
Randomization or Condensation? Linear-Cost Matrix Sketching
Via Cascaded Compression Sampling

Kai Zhang*

Department of Computer and

Information Sciences

Temple University, Philadelphia PA

kzhang980@gmail.com

Chuanren Liu*

Decision Sciences and MIS

Drexel University

Philadelphia, PA

chuanren.liu@drexel.edu

Jie Zhang*

Institute of Science and Technology

for Brain-Inspired Intellegence

Fudan University, Shanghai

jzhang080@gmail.com

Hui Xiong

Management Science and Information

Systems Department, Rutgers

1 Washington Park, Newark NJ

hxiong@rutgers.edu

Eric Xing

Machine Learning Department

Carnegie Mellon University

5000 Forbes Ave, Pi�sburgh, PA

epxing@cs.cmu.edu

Jieping Ye

Department of Computational

Medicine and Bioinformatics

University of Michigan, Ann Arbor

jpye@umich.edu

ABSTRACT
Matrix sketching is aimed at �nding compact representations of

a matrix while simultaneously preserving most of its properties,

which is a fundamental building block in modern scienti�c com-

puting. Randomized algorithms represent state-of-the-art and have

a�racted huge interest from the �elds of machine learning, data

mining, and theoretic computer science. However, it still requires

the use of the entire input matrix in producing desired factoriza-

tions, which can be a major computational and memory bo�leneck

in truly large problems. In this paper, we uncover an interesting

theoretic connection between matrix low-rank decomposition and

lossy signal compression, based on which a cascaded compression

sampling framework is devised to approximate an m × n matrix

in only O(m + n) time and space. Indeed, the proposed method

accesses only a small number of matrix rows and columns, which

signi�cantly improves the memory footprint. Meanwhile, by se-

quentially teaming two rounds of approximation procedures and

upgrading the sampling strategy from a uniform probability to

more sophisticated, encoding-orientated sampling, signi�cant algo-

rithmic boosting is achieved to uncover more granular structures

in the data. Empirical results on a wide spectrum of real-world,

large-scale matrices show that by taking only linear time and space,

the accuracy of our method rivals those state-of-the-art randomized

algorithms consuming a quadratic, O(mn), amount of resources.

KEYWORDS
Randomized algorithms, Matrix sketching, Low-rank decomposi-

tion, Cascaded compression sampling

* Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4887-4/17/08. . . $15.00

DOI: 10.1145/3097983.3098050

1 INTRODUCTION
Matrix arises in many modern disciplines as a popular tool for data

representation and modelling. Identifying structures of the matrix

allows researchers to uncover important pa�erns in the data, which

in turn translates into actionable decisions or scienti�c discoveries.

Matrix low rank decomposition [15] is one such structure-�nding

technique. It is aimed at approximating an input matrix A ∈ Rm×n
by A ≈ PQ>, where P and Q have a low column rank k � m,n.

Such reduced representation can provide a universal computational

platform to solve problems in various scienti�c computing and

data analysis applications, with important applications in optimiza-

tion, machine learning, information retrieval, computer vision, and

bioinformatics [1, 9, 12, 13, 17, 19, 20, 22, 24, 25, 33].

Recent advances in randomized algorithms have made it state-

of-the-art in solving low-rank approximation problems. �ese algo-

rithms fully exploit stochastic properties of random sampling and

projection to extract key structures from the data. Abundant litera-

ture exists, with examples including monte-carlo sampling [10, 14],

adaptive sampling [3], CUR matrix decomposition [5, 25], random

projection method [7, 11, 17], sparse embedding and fast trans-

forms [8, 27]. �ese algorithms are computationally more e�cient

than singular value decomposition, the la�er taking O(n2m) time

if m ≥ n. In the meantime, important probabilistic error bounds

are provided that fully characterize the behaviour of various sam-

pling/randomization schemes. See reviews in [17, 24].

With unprecedented amount of electronic data acquired in mod-

ern scienti�c and engineering applications, however, existing ran-

domized methods can still be computationally demanding on large

data. In particular, these algorithms need to fully access and manip-

ulate the entire input matrix, either in identifying an informative

subspace for subsequent projection [17], or in computing high-

quality sampling probabilities [10, 14, 25]. �is necessitates O(mn)
time and space for an m × n dense matrix. Yet in case of excep-

tionally high dimensions, storing matrix alone already becomes

onerous, not to mention complicated operations on top of it.

In this paper, we aim to combat the computational and memory

bo�lenecks of matrix low-rank decomposition on large data. Our

main philosophy has a notable di�erence compared with existing

randomized algorithms. In these algorithms, extensive theoretic

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

615

studies have been performed on probabilistic error bounds that var-

ious randomization schemes can achieve when sampling a desired

volume of data, o�en taking O(mn) time and space. In comparison,

we consider the scenario that available computing resource (time

and memory) is only linear for anm ×n input matrix, i.e., O(m +n).
Under such condition, our goal is to fully optimize the sampling

scheme subject to available computing resources, so as to make the

best of what is given and maximally reduce approximation error.

We initiate this new problem se�ing because in big data applica-

tions, achieving a desired sampling rate and manipulating the entire

input matrix (as is o�en needed in existing randomized algorithms)

can be intractable. A linear-cost constraint, on the other hand,

is much easier to accomplish. Of course, such a constraint poses

signi�cant challenges, because it only allows accessing a small,

constant number of rows/columns of the data; also, a linear amount

of resources hardly a�ords any advanced sampling scheme other

than uniform; �nally, approximation of general rectangular matri-

ces with linear cost is much harder than for positive semi-de�nite

(PSD) matrices that lie on a Riemannian manifold [12, 13, 30].

