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ABSTRACT

Existing research on �nding social groups mostly focuses on dense

subgraphs in social networks. However, �nding socially tenuous

groups also has many important applications. In this paper, we

introduce the notion of k-triangles to measure the tenuity of a

group. We then formulate a new research problem, Minimum k-

Triangle Disconnected Group (MkTG), to �nd a socially tenuous

group from online social networks. We prove that MkTG is NP-

Hard and inapproximable within any ratio in arbitrary graphs but

polynomial-time tractable in threshold graphs. Two algorithms,

namely TERA and TERA-ADV, are designed to exploit graph-

theoretical approaches for solving MkTG on general graphs e�ec-

tively and e�ciently. Experimental results on seven real datasets

manifest that the proposed algorithms outperform existing ap-

proaches in both e�ciency and solution quality.

1 INTRODUCTION

With the popularity and wide accessibility of online social net-

works (OSNs), e.g., Facebook, LiveJournal, LinkedIn, research on

�nding various social groups for community detection [14] and ac-

tivity coordination [15, 17] has drawn increasing a�ention. Ex-

isting research works mostly focus on extracting dense groups of

socially connected individuals from online social networks. How-

ever, socially tenuous groups (STGs), i.e., subgraphs with few social

interactions and weak relationships among members, have not re-

ceived much research a�ention1 . We argue that STGs have many

real needs, e.g., psychoeducational group formation and reviewer

selection, and thus deserve more research e�ort.

1Reducing only the number of edges in the group is not su�cient for real applications
(explained later).
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(d) F3.

Figure 1: Motivating example.

Psychoeducational group formation. For group therapy for

substance abuse treatment, an important task is to form psychoed-

ucational or cognitive-behavioral groups [9]. In addition to select-

ing individuals with similar disorder symptoms and behaviors, one

essential criterion for group formation is to assign patients who do

not know each other (and sometimes not even multi-hop friends)

to form an STG [9]. Forming such an STG is critical for engaging

the groupmembers to share their feeling without hesitation. More-

over, it’s less likely for members of such an STG to form subgroups

which may act against other members during therapy sessions.

Consider a scenario where a clinical psychologist would like to

select four patients from candidates in Figure 1(a) (their social re-

lationships are illustrated) to form a psychoeducational therapy

group. Note that F1 = {v3,v4,v5,v8} (see Figure 1(b)) may not

be a good choice because there are many edges (social relation-

ships) among them. While F2 = {v2,v4,v7,v8} (see Figure 1(c))

does not have direct social relationships, each pair of them forms

a friend-of-friend relationship (through v3 or v5), which may lead

to subgroups (due to common friends) or make them hesitate to

share their private experiences (which may be leaked to common

friends). As shown, F3 = {v1,v2,v6,v8} (see Figure 1(d)) is the best

choice because the patients induce no direct or friend-of-friend re-

lationships, minimizing the chance for private information shared

in the therapy group to spread out.

Reviewer selection. STG also �nds its applications in paper re-

views. Conference program chairs need to assign experts to review
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papers. Besides matching the expertise of reviewers with the top-

ics of submissions, it is crucial to avoid assigning reviewers socially

close to each other and the authors of a paper in order to ensure

unbiased assessments. Whilemost review systems have utilized co-

authorship, a�liations, and countries to avoid con�ict of interests,

current systems do not carefully consider social tenuity among the

authors and reviewers2 . STG can help!

To �nd socially tenuous subgraphs (STGs)3, the tenuity of an

STG needs to be properly modelled. �us, we introduce the no-

tion of k-triangles as the basis for measuring tenuity of STGs. A

k-triangle in a social network exists when three individuals are

located within k hops from each other. In the following, we �rst

formally de�ne the k-triangle and then discuss its properties and

advantages.

De�nition 1.1. A k-triangle is a triplet of vertices {u,v,w}, such

that dG (u,v) ≤ k , dG (u,w) ≤ k , and dG (v,w) ≤ k , where dG (x,y)

is the shortest path distance (in hops) between two vertices x,y on

G.

It is worth clarifying that, for a k-triangle {u,v,w} in a sub-

graph F , the shortest path distance between each pair of vertices

is computed on the overall graphG instead of F , because the social

relationships of the selected members go beyond F . For example,

consider F = {v1,v3,v6} in Figure 1(a). �e shortest path distance

on F from v1 to v3 is in�nite, but it’s 2 onG.

Triangles serve well as a basic unit to measure various den-

sity relationships among the neighborhoods of vertices in a net-

work, e.g., clustering coe�cient, transitivity ratio, and k-trusses

[8]. Countering the idea, the fewer k-triangles in a group, themore

tenuous is the group. In fact, a (k − 1)-triangle is a k-triangle. If

a group has no k-triangle, it does not have any (k − 1)-triangle,

(k − 2)-triangle,…, and 1-triangle. In fact, if a group does not have

any k-triangle, it does not include any subgraph H with |H | ≥ 3 in

which dG (u,v) ≤ k for u,v ∈ H 4. �us, the count of k-triangles

serves very well for measuring the group tenuity.

Note that k-triangles have great advantages in measuring the

group tenuity. First, k-triangles capture social relationships up to

k hops. Two individuals with more common friends within k hops

have more k-triangles. Consider Figure 1(c) as an example. F2 =

{v2,v4,v7,v8} has no triangles (no 1-triangles) among them, but

there exist four 2-triangles, i.e., each pair of vertices has a common

friend. In contrast, in Figure 1(d), F3 = {v1,v2,v6,v8}, which has

no 2-triangle, is a be�er tenuous group than F2. Second,k-triangles

serve well as a basic block for many other graph structures, such

as paths, trees, stars, or even cliques. Consider the example in

Figure 1. Path {v1,v7,v3} is a 2-triangle, while {v3,v4,v7,v8} (a

tree rooted at v4 as well as a star centered at v3) contains four

2-triangles. Moreover, each clique of size p contains exactly C
p
3

triangles. If the number of k-triangles is minimized in a subgraph,

2In fact, some people argue that double-blind reviewmay not really be blind because
the research community is small. Sometimes it is not di�cult to guess the author
identities during the paper bidding phase.
3In this paper, STG refers to both socially tenuous group and socially tenuous subgraph,

which are used interchangeably under the context of this paper.
4For the case of |H | = 2, we can add a virtual vertexq linking through arti�cial paths
to every vertex in the group. By controlling the hop number of the arti�cial paths,
eliminating k-triangles in the original group can be transformed to eliminating the
subgraphs H with |H | = 2.

the aforementioned graph structures (which imply a certain degree

of denseness) are also e�ectively minimized.

In this paper, we formulate a new research problem, namely

Minimum k-Triangle Disconnected Group (MkTG), which �nds an

STG by optimizing the group tenuity – minimizing the number of

k-Triangles normalized by the group size. Given a social network

G = (V ,E), MkTG �nds a group F from G with the minimum

number of k-triangles for each vertex subject to the following con-

straints. 1) F contains no fewer than n individuals (size constraint).

