Gaussian mixture models. It is quite
easy to show that the standard k-means cost function is a limit to a
Gaussian mixture model with the probability distribution

p(x) = HfﬁiN(xl,ui,aI),

where one lets the overall variance o go to zero [20].
Following this approach, it can be shown that SUBKMEANS is
also a limit to the mixture model with probability distribution:

k
p(x) = ZniN(PCTVT)dPCTVTui,oI) NEIVTXPIVT ., oT)
i

This can easily be seen by taking the limit of the log-likelihood
function with respect to o <« 0, which yields the cost function
shown in Eq. 1 (with additional constant terms). We would like to
point out that the clustered and noise space in this mixture model
are statistically independent.
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3 EXPERIMENTS

We evaluated our method both with respect to its clustering results,
as well as its dimensionality reduction properties based on eight
real-world datasets of varying size and dimensionality. We got those
datasets from the UCI® and UCR* repositories.

We compare SUBKMEANS to k-means in combination with two
widely used preprocessing methods, which achieve a lower dimen-
sional representation of the data, namely Principal Component
Analysis (PCA)[19] and Independent Component Analysis (ICA)
[17]. For PCA we used the widely used rule of thumb and kept com-
ponents such that 90% of the total variance was retained. For ICA
we used the method FastICA (with log cosh). As a sensible choice
for the number of components in ICA we used k, since one might
expect for each cluster that it should at least differ from the other
clusters in one independent component. After this preprocessing
we applied the classic k-means.

Further, we compare our method to four other proposed algo-
rithms that perform some kind of dimensionality reduction during
clustering, namely LDA-k-means, FOSSCLU, ORCLUS and 4C.

For ORCLUS and 4C we used the implementations of the ELKI®
framework, for FOSSCLU we used the provided Java implementa-
tion. The LDA-k-means algorithm is a faithful translation of the
repective Matlab version. The k-means and SUBKMEANS were im-
plemented by the authors in Scala and Breeze. Thereby, we used
simple implementations without any sophisticated performance
optimization. All experiments were carried out on a computer with
an Intel Core i7 3.40GHz, 32GB RAM, running Linux.

We applied standardization (zero mean and unit variance for all
features) to all datasets as the sole common preprocessing step. For
all algorithms (except for 4C), we set the number of clusters to the
number of class labels of the respective dataset. We ran FOSSCLU,
LDA-k-means, ICA-k-means, PCA-k-means and SUBKMEANS each
in total 40 times. All of these algorithms are based on a cost func-
tion and may run into local minima. In order to account for those
insufficient outcomes, we sorted the results by their costs of the
respective cost function and removed the half with higher costs.
Then we determined the average NMI-score for each algorithm.

ORCLUS has, besides k, the two additional parameters € and a
seeding parameter. For € we ran a grid search over [2; min(20, d)]
and tried this parameter 20 times with different seed values and
selected the result that achieved the highest average NMI. 4C re-
quires the user to set three parameters. We ran the algorithm for
€ € [2;2 X d], minPts € [1;15] and A € [2;min(20, d)] and selected
the overall best NML

Our quantitative results are presented in Table 2. We can see that
SuBKMEANS is a promising clustering algorithm. It achieves with
two exceptions the strongest NMI score. In the remaining lower-
dimensional datasets, the advantages of the clustered space are not
as visible as for the higher-dimensional datasets and SUBKMEANS
is only ranked second.

Yet, even for lower dimensional datasets it may be of an advan-
tage to use SUBKMEANS in terms of visualization. Figure 3 shows

2Compare http://docs.nvidia.com/cuda/ and https://databricks.com/blog/2014/07/21/
distributing-the-singular-value-decomposition-with-spark.html
3https://archive.ics.uci.edu/ml/datasets.html
4http://www.timeseriesclassification.com/dataset.php

Shttps://elki-project.github.io/
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Table 2: Real-world results (NMI-value). Results marked with | were either aborted after searching for 24 hours (per dataset)
or failed due to memory constraints. In either case we show the best results we were able to achieve up to this point. The found
dimensionality m of the clustered space for SUBKMEANS is shown in brackets.