To solve these problems, we propose a new computational frame-

work called cascaded compression sampling. Our key innovation

is an interesting, theoretic connection between the quality of low-

rank approximation and the encoding powers of sampling. �is

allows us to study low-rank approximation from a novel, lossy

data compression point of view, where the choice of good sam-

pling schemes can thus bene�t naturally from the design of the

code-books. In particular, we show that sampled columns/rows

should correspond to representative code-vectors in the low-rank

embeddings of the matrix. Motivated by this, we employ cascaded

sampling procedures that upgrade from simple, random sampling

to more sophisticated, compression-based sampling, so as to pro-

gressively uncover granular structures in the data. �eoretically,

the rise of approximation quality is proven to be lower-bounded

by the improvement of encoding powers through the compression

sampling, thus guaranteeing the algorithmic boosting property.

Computationally, both rounds of operations take only linear time

and space, thus more e�cient on large data. �e performance of

our approach rivals the quality of state-of-the-art randomized al-

gorithms while being one to two orders of magnitude faster with

only a small fraction of their memory costs. �e performance gains

are more signi�cant on large, sparse matrices.

�e rest of the paper is organized as follows. Section 2 reviews

existing work. Section 3 presents our key theorem linking matrix

low-rank approximation and lossy singal compression. Section 4

introduces the cascaded compression sampling framework, and

proves its algorithmic boosting property. Section 5 reports experi-

mental results, and the last section concludes the paper.

2 RELATEDWORK
2.1 �adratic-Cost Algorithms
We �rst review state-of-the-art randomized algorithms that take a

quadratic, O(mn) amount of time and space for an m × n matrix.

Monte-Carlo sampling method [10, 14] approximates an input

matrix A by selecting a subset of columns with data-dependent

probabilities pj ’s. �e rank-k basis of selected columns (o�en re-

scaled by pj ’s) Qk is then used for �nal decomposition. If the

probabilities satisfy pj ≥ β · ‖A[:, j]‖2/(
∑n
i=1
‖A[:,i]‖2), then with

probability at least 1 − δ , one has ‖A −QkQ>k A‖2F ≤ ‖A − Ak ‖2F +
ϵ ‖A‖2F , where Ak is the best rank-k approximation, ϵ = 2η/

√
k/βc ,

with β ≤ 1,η = 1 +
√
(8/β) log(1/δ).

Random projection methods [17] project A using Q ∈ Rm×k with

orthonormal columns such that A ≈ QQ>A. Computing Q requires

multiplying A with a Gaussian test matrix Ω with q steps of power

iterations, Y = (AA>)qAΩ, and then a QR-decomposition Y = QR.

Using a template Ω ∈ Rm×(k+p) with over-sampling parameter p,

E

A − QQ>A

 = [1 + 4

√
(k + p) ·min(m,n)/(p − 1)]Σk+1

, where

E is expectation with Ω, Σk+1
is the (k + 1)th singular value. New

projection methods are explored in [7, 11].

Using structured templates (sub-sampled randomized Hard-amard

transform (SRHT) [4] or random Fourier transform [17]), the com-

plexity of random projection reduces from O(mnk) O(mn logk).
More recently, sparse embedding is introduced for low-rank de-

composition in input sparsity time [8], which allows approxima-

tion ‖A − Â‖F = (1 ± ϵ)‖A − Ak ‖F with high probability in

O(nnz(A)) +O(nk2/ϵ + k3/ϵ5) time. Here nnz(A) is the number of

non-zeros. It can be more e�cient for sparse input matrices.

CUR matrix decomposition was proposed in [25] to improve the

interpretability of low-rank matrix decomposition. As shown in

Figure 1(a), it samples a subset of columns and rows from A, as

C ∈ Rm×kc and R ∈ Rkr×n , and then solve

min

U
‖A − CUR‖2F → U∗ = C†AR†, (1)

where
†

is pseudo-inverse. If leverage scores are used for sampling,

then with high probability, ‖A − CUR‖F ≤ (2 + ϵ)‖A − Ak ‖F
[25]. �e leverage scores are computed by top-r singular vectors,

taking O(mn) space and O(mnr) time. Computing U in (1) involves

multiplying A with C† and R†.

2.2 Linear-Cost Algorithms
�e randomized algorithms discussed in Section 2.1 take at least

quadratic time and space. One way to reduce the cost is to restrict

the calculations to only a small fraction of rows and columns. We

use a general variant of CUR, called Bilateral Re-sampled CUR (BR-

CUR), to initiate discussion.

Algorithm 1: Bilateral Resampled CUR (BR-CUR)

Input: A,basesampling Ibr , Ibc , targetsampling Itr , Itc ;

Output: C, U, R
1: Compute base rows and columns C = A[:,Ibc], R = A[Ibr , :].

2: Sample on base rows and columns C̄ = C[Itr , :], R̄ = R[:,Itc].
3: Compute target block matrix M = A[Itr ,Itc].
4: Solve intersection matrix U∗ = arg minU ‖M − C̄UR̄‖2F .

5: Reconstruct the input matrix by A ≈ CU∗R.

As illustrated in Figure 1(b), BR-CUR has two rounds of sam-

plings: blue “base”-samplingIbr (row) andIbc (column) to construct

C and R, and green “target”-sampling Itr (row) and Itc (column)

to specify a sub-matrix from A. In computing U (step 4), it only

minimizes the error on the target sub-matrix, therefore computa-

tionally quite e�cient. Let k1 and k2 be the number of samples

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

616

C

R W

≈

A C R U

(a) Illustration of CUR method.

W

≈ M

U R C

R R

C

C

(b) Illustration of Re-sampled CUR.

Figure 1: Graphical illustration of the CUR matrix decomposition and the bilateral re-sampled CUR method.

selected in the base and target sampling. �en BR-CUR only takes

O ((m + n)(k1 + k2)) space and O
(
(m + n)max(k1,k2)2

)
time.