2)�ere is no edge in F (no-pair constraint). �e size constraint can

be speci�ed based on practical need, e.g., �nding at least three re-

viewers for paper review. �e no-pair constraint guarantees that

F does not contain any ego friends (directly connected friends),

which is also important for forming psychoeducational groups and

�nding paper reviewers. Please note that F may still contain a lot

of k-triangles (k ≥ 2) even when F contains no directly connected

friends. For example, in Figure 1(c), F2 = {v2,v4,v7,v8} contains

no edge. However, there are four 2-triangles in F2.

�eMkTGproblem is nontrivial due to the entangled group size

constraint, no-pair constraint and social tenuity objective function.

We prove that the MkTG problem is NP-Hard and inapproximable

within any ratio. A�er the hardness analysis, we take steps to solve

the MkTG problem systematically. We propose an e�cient and ef-

fective algorithm, namely Triangle and Edge Reduction Algorithm

(TERA), for solving the MkTG problem on general graphs. More-

over, we devise advanced processing strategies for TERA, namely

TERA with Advanced Processing Strategies (TERA-ADV), which in-

corporate graph-theoretical strategies, i.e., Simplicial Pruning and

Vicinal Partition and Elimination, to signi�cantly avoid examining

redundant vertices in the graph. �en, we consider theMkTGprob-

lem in threshold graphs [31]. We pay special a�ention on threshold

graphs because the structural properties (e.g., degree distribution,

largest component size, edge density, and local clustering coe�-

cient) of many popular online social networks are similar to those

of threshold graphs [32]. We propose a polynomial-time algorithm

to �nd the optimal solution based on the notion of vicinal pre-order.

�e contributions are summarized as follows.

• We identify a new problem of �nding tenuous groups

in online social networks and introduce a novel notion

of k-triangle for measuring the tenuity of groups. Ac-

cordingly, we formulate the Minimum k-Triangle Discon-

nected Group (MkTG) problem, and prove it NP-Hard and

inapproximable within any ratio.

• For MkTG in general graphs, we devise two algorithms,

namely Triangle and Edge ReductionAlgorithm (TERA) and

TERA with Advanced Processing Strategies (TERA-ADV).

�e la�er employs Simplicial Pruning and Vicinal Partition

and Elimination based on graph theory to �nd solutions ef-

�ciently and e�ectively.

• We study the MkTG problem in a special class of graphs,

i.e., threshold graphs, which have graph properties very

similar to many well-known online social networks. We

show that our proposed algorithms can obtain the optimal

solution in polynomial time according to the notion of vic-

inal pre-order.
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• Weperform extensive experiments on real datasets to eval-

uate the proposed algorithms and di�erent baselines. Ex-

perimental results show that our algorithms outperform

the baselines in both solution quality and e�ciency.

�e paper is organized as follows. Section 2 formulates the

MkTG problem. Section 3 introduces the works relevant to this

paper. Sections 4 and 5 present the algorithms for MkTG on gen-

eral graphs and threshold graphs, respectively. Section 6 presents

the experimental results, and Section 7 concludes this paper.

2 PROBLEM FORMULATION AND HARDNESS

Given a social network G = (V ,E), let |F | denote the number of

vertices in F , and ∆k (F ) denote the number of k-triangles in F . �e

MkTG problem is formulated as follows.

Problem: Minimum k-Triangle Disconnected Group

(MkTG).

Given: A social networkG = (V ,E), size constraint n, and tenuity

parameter k .

Find: A subgraph F ⊆ G where |F | ≥ n (size constraint) and

∄u,v ∈ F with edge (u,v) ∈ E (no-pair constraint), such that
∆k (F )
|F |

is minimized.

When the group size |F | (or the size constraint n) increases, it

becomes harder to minimize the number of k-triangles, and it is

more inclined for F to violate the no-pair constraint. �erefore, the

objective function of the group includes a normalization term5 to

encourage exploring groups with di�erent sizes, instead of always

trying the smallest group (i.e., |F | = n). Intuitively, the tenuity

objective above aims tominimize the average number of k-triangles

for each member in the group. �erefore, one of the challenges for

MkTG lies in achieving a good balance between the group size |F |

(or the size constraint n) and the number of k-triangles in F . On

the other hand, the tenuity parameter k also has crucial impact on

the number of k-triangles in F . As k increases, it becomes more

challenging to �nd a subgraph with a small number of k-triangles

because the number of k-hop friends increases for each vertex.

One approach for MkTG is to �rst construct the k-hop graph

(detailed later),Gk ofG, then construct the complement graph Ĝk

ofGk , and employ existing algorithms to extract dense subgraphs

from Ĝk . Speci�cally, given input graphG = (V ,E) and parameter

k , the k-hop graph Gk = (V , Ek ) retains the vertex set V and aug-

ments the edge set E into Ek . An edge (u,v) ∈ Ek exists if and only

if u and v are within k hops onG, i.e., dG (u,v) ≤ k . By transform-

ing G into Gk , we ensure that a k-triangle {u,v,w} exists in G if

and only if {u,v,w} is a 1-triangle in Gk . However, �nding dense

subgraphs on Ĝk cannot obtain the good solutions for MkTG due

to the interplay of k-triangles and the no-pair constraint.

A counterexample of the above approach is shown in Figure 2.

Given G in Figure 2(a) and an MkTG with k = 2, n = 3, Figure

2(b) is the 2-hop graph, i.e., G2, and Figure 2(c) is the complement

graph of G2, i.e., Ĝ2. One optimal solution of this MkTG instance

onG is {v1,v2,v5} with no 2-triangles which satis�es the no-pair

constraint. In contrast, if we employ the algorithm to �nd the sub-

graph Fd with maximum density (i.e., to maximize
|E(Fd ) |
|V (Fd ) |

) on Ĝ2

5�e normalization term could be ( |F |)t with t ≥ 1. Without loss of generality, we
consider the case where = 1.
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(c) Ĝ2 .

Figure 2: Counterexample to complementary graph ap-

proaches.

in Figure 2(c), we have Fd = {v1,v2,v3,v4,v6} with
|E(Fd ) |
|V (Fd ) |

= 1.

However, there exists a 2-triangle ({v2,v3,v6}) in Fd on the orig-

inal graph G, and Fd does not satisfy the no-pair constraint. �is

example manifests that MkTG is very challenging and straightfor-

ward approaches cannot solve it properly.