Wine Pendigits Ecoli Seeds Soybean Symbol OliveOil Plane
(|D|=178k=3,d=9)  (|D|=7494k=10,d=16)  (|D|=327k=5d=7)  (|D|=210k=3,d=7)  (|D|=47k=4,d=35)  (|D|=995k=6,d=398)  (|D|=60k=4,d=570)  (|D|=210k=7,d=144)
SuBKMEANS (m) 0.88 (2) 0.70 (9) 0.68 (4) 0.74 (2) 1.00 (3) 0.79 (5) 0.75 (3) 0.89 (6)
PCA-k-means 0.71 0.61 0.46 0.73 0.57 0.78 0.61 0.83
ICA-k-means 0.42 0.68 0.61 0.73 0.61 0.79 0.53 0.83
LDA-k-means 0.93 0.69 0.62 0.64 0.93 0.56 0.71 0.16
FOSSCLU 0.87 0.77 0.62 0.62 1.00 0.00" 0.00" 0.00%
ORCLUS 0.30 0.60 0.68 0.09 0.65 0.007 0.40" 0.66
4C 0.52 0.55 0.09 0.53 0.64 0.217 0.58" 0.78

a comparison between the transformation found by SUBKMEANS
compared to PCA. We can see that the two most important fea-
tures in the clustered space looks quite promising revealing relevant
structures not only for synthetic datasets (like in Figure 1), but also
for real-world applications. In contrast, the first two features of
the noise space, do not reveal any major cluster structure to the
naked eye and we come to the conclusion that the transformation
is indeed able to separate important from unimportant features.
If we compare these findings to the first two features of the PCA
transformed data, we can see that this transformation reveals clear
structures only in few cases (e.g. Wine and Symbol). Even for those
datasets, the structural information revealed by SUBKMEANS often
seems superior (e.g. Wine).

We performed additional experiments to reveal the effects of
heavily overestimating the number of ’real’ clusters in a dataset
on the transformation matrix. The results show that the shape of
the clustered space does not change greatly. Figure 4 shows two
examples for Pendigits and Symbols, where k was set to twice the
number of class labels. The first two dimensions of the clustered
space look quite similar to the one shown in Figure 3—even with
twice the number of clusters. This shows that SUBKMEANS indeed
finds subspaces, in which the structural information of the cluster-
ing is most prominent and that our method also handles situation
gracefully, in which the number of clusters is heavily overestimated.

This property may help identify the right number of clusters
by visual inspection, even if the number of clusters for the first
attempts were initially overestimated. Moreover, sometimes data
scientists set a high value for k and process the found partition
further to create non-spherical clusterings, for instance, by using the
found partitions in combination with single-linkage agglomerative
clustering [31]. Even in those situations the found transformation
is very useful to verify these clusters visually.

Though, we do not want to conceal that the overestimation of
k also has side effects on m. If we significantly overestimate the
number of clusters, the algorithm will find more spurious structures
within the noise space, with the consequence that m increases.
Yet, since V is sorted by 'importance’ this only has a rather small
effect on the most significant components of V and by adjusting
k accordingly or by inspecting the corresponding eigenvalues and
choosing a threshold-value manually, this effect can be mitigated.
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Figure 2: Runtime for varying d and |D|

3.1 Runtime Experiments

We want to support our claim that, compared to other algorithms, in-
corporating some kind of dimensionality reduction, SUBKMEANS is
indeed a fast algorithm. We compare it to FOSSCLU, LDA-k-means,
ORCLUS and 4C. As basis we used a synthetic dataset containing
data points, equally distributed over three well-separated Gaussian
clusters. For all algorithms, we initially determined the parameter
values yielding the best NMI score and kept them fixed.

We performed two experiments. In the first experiment, we
wanted to evaluate the runtime behavior by sampling an increas-
ing number of additional data points. In the second experiment,
we wanted to evaluate how SUBKMEANs behaves for an increas-
ing dimensionality. For this experiment we added additional noise-
features drawn from a single Gaussian.

Figure 2 shows the results of both experiments. For each dataset
and dimensionality configuration, we ran each algorithm ten times
and present the median result. We can see that SUBKMEANS is
indeed—among the tested—the fastest algorithm.

The closest competitor to SUBKMEANs for high-dimensional
datasets is LDA-k-means. This can be expected, since this algorithm
uses almost the same operations—assignment and update steps of
k-means and the eigen-decomposition of scatter matrices—with an
additional matrix inversion.
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Figure 3: The diagrams show a comparison of PCA vs. the transformation by SuBKMEANS for the found solution with minimal
costs for each dataset. The clustered space dimensionality m and the NMI of the model are given below the dataset name. Colors
represent the class labels and symbol represent the predicted cluster labels. The first row shows the scatter plot of the first
two dimensions of the clustered space. The second row shows the scatter plot of the first two dimensions of the noise space.

The last row shows the first to two features found by PCA.

Figure 4: Diagrams show the two most important features
of the clustered space of the Pendigits and Symbol datasets,
where the number of clusters is two times the real cluster
count.