�e BR-CUR procedure subsumes most linear-cost algorithms

for matrix low-rank decomposition in the literature.

1. Nyström method [12, 13, 30]: for PSD matrix A, upon using

the same base and target sampling, and the same row and column

sampling, i.e., Ibc = Ibr = Itc = Itc .

2. Pseudo-skeleton [16] or bilateral projection [35]: for rect-

angular matrix A, and using the same base and target sampling,

i.e., Ibr = Itr and Ibc = Itc . It generalizes Nyström method from

symmetric to rectangular matrices. Let W be the intersection of C
and R, then it has compact form,

A ≈ CW†R. (2)

3. Sketch-CUR [29]: in case of rectangular A and independent

base/target sampling (with di�erent rates).

�ese algorithms only access a small fraction of rows and columns

to reconstruct the input matrix. However, the performance can be

inferior, in particularly on general, rectangular matrices (Section 4.2

for detail). More recently, online streaming algorithms began to

draw increasing a�ention for matrix decomposition [21, 26, 31].

�eir memory cost is much smaller, but the whole matrix still needs

to be fully accessed and the time complexity is at least O(m · n).

3 THEORETIC ANALYSIS OF MATRIX
BILATERAL DECOMPOSITION

In this section, we present a novel theoretic analysis on bilateral

decomposition of general, rectangular matrices. It links the quality

of matrix approximation with the encoding powers of bilateral sam-

pling, and inspires a novel, encoding-orientated sampling scheme.

3.1 A New Error Bound
As discussed in Section 2.1, for most randomized algorithms in the

literature, the randomization scheme is pre-determined and then

probabilistic theoretical guarantees are derived, specifying how

many samples should be selected to achieve a desired accuracy

[3, 10, 14, 17, 25]. In this work, our goal is di�erent: we want
to maximally reduce the approximation error given a �xed rate of
sampling. �erefore, our error bound is expressed in terms of the

numerical properties of sampling, instead of a pre-selected sampling

scheme. Our error bound will shed important light on the design of

e�ective sampling schemes that fully exploits a limited computing

resource, thus quite useful to practitioners.

Given an input matrix A ∈ Rm×n , assume A = PQ>, where

P ∈ Rm×r and Q ∈ Rn×r are exact decomposition, say, from an SVD.

Without loss of generality suppose we select k columns C = A[:,Zc]
and k rows R = A[Zr , :], where Zc

and Zr
are sampling indices.

�ese indices locate representative instances (rows) in P and Q,

denoted by Zr = P[Zr , :] and Zc = Q[Zc , :], respectively. In order

to study how the bilateral sampling a�ects matrix approximation

result, we adopt a data-encoding model. Let the m rows of P be

segmented into k groups, where the group representatives are rows

in Zr ; similarly, let the n rows in Q fall into k groups, where the

group representatives are rows in Zc . Let the sr (i) be the group

assignment function that maps the i-th row in P to the sr (i)-th row

in Zr ; similarly, sc (i) maps the i-th row in Q to the sc (i)-th row in

Zc . �en, the errors of reconstructing P and Q using representatives

inZr
andZc

via respective mapping function sr (·) and sc (·) can

be de�ned as

er =
∑m

l=1

‖P[l, :] − Zr[sr (l), :]‖
2, ec =

∑n

l=1

‖Q[l, :] − Zc[sc (l), :]‖
2. (3)

We also de�ne T r and T c as the maximum cluster sizes in P and Q,

respectively, as

T r = max

1≤y≤k
|{i : sr (i) = y}|, T c = max

1≤y≤k
|{i : sc (i) = y}|. (4)

We can then analyze how matrix approximation error is associated

with the encoding powers of bilateral sampling (in reconstructing

the decompositions P and Q) as follows.

Theorem 1. Given an input matrix A, and suppose one samples k
columns C and k rows R, with the intersection W. �en we can bound
the approximation error (2) as follows.

A − CW†R

F
≤

(√
6kθT

3

2

)
·
√

er + ec +
(
kθT ‖W†‖F

)
·
√

ecer

Here T = max (T r ,T c), T r and T c are de�ned in (4), er and ec are
de�ned in (3); θ is a data dependent constant (see Appendix). Proof
can be found in the Appendix.

From �eorem 1, we can see that given a �xed sampling rate

k the key quantities a�ecting the matrix approximation error are

er and ec (3), the encoding errors of reconstructing P and Q with

their representative rows whose indices are speci�ed in the bilateral

sampling. In case both ec and er approach zero, the approximation

error will also approach zero. Namely, choosing a bilateral sam-

pling that can reduce the encoding errors (3) is an e�ective way to

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

617

Figure 2: Matrix approximation error vs. row and column
encoding errors.

bound matrix approximation error. We visualize their relations in

Figure 2. Here, given A with exact decomposition PQ>, we perform

bilateral samplings many times on rows of P and Q, each time using

di�erent choices such as uniform sampling, vector quantization

with di�erent number of iterations, and so on, such that resultant

encoding errors vary a lot. �en we plot the encoding errors (er , ec)
and color-code it with the corresponding matrix approximation

error E. As can be seen, E shows a clear correlation with ec and

er . Only when both ec and er are small (blue), E will be small; if

either ec or er is large, E will be large too.