�e proposed MkTG problem is NP-Hard and inapproximable

within any ratio, which can be proved with a gap-introducing re-

duction from the Maximum Independent Set (MIS) problem (we

present the hardness analysis in [10]). �erefore, it is impossible to

design an approximation algorithmwith any �nite ratio for MkTG

in an arbitrary graph. However, a�er carefully analyzing the prob-

lem, we observe that it is still possible to obtain the optimal so-

lution to the MkTG problem in polynomial time for an important

graph class, i.e., threshold graphs [31]. We are particularly inter-

ested in MkTG on threshold graphs due to their correspondence

to many real-life social networks. For example, as reported in a

recent study [32], the structural properties of the intergroup net-

works on online social networks (e.g., LiveJournal, Flickr, Youtube),

including degree distribution, largest component size, edge den-

sity, and local clustering coe�cient, match well with the structure

of threshold graphs. �erefore, we also analyze theMkTGproblem

on threshold graphs.

3 RELATED WORKS

Extracting dense subgraphs or communities is an important re-

search topic withmany social applications. Various social cohesive

measures have been proposed to �nd dense subgraphs, e.g., diame-

ter [8], density [11], clique and its variations [12]. Moreover, com-

munity detection methods have been actively studied to extract

densely connected subgraphs from social networks [13, 14], while

research on organizing social groups based on tightness among ex-

isting friends and other crucial factors [15–17] has also been stud-

ied. GSGQ [15] and MRGQ [16] extract socially dense groups with

spatial constraints, while user preference is also examined [17]. Al-

though the above research covers various applications, they focus

on extracting dense subgraphs from online social networks. In con-

trast, this paper explores a new problem of �nding subgraphs with

the minimum number of k-triangles. �erefore, the algorithms in

prior works cannot be applied to the MkTG problem.

A recent line of research focuses on graph sparsi�cation, sim-

pli�cation, sparse spanners, and sampling for massive networks

[18–22]. �ese algorithms aim to �nd concise and representative

subgraphs with the essential graph properties preserved so that

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

417



the results are still informative for network analysis. For exam-

ple, DEDS [18] processes the original graph into multiple smaller

networks to improve the e�ciency of link prediction, whereas the

structure of a network is simpli�ed for clustering [19]. In contrast,

MkTG does not extract a subgraph with the graph properties pre-

served. It aims to �nd a subset of mutually remote vertices with

the minimum number of k-triangles.

Some theoretical works analyze triangle-free graphs [23–26].

�e number of independent sets in triangle-free graphs is studied

in [23], while the number of pentagons in triangle-free graphs is de-

rived in [24, 25]. Nevertheless, it is worth noting that, triangle-free

graphs cannot ensure mutual tenuity. Even if a subgraph F con-

tains no triangles, members of F may still be socially close to each

other, e.g., friends-of-friends. Most importantly, the above works

focus on analyzing the properties of triangle-free graphs, but ap-

parently online social networks are not triangle-free. Some theo-

retical works [27–29] also analyze the properties of other sparse

graphs, e.g., chordal graphs, interval graphs, and perfect graphs

[27, 29]. Nevertheless, the above research does not aim to extract

a subgraph from a social network.

4 MkTG ON GENERAL GRAPHS

In this section, we propose two new algorithms, namely Triangle

and Edge Reduction Algorithm (TERA) and TERA with Advanced

Processing Strategies (TERA-ADV), for �nding good solutions to the

MkTG problem on general graphs e�ciently. While it is inapprox-

imable within any ratio as shown in Section 2, we prove later in

Section 5 that the proposed TERA can �nd the optimal solution

for MkTG on threshold graphs, which have similar properties with

many online social networks, in polynomial time.

To solve MkTG, several crucial factors need to be carefully ex-

amined. �e �rst factor is the tenuity objective and its interplay

with the no-pair constraint, i.e., there must exist no edge in F . To

minimize the number of k-triangles, one greedy approach is to it-

eratively select the vertices involved in few triangles. Neverthe-

less, these vertices may share common incident edges and thus are

not able to ensure the no-pair constraint. �e second factor is the

trade-o� between the minimum group size n and the number of

k-triangles. �e objective function aims to minimize the average

number of k-triangles in F , i.e., to minimize
∆k (F )
|F |

. As k and n in-

crease, it is more likely to have k-triangles in F . �erefore, how

to strike a balance between the group size and the number of k-

triangles is crucial to minimizing the objective value.

To address the above factors, three ideas are considered in our

algorithm design: 1) To include isolated vertices because isolated

vertices ensure both the no-pair constraint and theminimization of

the number of k-triangles. However, relying solely on the isolated

vertices is not practical because the number of isolated vertices is

usually small, especially in online social networks. 2) To identify

the vertices appearing in many k-triangles. If these vertices are

identi�ed and removed from the resulting group F , the number of

k-triangles can be signi�cantly reduced. Note that a vertex with a

great degree is not necessarily involved in many k-triangles in F

since not all its neighboring vertices are always selected in F . 3)

To generate multiple candidate groups of di�erent sizes in order to

extract the one with the best balance between the group size and

the number of k-triangles.

In the following, we �rst present the basic TERA in Section 4.1

and then enhance it with advanced pre-processing and pruning

techniques in Section 4.2. �e proposed advanced techniques can

pre-process the social networks o�ine to support arbitrary param-

eters k and n in MkTG issued by a user online.

4.1 Triangle and Edge Reduction Algorithm

In TERA, we �rst assign each vertex v with a weight w(v), where

w(v) is the number of k-triangles v is involved in. Note that this

step can be done e�ciently o�ine by transforming G into the k-

hop graphGk (as mentioned in Section 2)6 and then assigning the

number of triangles each vertex v is involved inGk asw(v). �en,

given the runtime parameters k and n, TERA iteratively removes

a vertex vi (and its incident edges) with the largest vertex weight

fromG. More speci�cally, letHi+1 denote the graph a�er removing

vertex vi from Hi in iteration i . Initially, H1 is set as G. At each

iteration a�erwards, Hi+1 represents the graph Hi − {vi }.

Algorithm 1 Triangle and Edge Reduction (TERA)

Input: G = (V , E), n, k

1: H1 ← G , i ← 1, U← ∅
2: while |Hi | > n do

3: identifyvi ∈ Hi as the vertex with the maximumw (vi ) (break ties

by selecting the vertex with larger degree in Hi )

4: Hi+1 ← Hi − {vi }

5: if Hi+1 satis�es no-pair constraint then

6: U← U ∪ {Hi+1 }

7: end if

8: i ← i + 1

9: end while

10: H ∗ ← argminHj ∈U
∆k (Hj )

|Hj |

11: if H ∗ = ∅ then

12: H ∗ ← argmin∀j
∆k (Hj )

|Hj |

13: end if

14: output H ∗

�e intuition is that removing the vertices that are involved in

a large number of k-triangles may likely reduce the number of k-

triangles and keep isolated vertices in the remaining graph. �us,

vi selected in the i-th iteration is the vertex which has the largest

w(v) in Hi , i.e., the remaining vertex that incurs the maximum

number of k-triangles. Note that the vertex with a larger degree

is more likely to violate the no-pair constraint. �us, we prioritize

the selection of the vertex with a larger degree on the induced sub-

graph ofHi onG if there are multiple vertices involved in the same

number of k-triangles.