4 DISCUSSION AND RELATED WORK

k-means gets its unbroken popularity from its simplicity, adapt-
ability and execute speed. It has inspired numerous extensions and
adaptations, many of which can also be combined in SUBKMEANs.
We present some of these extensions in the following.

Further, we discuss SUBKMEANS in the context of other meth-
ods and algorithms, which either are or incorporate some kind of
dimensional reduction or feature selection steps.
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k-means Extensions

The simplicity and effectiveness of the k-means algorithm has in-
spired many adaptations and extensions of the basic idea. In the
following we provide only a small, non-exhaustive overview.

The basic idea has been adopted to use the median instead of
the mean [18]. The hard cluster assignment is weakened in Fuzzy-
c-means [11], in which—much like in mixture models—each data
point is proportionally assigned to multiple clusters.

There have been proposed different ways to initialize the cluster
centers. The widely used k-means++ algorithm [4] contains an
seeding technique, which selects data points as initial centers based
on their proportional distance to the previous selected centers. This
method has been shown to reduce the number of iterations and
achieves, on average, better local minima compared to a random
initialization. However, it also has been criticized for its inher-
ent sequential nature. A more recent proposal is k-means|| [5]. In
this proposal the initialization of the cluster centers is parallelized,
which better fits the growing size of current datasets.

The automated estimation of the number of clusters k has been
tackled by different researchers. Either by extending the cost func-
tion by a complexity term, like in X-means[25], or by using sta-
tistical tests, like in Q-means [16], as a cluster-split criteria. The
Linde-Buzo-Gray algorithm [14] doubles the number of clusters
for each iteration, but, towards a different end: finding a sufficient
codebook for vector quantization. Bisecting k-means [28] follows a
hierarchical top-down approach and in each step splits the clusters
according to the 2-means.
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Some proposals for accelerating the update step are based on
kd-trees [23, 24]. Other researchers propose to exploit the triangle
inequality [12, 15, 26] to minimize the number of clusters each data
point has to be compared to. Further proposals, like [7], suggest
exploiting the instruction sets of modern CPUs to parallelize the
computation within each core.

A Bayesian treatment of k-means caRn for instance be found
in [30], which reverses the roles of expectation and maximization
in the classical EM algorithm. In [20] a nonparametric method
is presented, which adapts the Dirichlet process together with a
modified version of the Gibbs sampling method.

k-means can be extended to non-linearly separable input data
via the kernel-trick. This idea was unified with spectral clustering
into a common framework [9] and there seems to be a connection
to SUBKMEANS as well, which we are planning to explore more in
the future.

Some researchers [8, 10, 32] propose to combine k-means with
Linear Discriminant Analysis (LDA), in order to perform a simulta-
neous dimensional reduction. We discuss the LDA-k-means algo-
rithm ?? in more detail below.

Dimensionality Reduction Techniques

The goal of dimensionality reduction is to find a lower dimensional
representation of a high-dimensional dataset. The proposed meth-
ods, thereby, make quite different assumptions and introduce a
range of different optimization goals.

Probably the single most famous method falling into this cat-
egory is PCA, which minimizes the reconstruction error. An al-
ternative formulation searches for the directions with the highest
variance. Kernel PCA [27] combines this idea with the kernel-trick.

Independent Component Analysis (ICA) [17] is not directly a
dimensionality reduction mechanism, but aims at identifying sta-
tistically independent sources within the data.

Isomap [29] is a method, which finds a nonlinear lower dimen-
sional representation based on the estimated geometric properties
of the data’s manifold.

Subspace and Projected Clustering

Many different proposals for clustering in high-dimensional datasets
can be grouped under the banner of subspace and projected clus-
tering algorithms. Algorithms in this family assign each cluster
its own subspace, in which some cluster-criteria is fulfilled. This
distinguishes them from the approach taken in SUBKMEANS, which
identifies one common subspace. Algorithms like CLIQUE [3] or
PROCLUS [1] identify only axis-parallel subspaces. This approach
has the benefit that clusters are easily explainable by its subspace-
features. Algorithms that try to find clusters in arbitrarily oriented
subspaces encompass for instance ORCLUS [2] or 4C [6].

Common Subspace Clustering

Besides our own proposal SUBKMEANS, we identified two other al-
gorithms following the same theme of identifying a single, common
subspace for all clusters. The advantage of this approach is that
it allows a researcher to interpret the relationship between data
points within a cluster, as well as the relationship between clusters
within the common subspace.
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(a) LDA-k-means

(b) FOSSCLU

Figure 5: The left scatter plot shows an example of the
overfitting behavior of LDA-k-means for the Plane dataset.
The right plot shows an example of FOSSCLU for the Wine
dataset. It shows the first two features of the clustered space.
We can see that the cluster structures are occluded, because
the features are not sorted by ’importance’. Colors represent
class labels. Clusters are symbol-coded.