3.2 Low-rank Compression Sampling
�eorem 1 provides an important criterion for sampling: the se-

lected rows and columns of A should be representative code-vectors

in the low-rank embeddings P and Q, in order for the approximation

error to be well bounded. To achieve this goal, we propose to use

k-means to select representative rows in P and Q. �e k-means al-

gorithm, a.k.a. vector quantization [23], is a lossy data compression

technique that has been widely used in signal processing. �e algo-

rithm can iteratively compute a set of representative code-vectors

by �nding a local optimal of the encoding error (or distortion) as

de�ned in (3). Of course, exact decompositions P and Q are im-

practical and possibly high dimensional. �erefore, we resort to

an alternative low-dimensional embedding P ∈ Rm×k ,Q ∈ Rn×k
that will be discussed in more detail in the cascaded compression

sampling framework in Section 4.

We shall �rst examine behaviour of the k-means sampling on the

low-rank embeddings of the input matrix. For dense matrices, their

energy spreads across all the rows and columns, so the embedding

has a fairly uniform distribution (Figure 3(a)). For sparse matrices,

energy distribution tends to concentrate around a small number

of rows/columns; and hence the embedding collapses towards the

origin (Figure 3(b). �e k-means algorithm assigns more code-

vectors in densely distributed regions. �erefore the code-vectors

are uniform for dense matrices (Figure 3(a)), but will be a�racted

to the origin for sparse matrices (Figure 3(b)).

In order to prevent k-means sampling from picking too many

points close to the origin (e.g. low-energy rows/columns whose en-

tries are mostly zeros), we propose a general, importance weighted

k-means sampling as follows

er =
∑m

l=1

‖P[l, :] − Zr[sr (l), :]‖
2 · ϒ(‖P[l, :]‖2) (5)

ec =
∑n

l=1

‖Q[l, :] − Zc[sc (l), :]‖
2 · ϒ(‖Q[l, :]‖2). (6)

Here we use the norm of P[l, :] (or Q[l, :]) to re-weight the objective

of k-means in (3), because it is an upper-bound of the energy of the

ith row in A (up to a constant scaling), as ‖A[i, :]‖ = ‖P[i, :] · Q‖ ≤
‖P[i, :]‖ · ‖Q‖. �e ϒ(·) is a monotonous function adjusting the

weights (e.g. power or step function). By doing this, the k-means

code-vectors will be pushed away from the origin (Figure 3(c)). For

dense matrices, the weighting function can be simply chosen as

constant. In practice, the k-means code-vector is replaced with its

closest in-sample point. Finally, the weighing can be deemed a prior

knowledge (preference) on approximating rows and columns of the

input matrix, which can be incorporated trivially into �eorem 1.

4 CASCADED COMPRESSION SAMPLING
�eorem 1 suggests that one perform weighted k-means sampling

(5) and (6) on the bilateral embeddings of the input matrix to e�ec-

tively control the approximation error. Since computing an exact

embedding is impractical, we will resort to approximate embed-

dings discussed in the following framework.

Algorithm 2: Cascaded Compression Sampling (CCS)

Input: A; Output: A ≈ ŪS̄V̄>

1: Pilot Sampling: randomly select k columns and k rows

C = A[:,Ic], R = A[Ir , :], W = A[Ir ,Ic].
2: Pilot approximation: run [U, S,V] = sketching(C,R,W), let

P = US
1

2 , and Q = VS
1

2 .

3: Follow-up sampling: perform weighted k-means on P and Q,

respectively, to obtain row index
¯Ir and column index

¯Ic ; let

C̄ = A[:, ¯Ic], R̄ = A[¯Ir , :], W̄ = A[¯Ir , ¯Ic].
4: Follow-up approximation: [Ū, S̄, V̄]= sketching(C̄, R̄,W̄).

�e CCS framework has two rounds of computations. First,

we perform simple random sampling (step 1) and compute a pilot

approximation of the input matrix (step 2). Although it can be

less accurate, it provides a compact embedding of the input matrix

(P and Q). �en, as guided by �eorem 1, we apply weighted

k-means on P and Q to identify representative samples (step 3);

resultant sampling is used for �nal approximation (step 4). As will

be shown both theoretically (Section 4.2) and empirically (Section 5),

it is exactly the follow-up sampling that allows us to extract more

informative samples to signi�cantly improve approximation quality.

�e CCS algorithm takes only O((m + n)(k1 + k2)) space and

O((m + n)k1k2c) time, where k1 and k2 is the pilot and follow-up

sampling rate, respectively, and c is the number of k-means itera-

tions. In practice, k1 = k2 �m,n and c = 5 in all our experiment,

so the complexities are linear in m + n. In case of sparse input ma-

trices, the complexity will be further reduced since only non-zero

entries will be involved in the pilot sampling and approximation

steps. As will be shown in Section 5, impressively, that our method

is computationally more e�cient than those algorithms taking only

input-sparsity time [8, 27] on large sparse input matrices.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

618

(a) dense matrix, k -means sampling (b) sparse matrix, k -means sampling (c) sparse matrix, weighted k -means

Figure 3: Top-2 dimensions of the low-rank embedding P, histogram on horizontal dimension, and (weighted) k-means sampling results.

4.1 �e sketching Routine
�is section discusses the sketching routine in Algorithm 2. Given

a subset of rows R, columns C, and intersection W from A, it returns

A ≈ USV>. Both Sketch-CUR and Pseudo-skeleton method are

candidates. Empirically, their performance can be sensitive to the

choice of the number of singular vectors used in computing the

pseudo-inverse (1,2), as shown in Figure 4. In particular, the optimal

rank can be quite small and varies from data to data.

In the following we propose a stabilized, parameter-free version

of Pseudo-skeleton method (2). Assuming an SVD W = UwΣwV>w ,

then W† = VwΣ−1

w ΣwΣ−1

w U>w . Plug this into A ≈ CW†R, we have

A ≈
(
CVwΣ−1

w

)
Σw

(
Σ−1

w U>wR
)
.