Accordingly, Hi+1 is generated by removing vi and its corre-

sponding edges fromHi . A�erwards,Hi+1 is processed in the next

iteration i+1. �e above procedure ends when |Hi | ≤ n. Finally, we

extract the graph H ∗ ∈ {H1,H2, ...} with the minimum objective

value that satis�es the no-pair constraint as the output solution. It

6For most networks, their k-hop graphs become complete graphs for k ≥ 6. �ere-
fore, we only need to consider the k-hop graphs for 2 ≤ k ≤ 5. To reduce space
consumption, we store only one copy of vertex set in the k-hop graph. Each edge e
in the k-hop graph is marked with an integer ke indicating e appears when k ≥ ke .
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Figure 3: Running example of TERA with k = 2 and n = 3.

is worth noting that as proved in the hardness analysis, deciding if

MkTG has any feasible solution following the no-pair constraint is

NP-Complete. �erefore, TERA and any other algorithm may not

be able to �nd a feasible solutionwhen an MkTG instance does not

contain any feasible solution (otherwise, P = NP holds)7.

Example 4.1. Figure 3 is an example of TERA with k = 2 and

n = 3. TERA starts with H1 = G (Figure 3(a)). Since v5 is involved

in the maximum number of 2-triangles, v5 is removed from H1

and produces H2 (Figure 3(b)). �en, v2 is removed from H2 to

createH3 (Figure 3(c)). Finally, we removev4 andH4 = {v1,v3,v6}.

�e objective value of H4 is minimum among all Hi , i.e., 0, and H4

satis�es the no-pair constraint. �erefore, H4 is returned by TERA.

Time Complexity Analysis of TERA. Given the input parame-

ters k and n, TERA removes vi and its incident edges in each it-

eration i , which requires O(δG ) time, where δG is the maximum

degree in G. Computing the number of k-triangles reduced by re-

moving vi takes O(δ
2
G
) time. Since there are at most O(|V |) itera-

tions, the overall time complexity is O(δ2
G
|V |).

4.2 TERA with Advanced Strategies

�rough the analysis and evaluation of TERA, we observe that it

is not necessary to examine the whole vertex set in G, because

many vertices will never satisfy the no-pair constraint. More-

over, many vertices are redundant and can be removed from G

because these vertices can always be replaced to reduce the objec-

tive value. �erefore, we propose an advanced version of TERA,

namely TERA-ADV, by exploring the above observations. TERA-

ADV includes twomain ideas: 1) we propose a pre-processing strat-

egy, namely Simplicial Pruning (SP), that signi�cantly reduces the

size of vertex set before TERA starts. 2) We partition the vertex set

into several components based on graph theory and devise a strat-

egy, namely Vicinal Partition and Elimination (VPE), to eliminate re-

dundant examinations in TERA. Conventional pruning strategies

are usually performed at runtime. In contrast, Simplicial Pruning

and Vicinal Partition and Elimination can be performed o�ine for

arbitrary k and n in any problem instance before any query ar-

rives. By removing a signi�cant number of redundant vertices,

these strategies reduce on-line computation cost and storage cost

7An alternative approach is to add the number of edges in a solution to the objective

function, by replacing the tenuity objective of F with
∆k (F )+E (F )

|F |
, where E(F ) is the

number of edges in F . TERA can solve the above problem by including a set of virtual
nodes R that links to every vertex in the k-hop graph Gk during the preprocessing
step. In this case, if any two verticesu, v ∈ F share an edge, the edge will be included
in |R | k-triangles, and the number of k-triangles thereby increases. �us minimizing
this new objective function would deter F from including edges.

of the graph signi�cantly. Let GSP and Gν be the graphs a�er SP

and VPE, respectively.

Simplicial Pruning (SP). Given a graph G = (V ,E) and a ver-

tex x ∈ V , let N (x) denote the 1-hop neighbors of x , and let N [x]

denote the closed neighbors of x , i.e., N [x] = N (x)∪ {x}. For exam-

ple, N [v1] = {v1,v3,v9} in Figure 4(a). A simplicial vertex s ∈ V

is a vertex where N (s) forms a clique. For example, v1, v2, v10
are simplicial vertices. Simplicial vertices have nice properties and

thus play important roles in the proposed Simplicial Pruning.

For the �rst nice property of simplicial vertices, given a feasi-

ble solution H (i.e., satisfying the no-pair constraint) of the MkTG

problem and a simplicial vertex s , at most one vertex is overlapped

by H and N [s].

Lemma 4.2. Given a feasible solution H and a simplicial vertex s ,

|H ∩ N [s]| ≤ 1 holds.

Proof. Since s is a simplicial vertex and N (s) forms a clique,

(x,y) ∈ E for any x,y ∈ N [s]. If more than one vertices in N [s] are

included in H , H must have at least one edge, and H will not be a

feasible solution. �

�erefore, for a simplicial vertex s , we can select a vertex inN [s]

and trim others because at most one vertex in N [s] would appear

in any feasible solution to ensure the no-pair constraint. However,

the identity of the chosen vertex is still not clear. �erefore, the sec-

ond nice property of simplicial vertices states that, we can always

choose the simplicial vertex s itself (and trim all other vertices in

N [s]), which must satisfy the no-pair constraint and generates the

minimal objective value.

Lemma 4.3. Given a feasible solution H and a simplicial vertex s ,

if y = H ∩ N [s] and H ′ = H − {y} ∪ {s}, then H ′ is no worse than

H .

Proof. Let E(s) denote the set of incident edges of s . For a

simplicial vertex s and ∀u ∈ N [s], |E(s)| = minu ∈N [s] |E(u)| and

N [s] ⊆ N [u] must hold because each vertex u ∈ N [s] also con-

nects to every other vertex in N [s], and u may have edges linking

to other vertices outside N [s]. Since the number of edges incident

on s is minimum among N [s], and N [s] ⊆ N [u],∀u ∈ N [s], cre-

ating H ′ = H − {y} ∪ s by substituting y with s still allows H ′

to satisfy the no-pair constraint, if H already follows the no-pair

constraint. Moreover, inequality
∆k (H

′)
|H ′ |

≤
∆k (H )
|H |

holds because 1)

|H ′| = |H |, and 2) every k-triangle connecting to s can be adjusted

to connect to u (since N (s) ⊆ N (u)). �

Based on the above two properties, Simplicial Pruning proceeds

as follows. Given the input graph G = (V , E), we �rst extract the

set of all simplicial vertices Ŝ = {s1, s2, ...} according to [31]. �en,

Simplicial Pruning removes
⋃
si ∈Ŝ

N (si ) and their incident edges

from G to produceGSP . �erefore, for any feasible solution H ob-

tained from G, we can always �nd a solution H ′ in GSP no worse

than H . �at is, the vertices removed from G are indeed redun-

dant and able to be safely removed. Moreover, if |GSP | < n in any

instance of MkTG, we guarantee that the instance has no feasible

solution.