LDA-k-means [10] combines the supervised Linear Discrimi-
nant Analysis (LDA) with k-means. Thereby, it iterates between
partitioning the data using k-means and transforming the data
into a subspace via LDA, in which the within cluster variance is
minimized and the between cluster variance is maximized. How-
ever, we identified several drawbacks of this approach compared
to SuBKMEANS. First the subspace is fixed to (k — 1)-dimensions.
Secondly, LDA is known to overfit with growing number of dimen-
sions [22]. We also experienced this behavior in our experiments.
Especially for the high-dimensional data sets, the found partition
in the transformed space look very confident. The clusters in the
respective subspaces are well separated yielding summed squared
distances near zero. Yet, at the same time these results yield very
bad NMI scores. Figure 5 (a) shows this behavior for the Plane
dataset, where we show the scatter plot of the first two components.
In that sense, LDA-k-means ignores structures disagreeing with the
current partitioning assumption. SUBKMEANS chooses a different
path: the ignored structure must be better explainable by the sin-
gle noise cluster or otherwise has to be overcome by the clusters
in the clustered space. Moreover, we see the maximization of the
inter-cluster variance can be problematic in a situation, where the
number of clusters is overestimated. In such a scenario the LDA
tries to push sub-clusters apart that are actually part of a proper
bigger cluster. In combination with the overfitting issue, this may
not be recognized in high-dimensional datasets. It is possible to
use a regularized version of LDA [32], however, this introduces
a further parameter, which the user has to specify. At the same
time such a regularization parameter would also be possible for
SuBKMEANs—a further research area we are planning to explore.

FOSSCLU [13] is the second algorithm and shares many similari-
ties with SUBKMEANS. It also searches for an orthonormal transfor-
mation, which projects the data onto a subspace. Simultaneously, it
uses the EM-algorithm to optimize a crisp GMM. It uses the Mini-
mum Description Length principle to automatically determines the
values of k and m. Theoretically, compared to SUBKMEANS, it should
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better adapt to the data, much in the same way a classic GMM does
compared to k-means. Yet, we determined several speed-related
aspects, which speak for the use of SUBKMEANS over FOSSCLU.
First, the transformation matrix is quite difficult to optimize and
the proposed algorithm—based on the Jacobi transformation—is
very time-consuming, providing only very few opportunities for
further optimizations. This is why the proposed algorithm only
optimizes the transformation between the two subspaces for a fixed
m, but not within them. This means that the transformation matrix
in FOSSCLU projects the for the GMM essential structure onto the
subspace, but in an arbitrary orientation. The features are there-
fore not sorted by importance and essential structures within the
clustered space might still be occluded from the viewer. Figure 5 (b)
shows this behavior for the Wine dataset. Here the found solution
yields an NMI score of 0.92 and m = 7. However, when the user
fixes m = 2, the transformation yields a clustered space similar to
that of SUBKMEANS in Figure 3. In SUBKMEANS on the other hand,
the components of V are sorted corresponding to the feature im-
portance, highlighting the most prominent structures by the first
components. Additionally, SUBKMEANS brings the inherent prop-
erty to optimize m within each iteration, whereas FOSSCLU has to
start a whole EM-optimization for each possible value of m. In sum-
mary, FOSSCLU has a major speed disadvantage for datasets with
more than twenty dimensions and our experiments confirm that
SuBKMEANS is several orders of magnitude faster than FOSSCLU.

However, we should point out that—as there is no free lunch-
SuBKMEANS has, like all clustering algorithms, its limitations. Specif-
ically, it fails at the same well known examples as the classic k-
means version.

5 CONCLUSION

In this paper, we propose SUBKMEANS, an extension of the k-means
algorithm, which performs clustering and dimensionality reduction
simultaneously without the need for additional parameters (ex-
cept for k). Thereby, it finds a k-partition together with a—for this
clustering—optimal subspace. It has many desirable properties. The
most basic, non-optimized version is easy to implement and only
uses standard features provided by all data computing frameworks.
Even in this basic implementation, it is fast, though this could most
likely further increased, for instance by a more sophisticated way
of calculating the scatter matrices. Also, one could easily incorpo-
rate many other extensions proposed for k-means, e.g. for further
speed-ups or estimation of k.

Future efforts may be directed towards the approximation of
the transformation matrix V. We are very confident that this can
be achieved quite easily by using a randomized singular value
decomposition, resulting in further performance improvements for
very high-dimensional datasets.
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