Here, Uw and Vw are le� and right singular vectors of W, extrapo-

lated via U>wR and CVw , respectively, and then normalized by the

singular values Σw . In case Σw (i, i) approaches zero, the normaliza-

tion becomes numerically unstable. To avoid this ambiguity, we use

the norms of the extrapolated singular-vectors for normalization,

A ≈
(
CVwN−1

c

) √
mn

k2
Σw

(
N−1

r U>wR
)
, (7)

s .t . Nc = diag(‖CVw ‖⊗), Nr = diag(‖R>Uw ‖⊗). (8)

Here diaд(·) �lls a diagonal matrix with given vector, ‖ · ‖⊗ returns

column-wise norms, namely Nr and Nc are norms of extrapolated

singular vectors. �e constant

√
mn/k adjusts scale of solution,

which can also be computed adaptively using a small validation set.

We can then de�ne the sketching() routine with U = CVwN−1

c ,

V = N−1

r U>wR, and Σ = Σw
√
mn/k , see Algorithm 3. As can be

seen from Figure 4, it gives stable result though using all singular

vectors. In practice, this can be more convenient than choosing the

best rank (or threshold) through validation on a hold-out data set.

In positive semi-de�nite (PSD) matrices, intriguingly, numerical

sensitivity diminishes by sampling the same subset of rows and

columns, reducing to the Nyström method [12, 13, 30]. We speculate

that PSD matrix resides in a Riemannian manifold [2], so symmetric

sampling be�er captures its structure. However, rectangular matrix

is not endowed with any structural constraint. �is makes the

approximation of rectangular matrices particularly challenging and

abundant results of the Nyström method may not be borrowed here

directly [12, 13, 18, 30, 34].

Algorithm 3: Stabilized sketching

Input: Sampled columns (C), rows (R), and intersection (W)

Output: Stable factorization

1: Compute singular value decomposition W = UwΣwV>w .

2: Extrapolate le� and right singular vectors as CVw and U>wR.

3: Compute column norms of CVw and R>Uw , load them in

diagonal matrices Nc and Nr , respectively (8).

4: Normalize singular vectors as CVwN−1

c and N−1

r U>wR.

5: Reconstruct by

(
CVwN−1

c
)

Σw
(
N−1

r U>wR
)
.

6: Re-scale by (7) or data-dependent factor through validation.

4.2 Algorithmic Boosting Property
In the literature, many two-step methods were designed for fast

CUR decomposition. �ey start from an initial decomposition (fast

JL-transform [11], random projection [3, 28, 29]), and then compute

a sampling probability for subsequent CUR [3, 28]. Note that these

two-step methods focus more on theoretic guarantees of the �nal

approximation, but not the improvement of approximation quality

between the two steps; in comparison, we target on algorithmically

boosting the approximation accuracy from the �rst step to the

second step, both of which are computationally quite cheap.

How to quantify the rise of approximation quality in a two-step
method? How to choose the right pilot and follow-up sampling to save
computations and maximize performance gains? By cascading ran-

dom sampling with weighted k-means, we have derived a working

example of “algorithmic boosting”. Next, we show that, decrement

of the error bound from the pilot to the follow-up approximation

in CCS, is lower bounded by the drop of encoding errors achieved

through the follow-up k-means sampling. Namely, the be�er the

encoding based sampling, the larger the performance gain.

Theorem 2. Let the error bound of the pilot and follow-up sketch-
ing in CABS be Ψp and Ψf , respectively. �en the error bound will
drop by at least the following amount

Ψp − Ψf ≥

√√
3kθT cpT

r
p (T rp +T cp)

2(erp + ecp)
��∆r

e + ∆c
e
��

+ kθ

W†p

F

√
T cT r

erpe
c
p

���∆r
ee
c
f + ∆c

ee
r
f + ∆r

e∆c
e

��� .

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

619

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

ratio of EIGVs used

re
la

ti
v
e
 e

rr
o
r

Sketch−CUR

Pseudo−skeleton

Our sketching routine

(a) galaxy image

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ratio of EIGVs used

re
la

ti
v
e
 e

rr
o
r

Sketch−CUR

Pseudo−skeleton

Our sketching routine

(b) movie-lens

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ratio of EIGVs used

re
la

ti
v
e
 e

rr
o
r

Sketch−CUR

Pseudo−skeleton

Our sketching routine

(c) 20newsgroup

Figure 4: Performance of sketch-CUR and pseudo-skeleton method can be rank sensitive.

Parameters are de�ned in the same way as in �eorem 1, and sub-
index {p, f } denotes pilot or follow-up; ∆r

e (∆c
e) is the drop of row

(column) encoding error in the follow-up k-means sampling. Proof of
�eorem 2 can be found in the Appendix.

�e boosting e�ect is not dependent on speci�c sketching rou-

tine. Empirically, using Pseudo-skeleton or Sketch-CUR can also

achieve signi�cant performance gains, showing the generality of

our framework in achieving the goal of algorithmic boosting.

4.3 Relation with Matrix Coherence
Matrix coherence is a useful index to describe how easy it is to

recover an input matrix through random sampling or matrix com-

pletion algorithms [6]. Let U ∈ Rm×r be the top r le� singular

vectors, then coherence can be de�ned as

µ0(U) = max

i j
|Ui j |, or µ1(U) = max

i=1,2, ...,m
‖U[i, :]‖22 . (9)

Our error bound is also related to matrix singular vectors: it

depends on the quantization error induced in grouping/encoding

the rows of the re-scaled singular vectors. According to [32], the

quantization error can be wri�en as

e = tr (U∆U>) − tr (ΠU∆U>Π>) (10)

where ∆ is the singular value matrix, and Π ∈ Rm×k is a partition

matrix encoding the k-means sampling. For both the coherence

(9) and quantization error (10), the lower value, the easier the ap-

proximation. An important di�erence is that the quantization error

hinges on both the singular-vector structures and (unknown) sam-

pling scheme, instead of a pre-de�ned, random sampling.