Example 4.4. Consider the example in Figure 4(a) with k = 2

and n = 4 again. SP �rst identi�es the set of simplicial vertices, i.e.,
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(c) A�er VPE.

Figure 4: Running example of TERA-ADV.

Ŝ = {v1,v2,v10}, and removes N (v1), N (v2), and N (v10) fromG to

produceGSP , where GSP is shown in Figure 4(b).

Theorem 4.5. For any feasible solution H obtained fromG, there

exists a solution H ′ inGSP no worse than H . Moreover, if |GSP | < n,

there is no feasible solution to the MkTG problem.

Proof. Let H be a feasible solution obtained from G, and as-

sumey ∈ N (si ) andy ∈ H , where si isy’s corresponding simplicial

vertex. Based on Lemma 4.3,H −{y}∪{si} is a be�er solution than

H . �erefore, there is always a solution H ′ in GSP no worse than

H .

On the other hand, if |GSP | < n, suppose that the set of sim-

plicial vertices in GSP is S̄ = {s̄1, s̄2, ...}. �at is, GSP = S̄ ∪W ,

whereW is the set of vertices that are neither simplicial vertices

nor connected to any simplicial vertices (i.e., those not pruned

from G). �en,
⋃

∀s̄i ∈S̄
N [s̄i ] = G − W holds. For any feasi-

ble solution H , H ∩ N [s̄i ] contains at most one vertex. �ere-

fore, H ∩ (
⋃

∀s̄i ∈S̄
N [s̄i ]) contains at most |S̄ | vertices (otherwise,

H violates the no-pair constraint). In other words, if |GSP | =

|W ∪ (
⋃

∀s̄i ∈S̄
N [s̄i ])| < n, there is no solution for the instance

of the MkTG. �e theorem follows. �

Vicinal Partition andElimination (VPE).We�rst use vicinal

pre-order [31] to describe the relation of the common neighbors

among two neighbor vertices x and y in any graph. �e vicinal

pre-order x . y states that all vertices (except y) adjacent to x

are also adjacent to y. In other words, x . y holds if and only if

N (x) ⊆ N [y] holds, i.e., x’s 1-hop neighbors are all included in y’s

closed neighbors. For example, v1 . v10 in Figure 4(a).

Based on vicinal pre-order, we partition the graphGSP into a set

of non-overlapping subgraphs {J1, J2, ...}, where x . y and y . x

hold for any x,y ∈ Ji , i.e., x and y share the same neighbors. For

example, J1 = {v5,v6} and J2 = {v7,v8} as shown in Figure 4(c).

�is enables TERA to further eliminate redundant vertices inGSP

(detailed later). Please note that an induced subgraph Ji either has

no edges or forms a complete graph, where w(x) is the number of

k-triangles in which vertex x is involved forGSP .

Based on the above observation, for each Ji that induces a com-

plete graph, we can remove all the vertices in Ji except one vertex.

�e reason is that if a subgraph Ĥ contains two vertices x,y ∈ Ji , Ĥ

is not a feasible solution because it violates the no-pair constraint.

�erefore, since the incident edge sets of any vertices x,y ∈ Ji are

identical, we can remove any |Ji | − 1 vertices from Ji .

Vicinal Partition and Elimination (VPE) prunes the input graph

and constructs Gν with the following two steps. In Step 1, the

Partition step, VPE partitions the graphGSP into {J1, J2, ...} based

on vicinal pre-order, i.e., each Ji contains vertices x , y if x . y and

y . x . GivenGSP produced by the SP strategy as shown in Figure

4(b), the vertices are partitioned into J1 and J2 by VPE, as shown in

Figure 4(c). �en, in Step 2, the Elimination step, VPE identi�es the

set of subgraphs Jc = {Ji : (x,y) ∈ E, ∀x,y ∈ Ji } whose induced

subgraphs are complete graphs. �en for those subgraphs in Jc ,

VPE removes all the vertices (except one vertex) in each Ji ∈ Jc
to form Gν . Please note that, VPE is performed o�ine, removing

redundant vertices before the query comes. Moreover, if |Gν | < n,

no feasible solution exists for the MkTG instance. �is condition

enables VPE to e�ectively prune redundant vertices.

Example 4.6. In Figure 4(c), vertexv7 in J2 is removed because J2
induces a complete graph. A�er VPE, TERA starts on Gν , which

contains vertices {v1,v2,v5,v6,v8,v10}, as shown in Figure 4(c).

TERA then obtains the solution {v1,v2,v8,v10} with objective

value 0 following the no-pair constraint, which is an optimal so-

lution.

Theorem4.7. If |Gν | < n, no feasible solution exists for theMkTG

instance, whereGν is the output graph of VPE.

Proof. Assume Jc = {Jc,1, Jc,2, ..., Jc,q} where each Jc,q has

its induced subgraph as a complete graph. A�er removing redun-

dant vertices, letvi denote a remaining vertex in Jc,i . �en,Gν can

be represented asGν =W ∪
⋃

∀i vi , whereW = GSP − Jc , i.e.,W

is union of Ji with its induced subgraph having no edges. Since at

most one vertex in each Jc,i can be included in a feasible solution,

if |Gν | < n, no solution exists for the MkTG instance. �e theorem

follows. �

Time Complexity Analysis of TERA-ADV (O�line Process-

ing). Let δG denote the maximal degree of a vertex inG. Checking

if a vertex v is a simplicial vertex requires O(δ2
G
) time. SP takes

O(δ2
G
|V |) time, and VPE requires O(|V |2) time. �e overall time

complexity of performing SP and VPE is O(δ2
G
|V | + |V |2).

5 SOLUTION OPTIMALITY OF MkTG ON
THRESHOLD GRAPHS

In the following, we prove that TERA and TERA-ADV can �nd

the optimal solutions of MkTG on threshold graphs [31], which are

very similar tomanywell-known online social networks (e.g., Live-

Journal, Flickr, Youtube) [32] in terms of important graph proper-

ties, such as the degree distribution, largest component size, edge

density, and local clustering coe�cient. Analyzing the tractabil-

ity of MkTG on threshold graphs helps us understand the perfor-

mance of the proposed algorithms on popular online social net-

works. We �rst de�ne the threshold graph as follows.

De�nition 5.1. A graph G is a threshold graph if there exists a

weight ŵv for every vertexv in the graph and a real value τ (called

the threshold value) such that for every edge (u,v), ŵv + ŵu ≥ τ

always holds.