5 EXPERIMENTS
Our experiments run on a server with 2.6GHZ processor and 64G

RAM. Benchmark data sets are described in Table 1. All codes are

wri�en in matlab and fully optimized by vectorized operations and

matrix computations, to guarantee a fair comparison in case time

consumption is considered.

First we compare the performance of linear-cost algorithms,

including: (a) Sketch-CUR [29], where target sampling rate is

three times as much as the base sampling rate; (b) Pseudo-skeleton

[16], which is a generalized version of the Nyström method; (c)

Ours (pilot), step 2 of Algorithm 2; (d) Ours (follow-kmeans,

Table 1: Summary of benchmark data sets.
data #row #column sparsity content

heic0707a 18000 18000 dense image (galaxy)

heic1206a 29566 14321 dense image (galaxy)

mnist 60000 60000 dense RBF kernel

a8a 22696 22696 dense RBF kernel

movielens 69878 10677 0.56% movie rating

20news 18774 61188 0.22% word document

reuters 8293 18933 0.25% word document

TDT2 10212 36771 0.35% word document

wkmeans, hdthd), step 4 of Algorithm 2, using constant weight-

ing, power function weighting (power equals 5), and step func-

tion weighting, respectively
1
. In Figure 5, we gradually increase

sampling rate from 1% to 15%, and report averaged error
2 ‖A −

Ã‖F /‖A‖F (for sparse matrices, only non-zero entries are consid-

ered) over 20 repeats. �e number of selected rows and columns

are both k for simplicity, with the sampling rate de�ned as k/
√
mn.

We can see that our pilot approximation result is already more

accurate than Pseudo-skeleton and Sketch-CUR, demonstrating

the stability of our sketching routine proposed in Section 4.1. Our

follow-up sampling is consistently be�er than pilot sampling, which

demonstrates the “algorithmic boosting” e�ect; in particular, the

boosting e�ect is more signi�cant on sparse matrices (larger im-

provement of accuracy between the pilot and follow-up approxi-

mations). We also observe that on sparse matrices, the step func-

tion (follow-hdthd) is slightly be�er than the power function

(follow-wkmeans) when used as weighting in k-means sampling.

�en we compare our approach with state-of-the-art randomized

algorithms (with quadratic costs), including (a) Adaptive-CUR [28],

which uses error distribution of an initial approximation to guide

subsequent sampling; (b) CUR Method, a two-step method using

fast JL-transform to compute leverage scores and then perform CUR

[11]; (c) Random projection [17], with q = 1 step of power itera-

tion; (d) Input-sps-time: sparse embedding method by [8]; (e) Ours

(k-means) for dense matrices with constant weighting function;

and (f) Ours (hd-thd) for sparse matrices with step weighting func-

tion. Averaged performance over 20 repeats is shown in Fig 6. �e

1
For step function, ϒi = 1 if ‖P[i, :] ‖2 is among the top-k largest for i = 1, 2, ...,m,

and ϒi = 0 otherwise; so we also call this “hard-threshold” (hdthd). In other words,

only top-k points are sampled under such weighting scheme.

2
For all methods under comparison, when computing the error, the approximation Ã

is �rst �t to A by linear transform to remove global scaling and translation factors.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

620

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.04

0.06

0.08

0.1

0.12

0.14

sampling rate

re
la

ti
v
e
 e

rr
o
r

Sketch−CUR
Pseudo−skeleton
Ours (pilot)
Ours (follow−kmeans)

(a) image

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sampling rate

re
la

ti
v
e

 e
rr

o
r

Sketch−CUR

Pseudo−skeleton

Ours (pilot)

Ours (follow−kmeans)

(b) image

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sampling rate

re
la

ti
v
e

 e
rr

o
r

Sketch−CUR

Pseudo−skeleton

Ours (pilot)

Ours (follow−wkmns)

Ours (follow−hdthd)

(c) 20newsgroup

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

sampling rate

re
la

ti
v
e
 e

rr
o
r

Sketch−CUR
Pseudo−skeleton

Ours (pilot)

Ours (follow−wkmns)
Ours (follow−hdthd)

(d) movie-lens

Figure 5: Relative error of our method and other randomized algorithms (with linear costs).

10010 28
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

141 149

time (sceonds)

re
la

ti
v
e

 e
rr

o
r

Adaptive−CUR

CUR Method

Rand−project

Input−sps−time

Ours (k−means)

(a) kernel matrix (mnist)

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (sceonds)

re
la

ti
v
e

 e
rr

o
r

Adaptive−CUR

CUR Method

Rand−project

Input−sps−time

Ours (k−means)

(b) kernel matrix (a8a)

10
0

10
1

10
2

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

time (sceonds)

re
la

ti
v
e

 e
rr

o
r

Adaptive−CUR
CUR Method

Rand−project

Input−sps−time
Ours (k−means)

(c) image (heic0707a)

10
0

10
1

10
2

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

time (sceonds)

re
la

ti
v
e

 e
rr

o
r

Adaptive−CUR
CUR Method

Rand−project

Input−sps−time
Ours (k−means)

(d) image (heic1206a)

10
−1

10
0

10
1

10
2

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

time (sceonds)

re
la

ti
v
e

 e
rr

o
r

Adaptive−CUR

CUR Method

Rand−project

Input−sps−time

Ours (hd−thd)

(e) Reuters

10
0

10
1

10
2

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

time (sceonds)

re
la

ti
v
e

 e
rr

o
r

Adaptive−CUR

CUR Method

Rand−project

Input−sps−time

Ours (hd−thd)

(f) TDT2

10
−1

10
0

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

time (sceonds)

re
la

ti
v
e
 e

rr
o
r

Adaptive−CUR
CUR Method

Rand Project

Input−sps−time
Ours (hd−thd)

(g) 20Newsgroup

10
1

10
2

10
3

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

time (sceonds)

re
la

ti
v
e
 e

rr
o
r

Adaptive−CUR
CUR Method

Rand−project

Input−sps−time
Ours (hd−thd)

(h) movie-lens

Figure 6: Relative approximation error of our method and randomized algorithms (with quadratic costs).

sampling rate for our method is chosen higher than quadratic-cost

methods so that their time consumptions are more comparable.

We can see that the Adaptive-CUR can be slower, which we

speculate is due to the computation of the residue of approxima-

tion on the whole input matrix. �e sparse embedding method

(input-sparsity-time) is faster and more accurate than the random

projection with a (dense) Gaussian template matrix, but the di�er-

ence can be insigni�cant on both dense and sparse matrices. �e

fast CUR method has a similar time cost compared with random

projection, but is less accurate. Our approach has signi�cant per-

formance gains on both dense and sparse matrices; its advantage is

most obvious on kernel matrices by only computing a small subset

of its rows and columns; in comparison, all other methods need to

compute the entire kernel matrix. Overall, our approach can be one

to two orders of magnitude faster than existing algorithms in order

to a�ain similar accuracies. In the meantime, our memory cost is

only a small fraction of theirs. �e larger the data, the higher the

performance gains that can be expected.

6 CONCLUSIONS
In this work, by unravelling the interesting underlying connection

between matrix decomposition and lossy data compression, we

proposed cascaded compression sampling for linear-cost low-rank

decomposition of large matrices. Our method outperfroms existing

randomized algorithms using either dense or sparse projection

schemes, demonstrating the power of data encoding in solving large-

scale matrix sketching problems. We are currently investigating

how to characterize the behaviour of compression-based sampling

more precisely using sharp probabilistic error bounds.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

621

APPENDIX
Proof of �eorem 1
We partition A into equal-sized blocks, by the clusters de�ned in

Section 3.1. Remind that rows in P are grouped into k clusters with

cluster size T r(i). We add virtual instances to P such that all clusters

have the same size, i.e.,T r = maxT r(i). Virtual instances added to the

qth cluster are chosen as theqth representative in Zr , so they induce

no extra quantization errors. �en, we can re-partition P into T r

partitions each containing exactly k instances. We use Iri to denote

the indexes of these partitions for i = 1, 2, ...,T r ; similarly rows in

Q are completed by virtual rows, falling in partitions Icj for j =

1, 2, ...,T c . Finally A is augmented to kT r -by-kT c matrix, forming

a number ofT cT r blocks each is of size k-by-k . �e approximation

error on each of these blocks is bounded as

1

√
kθ

A[Iri ,Icj] − C[Iri , :]W
†R>[Icj , :]

F
≤

√
erj + e

c
j

+

√
eri +

√
eci +

√
kθeri e

c
j

W †

F
. (11)

Here eri =
∑
l ∈Iri ‖P[l, :] − Zr[s(l), :]‖

2
is the error of encoding rows

of P (via Iri) with representative Zr via the mapping sr . Similarly,

eci =
∑
l ∈Ici ‖P[l, :] − Zc[s(l), :]‖

2
is the error of encoding rows in Q

(speci�ed by Icj) with representative Zc .

To prove this inequality, de�ne 〈X,Y〉 = XY> for matrices X,Y
with proper dimensions

C[Iri , :] =
〈
P[Iri , :],Q[Zc , :]

〉
,R[Icj , :] =

〈
P[Icj , :],Q[Zr , :]

〉
, (12)

A[Iri ,Irj] =
〈
P[Iri , :],Q[Icj , :]

〉
,W =

〈
P[Zr , :],Q[Zc , :]

〉
. (13)

Here we use transposed version of R for convenience of proof. �e

change of representation won’t a�ect the correctness of our proofs.

We also de�ne the following di�erence matrices

∆C = C[Iri , :] −W,∆R = R[Icj , :] −W,∆A = A[Iri ,Icj] −W, (14)

We will also need the following inequality,

(ϕ (x1, y1) − ϕ (x2, y2))2 ≤ θ · (‖x1 − x2‖2 + ‖y1 − y2‖2), (15)

where x1, x2, y1, y2 are 1 × d vectors, ϕ(·, ·) be the inner product

between two such vectors, θ = 2f ′(ξ)2 (using Lagrangian mean-

value theorem). Using Proposition 2, we can bound norms of the

di�erence matrices

‖∆A‖2F =

A[Iri ,Icj] −W

2

F

=

〈P[Iri , :],Q[Icj , :]
〉
−

〈
P[Zr , :],Q[Zc , :]

〉

2

F

=

k∑
p,q=1

[
ϕ

(
P[Iri (p), :],Q[Icj (q), :]

)
− ϕ

(
P[Zr (p), :],Q[Zc (q), :]

)]
2

≤ θ
k∑

p,q=1

(

P[Iri (p), :] − P[Zr (p), :]

2

+

Q[Icj (q), :] − Q[Zc (q), :]

2

)

= kθ
(
eri + e

c
j

)
.