Speci�cally, a threshold graph GC = (VC ,EC ) similar to online

social networks can be constructed as follows [32]. For every ver-

tex pair u,v , a larger weight is assigned to the vertex pair if u

and v have more common or similar a�ributes (e.g., the number

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

420



�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 5: Running example of threshold graph.

of common neighbors). �en, given a threshold τ (not exceeding

10 in [32]), an edge (u,v) is constructed in EC if the sum of ver-

tex weights associated with u and v is at least τ . �erefore, it is

not surprising that the threshold graph is similar to popular social

networks because similar and close vertex pairs are inclined to be

connected (the intuition is widely exploited in many link predic-

tion algorithms, such as [36, 37]).

Example 5.2. Figure 5 presents an example of a threshold

graph with τ = 6, and vertex weights of {ŵv1 , . . . , ŵv8 } are

{2, 2, 3, 3, 3, 3, 7, 7}, respectively. �e parameters of MkTG are

k = 2 and n = 4. A�er SP and VPE strategies, we have Gν =

{v1,v2,v3,v4,v5,v6} and the vertices are all simplicial vertices.

Please note thatGν satis�es the no-pair constraint, indicating that

the solutions generated by TERA-ADV (or TERA) a�erwards all

satisfy the no-pair constraint. TERA-ADV then setsH1 = Gν . H1 is

a feasible solutionwith objective value
∆2(H1)

6 = 3.3. �en,v6 is re-

moved fromH1 to constructH2, a feasible solutionwith
∆2(H2)

5 = 2.

Finally,v5 is removed fromH2 to createH3, which is a feasible solu-

tion with
∆2(H3)

4 = 1. H3 is returned by TERA-ADV as the solution

(which is the optimal solution).

In the following, the vicinal pre-order of a graph is linear if for

any two vertices x,y in the graph, x . y, or y . x , or both. �e

following lemma in the literature �rst presents the one-to-one cor-

respondence between the vicinal pre-order and a threshold graph.

Lemma 5.3. [31] A graphG is a threshold graph if and only if the

vicinal pre-order of G is linear.

Lemma 5.3 indicates that the vertices inG to {v1, . . . v |G |} can

be relabelled such thatv1 . v2 . · · · . v |G | . To show the solution

optimality of TERA, we �rst explore the relation of vicinal pre-

order and the shortest path distances in a threshold graph.

Lemma 5.4. Given a threshold graph G = (V ,E), for any three

vertices x,y,z ∈ V , if x . y, then dG (y,z) ≤ dG (x, z) holds.

Proof. We prove this lemma by the following two cases. Case

i): if y is on the shortest path from x to z, denoted as PG (x, z), then

dG (y,z) < dG (x, z) holds. Case ii): ify is not on PG (x, z), then there

exists a vertex v ∈ N (x) and v ∈ PG (x, z). Since v ∈ N (x) implies

v ∈ N (y) (because x . y), dG (y,z) ≤ dG (x, z) holds because the

path PG (y,z) = {y} ∪ {v} ∪ dG (v,z) must have length no larger

than that of PG (x, z) = {x}∪{v}∪dG (v,z). �e lemma follows. �

Given a threshold graph G = (V ,E) and three arbitrary sub-

graphs of G, denoted as S = (VS ,ES ), B = (VB , EB ), and C =

(VC ,EC ), whereVB = {b1, ..,br },VC = {c1, .., cr }. Also,VB ∩VC =

∅. Let ∆k (S) denote the number of k-triangles in S . Based on the

above lemmas, the following lemma connects vicinal pre-order to

the number of k-triangles in a threshold graph.

Lemma 5.5. Ifbi , ci < S and ci . bi hold for every i in a threshold

graphG, then ∆k (S ∪C) ≤ ∆k (S ∪ B) for any k in MkTG.

Proof. Given a k-triangle {x,y,z} in S ∪C , let λ = |{x,y,z} ∩

S |. We prove the lemma by considering all possible cases of λ as

follows.

Case 1: λ = 0. Let {x,y,z} = {ch , ci , cj }. since ch . bh , ci . bi ,

and cj . bj , based on Lemma 5.4, we have dG (bh ,bi ) ≤ dG (bh , ci )

(because ci . bi ) and dG (bh , ci ) ≤ dG (ch , ci ) (because ch . bh ).

�erefore, dG (bh ,bi ) ≤ dG (ch , ci ) holds. Similarly, a�er we sub-

stitute bi with bj and ci with cj , dG (bh ,bj ) ≤ dG (ch , cj ). Again,

if we substitute bh with bj and ch with cj , we have dG (bi ,bj ) ≤

dG (ci , cj ).

Because {ch , ci , cj } is a k-triangle, the above inequality implies

that each pair of vertices s, t ∈ {ch , ci , cj } must have their dis-

tance dG (s, t) ≤ k . According to the inequalities obtained above,

we can conclude that for any pair of vertices s ′, t ′ ∈ {bh ,bi ,bj },

dG (s
′
, t ′) ≤ k must also hold. For example, since dG (ch , ci ) ≤ k

and dG (bh ,bi ) ≤ dG (ch , ci ) (as proved above) hold, dG (bh ,bi ) ≤ k

holds. �erefore, {bh ,bi ,bj } is also a k-triangle in S ∪ B.

Case 2: λ = 1. Let {x,y,z} = {s, ci , cj } where, without loss of

generality, we assume {s} = {s,ci , cj }∩S . Based on Lemma 5.4, we

have i) dG (bi , s) ≤ dG (ci , s) ≤ k (because ci . bi ), ii) dG (bj , s) ≤

dG (cj , s) ≤ k , and iii) dG (bi ,bj ) ≤ dG (ci ,bj ) ≤ dG (ci , cj ) ≤ k .

�erefore {s,bi ,bj } is a k-triangle in S ∪ B.

Case 3: λ = 2. Let {x,y,z} = {s1, s2, ci } and {s1, s2} = {x,y,z}∩

S . Based on Lemma 5.4, we have i) dG (s1, s2) ≤ k , ii) dG (bi , s1) ≤

dG (ci , s1) ≤ k , and iii) dG (bi , s2) ≤ dG (cj , s2) ≤ k . �erefore

{s1, s2,bi } is a k-triangle in S ∪ B.

Case 4: λ = 3. let {x,y,z} = {s1, s2, s3} and {s1, s2, s3} =

{x,y,z} ∩ S , {s1, s2, s3} is a k-triangle in S ∪ B.

In summary, there is a one-to-one mapping of k-triangles from

S ∪ C to S ∪ B. �erefore, ∆k (S ∪ C) ≤ ∆k (S ∪ B). �e lemma

follows. �

Equipped with the above lemmas, we now prove that TERA ac-

quires the optimal solution of the MkTG in a threshold graphG.

Theorem 5.6. Given a threshold graph G = (V , E), TERA and

TERA-ADV return the optimal solution of the MkTG problem onG.

Proof. We �rst analyze TERA as follows. Given G = (V ,E),

the size constraint n, and the tenuity parameter k of the MkTG

problem, we denote H ∗ as the subgraph generated by TERA. Let

HOPT be an optimal solution and |HOPT | = m ≥ n. We relabel

the vertices in G to {v1, . . . v |G | } such that v1 . v2 . · · · . v |G |
according to Lemma 5.3, i.e., a vicinal pre-order is derived.

Suppose vi . vj . Given a k-triangle {vi ,a,b}, there are two

cases. i) vj is also a vertex of this k-triangle. ii) vj is not a vertex

of the k-triangle. In this case, since dG (a,b) ≤ k , dG (vi , a) ≤ k ,

dG (vi ,b) ≤ k (because {vi ,a,b} is a k-triangle), while dG (vj ,a) ≤

dG (vi ,a) and dG (vj ,b) ≤ dG (vi ,b) hold (by Lemma 5.4), {vj ,a,b}

is a k-triangle. In summary, if vi . vj holds, vj must be involved

in more k-triangles than vi .
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Note that TERA starts from G and then sequentially removes

v |G | ,v |G |−1 ,…, fromG (TERA records the resulting subgraph once

a vertex is removed) until there are n vertices le�. �e reason is

that v |G | & v |G |−1 and so on, indicating that v |G | is involved in

more k-triangles than v |G |−1 due to Lemma 5.5. �erefore, TERA

will generate a subgraph H ∗ = {v1,v2, ..,vm} in some iteration

a�er removing |V | −m vertices, and |H ∗ | = |HOPT | =m.

In the following, we prove by contradiction that H ∗ is an opti-

mal solution to MkTG according to Lemma 5.5. Suppose |H ∗ | ,

|HOPT | and let HO∩∗
= HOPT ∩ H ∗, HO−∗

= HOPT − H ∗, and

H ∗−O = H ∗−HOPT . �en |HO−∗ | = |H ∗−O | holds since |HOPT | =

|H ∗ |. Moreover, for every b ∈ HO−∗
, c ∈ H ∗−O , we have c . b be-

cause {v1,v2, ..,vm} ofH
∗ is the �rstm vertices inv1 . v2 . .. .

v |G | , and c is in H ∗.

We �rst prove by contradiction that H ∗ follows the no-pair con-

straint. Suppose H ∗ does not follow the no-pair constraint. �en

there exist x,y ∈ H ∗ and (x,y) ∈ E(G). Without loss of generality,

we assume that x . y. We then consider every possible case of

vertex x as follows.

Case 1: x ∈ H ∗−O . We select two vertices w, z ∈ HO−∗ with

x . w and y . z. Since (x,y) ∈ E(G) and x . w , (w,y) ∈ E(G)

holds by Lemma 5.4 because dG (w,y) ≤ dG (x,y). Since (w,y) ∈

E(G) and y . z, (w, z) ∈ E(G) holds because dG (w, z) ≤ dG (w,y),

implying that the optimal solution HOPT contains an edge and

leads to a contradiction.

Case 2: x ∈ HO∩∗ or y ∈ HO∩∗. We select a vertex z ∈ HO−∗.

Since x . z andy . z. Similar to Case 1, we have (x, z) ∈ E(G) and

(y,z) ∈ E(G). �erefore, for x ∈ HO∩∗ or y ∈ HO∩∗, the optimal

solution HOPT contains an edge and leads to a contradiction.

Based on the above two cases, H ∗ must satisfy the no-pair con-

straint. Also, since |H ∗ | = |HOPT | ≥ n (i.e., the group size), H ∗ is

a feasible solution.

�en, we prove that the number of k-triangles in H ∗ does not

exceed the number of k-triangles in HOPT . Our algorithm pro-

duces H ∗ = {v1,v2, ...,vm} with v1 . v2 . ... . vm . Let

S = HOPT ∩ H ∗, B = HOPT − S , C = H ∗ − S . �erefore, HOPT
=

S ∪ B, H ∗ = S ∪ C , and B ∩ C = ∅. Let B = {b1, ...,bm−|S |}

and C = {c1, ..., cm−|S |}. Since for each b ∈ B, the vertex ID of

b > m, and for each c ∈ C , the vertex ID of c ≤ m, ci . bi for

i ∈ [1,m − |S |] holds. According to Lemma 5.5, we have ∆k (H
∗) ≤

∆k (H
OPT ). Since |H ∗ | = |HOPT | and HOPT is an optimal solu-

tion, ∆k (H
∗)/|H ∗ | = ∆k (H

OPT )/HOPT holds, implying that H ∗ is

also optimal.

�e above analysis shows that if a feasible solution exists and

thereby the optimal solution HOPT also exists, our algorithm is

able to obtain a feasible solution with the objective value identical

to the one in HOPT . �erefore, if TERA cannot �nd a subgraph

which satis�es the no-pair constraint, it implies that the instance of

MkTG problem on the threshold graph G has no feasible solution.

For TERA-ADV, since SP and VPE strategies remove from G only

the redundant vertices, TERA-ADV also �nds the optimal solution

for MkTG in threshold graphs. �

6 EXPERIMENTAL RESULTS

To evaluate the proposed algorithms, we conduct experiments on

5 real datasets. �e �rst two datasets, IG and FB, are two social

Table 1: Summary of datasets

Dataset |V | |E | Avg. Deg.
∆1(G)
|V |

CC Diam

IG 45K 678K 15.1 132.6 0.24 7

FB 63K 817K 13 55.6 0.14 15

DBLP 317K 1M 3.2 7 0.63 21

Pokec 1.6M 30M 18.8 20 0.11 11

Youtube 1.1M 3M 2.6 2.7 0.08 24

network datasets from Instagram and Facebook, respectively. FB

contains 63K vertices and 817K edges [33], and IG includes 45K ver-

tices and 678K edges [34]. �e third dataset, DBLP, is a co-author

network with 317K vertices and 1M edges8. �e fourth dataset

is the Pokec social network with 1.6M vertices and 30M edges9.

Finally, Youtube video sharing dataset has 1.1M vertices and 3M

edges, which is also employed to construct four threshold graphs

with di�erent thresholds τ = {2, 4, 6, 8} based on [32].

Since no algorithm has been proposed for MkTG, we compare

Triangle and Edge Reduction Algorithm (TERA) and TERAwith Ad-

vanced Processing Strategies (TERA-ADV) with four baseline algo-

rithms: Brute-Force (BF), Random (RND), BigClam [13] on the com-

plement graph (BC), and Parallel Maximum Clique [38, 39] on the

complement graph (PMC). BF �nds the optimal solution of MkTG

by enumerating all the subgraphs satisfying the no-pair constraint.

RND selects random vertices from G to iteratively expand the sub-

graphs. It derives the tenuity objective value when a new vertex

is added, and the best group following the no-pair constraint is

returned.

BC is a community detection algorithm which detects overlap-

ping communities by estimating non-negative latent factors. BC

and PMC �rst construct the k-hop graph Gk of the original social

networkG and then transformsGk into its complement graph Ĝk .

We then employ BC to �nd the densest community in the comple-

ment graph, while PMC employs e�cient heuristic approaches to

�nd a clique of size n in the complement graph. �e idea is to ex-

tract dense subgraphs (i.e., clique, community) in the complement

graph and then return the corresponding tenuous subgraphs in the

original social network10.

In our experiments, the default parameters are k = 2 and n =

20. �e algorithms are implemented on an HP DL580 server with

�adcore Intel X5450 3.0 GHz CPUs and 1TB RAM. Each result

is averaged over 50 samples. �e k-hop graphs for 2 ≤ k ≤ 5

are constructed o�ine. Moreover, in TERA-ADV, the input graphs

are �ltered by Simplicial Pruning (SP) and Vicinal Partition and

Elimination (VPE) o�ine as well.

6.1 Sensitivity Tests on Large Graphs

Figure 6 reports the results of TERA-ADV on FB, IG, DBLP, Pokec,

and Youtube to help understand the behavior in di�erent datasets.

Figure 6(a) compares the objective values in di�erent datasets. No

k-triangle is created when k = 1. As k increases, the objective

values increase because more vertices in F are within k hops on

8h�p://snap.stanford.edu/data/com-DBLP.html.
9h�p://snap.stanford.edu/data/soc-pokec.html.
10If no clique of sizen can be found, PMC extracts the maximumcliqueC and randomly
chooses other vertices fromG to argumentC until |C | = n.
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(d) Time of k .

Figure 6: Comparisons on large datasets.

G. IG incurs the largest objective values because it is denser than

others, i.e., the average number of 1-triangles is 132.6, and the av-

erage degree is 15. Figure 6(b) compares the group sizes obtained

by TERA-ADV in di�erent datasets. When k becomes large, small

groups are preferred because larger groups in dense graphs tend

to incur much more k-triangles. Moreover, TERA-ADV can �nd a

larger group in DBLP without generating any k-triangle because

the diameter is large, but the average degree is small in DBLP.

Figure 6(c) compares the feasibility ratios with di�erent n (size

constraint) in various datasets. Here, feasibility ratio is the ratio of

the number of returned feasible solutions to the number of tested

MkTG instances. For a small n, e.g., n ≤ 80, the feasibility in each

dataset is higher than 90%. TERA-ADV achieves the highest feasi-

bility ratio in DBLP because DBLP has the smallest average de-

gree, and TERA-ADV in this case tends to �nd large feasible groups

easily. To understand the impact on computation time of di�er-

ent datasets, we compare the computation time of TERA-ADV in

Figure 6(d) on DBLP (0.3M vertices) and Youtube (1.1M vertices).

TERA-ADV is more e�cient in DBLP because the number of ver-

tices is only 1/3 that of Youtube. However, the computation time

in the two datasets becomes closer when k increases. �is is be-

cause the average degree and the clustering coe�cient of Youtube

is smaller than those of DBLP. In this case, SP and VPE can prune

more redundant vertices in Youtube.

6.2 Comparisons on Large �reshold Graphs

Figure 7 compares the performance of di�erent approaches in thresh-

old graphs (with threshold τ = {2, 4, 6, 8}) constructed fromYoutube

(1.1M vertices). As shown in Figure 7(a), the computation time

drops when τ increases because the graph contains fewer edges in

this case. �e improvement of TERA-ADV over TERA becomes more

signi�cant for a smaller τ , because the SP and VPE strategies trim

o�more vertices from the original graph. Figure 7(b) compares the

feasibility ratios of di�erent τ . When τ decreases, the feasibility ra-

tios of PMC and RND drop due to the larger number of edges. Please

note that PMC does not achieve 100% feasibility ratio because some-

times it cannot �nd a clique of size n in the complement graph.
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Figure 7: Comparisons on large threshold graphs (1.1M).

However, the feasibility ratios of the proposed algorithms are both

100% because as shown in Section 5, TERA and TERA-ADV can obtain

the optimal solution of MkTG on threshold graphs.

Figures 7(c) and 7(d) examine the objective values and the fea-

sibility ratios of di�erent approaches. �e objective values of the

optimal solutions obtained by TERA and TERA-ADV grow when n

increases because more vertices lead to a greater number of k-

triangles. In contrast, both PMC and RND incur much larger objec-

tive values, and RND has poor feasibility ratios. �is is because PMC

and RND do not well utilize the information brought by the vicinal

pre-order in threshold graphs.

6.3 Di�erent Approaches on Small Graphs

We compare the proposed TERA and TERA-ADV with other baseline

approaches. Note that BF does not scale up to large social networks

because it examines all possible combinations. �erefore, we ran-

domly sample the IG dataset to generate small networks with dif-

ferent sizes. Figures 8(a) and 8(b) compare the execution time and

the solution quality for all algorithms in IG. Figure 8(a) manifests

that, even for tiny networks, BF still incurs unacceptable compu-

tation time to �nd the optimal solution, whereas TERA is very e�-

cient. Moreover, TERA-ADV, equipped with Simplicial Pruning (SP)

and Vicinal Partition and Elimination (VPE) to remove redundant

vertices, requires small running time that is comparable to RND.

Figure 8(b) presents the pruning power of the SP and VPE strate-

gies in TERA-ADV, where TERA-ADV can obtain high-quality solu-

tions very close to the optimal solutions. In contrast, PMC and BC

performpoorly because they cannot e�ectivelyminimizek-triangles.

�erefore, the results con�rm that �nding dense subgraphs on com-

plement graphs does not work for the MkTG problem. TERA-ADV

obtains solutions with be�er quality than TERA because the SP and

VPE strategies e�ectively remove the redundant vertices, which

sometimes are considered by TERA and thus deteriorate the solu-

tion quality of TERA.
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Figure 8: Comparisons of di�erent approaches.

7 CONCLUSION

In contrast to previous works on identifying socially dense groups,

research on �nding socially tenuous groups has not received much

a�ention in the research communities. �is paper makes the �rst

a�empt to extract socially tenuous subgraphs from social networks.

We introduce the notion of k-triangles for measuring group tenu-

ity and formulate a new research problem, namely Minimum k-

Triangle Disconnected Group (MkTG) that �nds socially tenuous

groups. We propose polynomial-time algorithms to obtain the op-

timal solutions for MkTG on threshold graphs, which are similar

to many representative online social networks. We design two ef-

�cient and e�ective algorithms to solve MkTG on general graphs.

Experimental results manifest that the proposed algorithms out-

perform baselines signi�cantly in terms of computation time and

solution quality. In the future work, we will incorporate other im-

portant dimensions, such as personal a�ributes, to ensure that the

selected group members share similar or di�erent a�ribute values

to collaborate on the required tasks in various applications.
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