Here we have used the pre-de�ned relation sr (Iri (p)) = p, and

sc (Icj (q)) = q, since the partition index Ici and Icj has the corre-

sponding representative setZ. Similarly,

‖∆C ‖2F =

C[Iri , :] −W

2

F

〈P[Iri , :],Q[Zc , :]
〉
−

〈
P[Zr , :],Q[Zc , :]

〉

2

F

≤ θ
k∑

p,q=1

P[Iri (p), :] − P[Zr (p), :]

2

= θkeri ,

and ‖∆R ‖2F ≤ θke
c
j . By using above three inequalities, and combin-

ing them with (13), we can prove (11). With this proposition, and by

using the inequality

∑n
i
√
xi ≤

√
n
∑
i xi , the overall approximation

error can be bounded as follows

1

√
kθ

A − CW†R>

F
≤ 1

√
kθ

T r∑
i=1

T c∑
j=1

A[Iri ,Icj]−C[Iri , :]W
†Rp [Icj , :]

>

F

≤
√
T c

∑
i

√∑
j
(ecj + e

r
j) +
√
T r

∑
j

√∑
i
eri +
√
T c

∑
i

√∑
j
ecj

+
√
kθ

W†

F

√
T c

∑
i

√∑
j
eri e

c
j

≤
√
T cT r (T r ec+T cer) +T c

√
T r er +T r

√
T cec +

√
kθ
√
T cT r ecer

W†

F

≤
√

3(T c +T r)(ec + er)+
√
kθ
√
T cT r ecer ‖W†‖F .

By using T = max (T r ,T c), we can easily prove �eorem 1.

Proof of �eorem 2
�e CCS algorithm uses only the k-dimensional embedding instead

of the exact embedding as stated in �eorem 1. �e consequence

is that the resultant error bound will be loosened by the trailing

singular values of the input matrix, as follows

A − CW†R>

F
≤

Ak − CW†R>

F
+

Ak

F

≤
√
T cT r

(√
3kθ (er + ec)(T r +T c) + kθ

√
ecer

W†

F

)
+ ‖Ak ‖F

= µ
√
er + ec + ν

√
er · ec + ‖Ak ‖F ,

where we have µ =
√

3kθT cT r (T r +T c),ν = kθ
√
T cT r ‖W†‖F ,

and ‖Ak ‖F =
√∑min(m,n)

i=k+1
σ 2

i is a constant which is the l2-norm of

the min (m,n) − k singular values. In case singular-value spectrum

decays rapidly, this constant can be quite small. In other words

the error bound is only slightly loosened if rank-k embeddings are

used for the follow-up sampling.

In the following we will use the updated error bound for the

pilot and follow-up sketching, as

Ψp = µp
√
erp + e

c
p + νp

√
erp · ecp + ‖Ak ‖

Ψf = µp
√
erf + e

c
f + νf

√
erf · e

c
f + ‖Ak ‖,

where

µp =
√

3kθT cpT
r
p (T rp +T cp),νp = kθ

√
T cpT

r
p

W†p

F

µf =
√

3kθT cf T
r
f (T

r
f +T

c
f),νf = kθ

√
T cf T

r
f

W†f

F
.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

622

Here the sub-index {p, f } denotes the pilot and the follow-up

step, and all parameters are de�ned in the same way as in �eorem 1.

For example, T cp,f and T rp,f are the maximum cluster sizes in the

column and row embeddings; ecp,f and erp,f are the encoding errors

for the column and row embeddings. �e above relation holds

because the random sampling in the pilot step can be deemed as

equivalently running on the the rank-k embeddings of the input

matrix. �is instantly gives the following guarantee

∆re = erp − erf ≥ 0,∆ce = ecp − ecf ≥ 0.

Here ∆re and ∆ce are exactly the drop of the encoding errors achieved

by the k-means sampling algorithm in the follow-up sampling step.

Next, we will show that, the drop of the error bounds from the

pilot sketching step to the follow-up sketching step in CCS, can be

exactly quanti�ed by the drop of the encoding errors ∆re and ∆ce .

We also use the inequality д(x) − д(y) ≥ (x − y) · д′(x) for the

function д(x) =
√
x and any pair of numbers x ≥ y ≥ 0. Namely√

x − √y ≥ (x − y) 1

2

√
x

. We assume that T rp = T rf = T r , and

T cp = T
c
f = T

c
. �is is justi�ed because the pilot random sampling

and the follow-up k-means sampling can be deemed as running

on the same, rank-k embedding of the input matrix. Namely the

maximum cluster sizes in the two rounds of samplings are the same.

So we can write µp = µf = µ. On other hand, we assume that

‖W†f ‖F ≤ ‖W
†
p ‖F . �is is because the follow-up sampling selects

highly non-redundant rows and columns as representatives, so the

norm of ‖W†‖F typically drops. In other words,

νp
√
erpe

c
p−νf

√
erf e

c
f ≥kθ

√
erpe

c
p
√
T cT r

W†p

F
−kθ

√
erf e

c
f

√
T cT r

W†p

F

= kθ
√
T cT r

W†p

F

(√
erpe

c
p −

√
erf · e

c
f

)
≥ 0.

So we further bound the di�erence as follows

Ψp − Ψf =
(
µp

√
erp + e

c
p − µp

√
erf + e

c
f

)
+

(
νp

√
erp · ecp − νf

√
erf · e

c
f

)
≥ µ

(√
erp + e

c
p −

√
erf + e

c
f

)
+ kθ
√
T cT r

W†p

F

(√
erp · ecp −

√
erf · e

c
f

)
≥ µ 1

2

√
erp + e

c
p

(
erp−erf +e

c
p−ecf

)
+

W†p

F

kθ
√
T cT r√

erp · ecp

(
erpe

c
p−erf · e

c
f

)
=

√
3kθT cT r (T r+T c)

2

√
erp+e

c
p

(∆re+∆ce) +

W†p

F

kθ
√
T cT r√

erp · ecp

(
∆ree

c
f+∆

c
ee

r
f+∆

r
e∆

c
e

)
.

�is completes the proof of �eorem 2.

REFERENCES
[1] O. Alter, P.O. Brown, and D. Botstein. 2000. Singular value decomposition

for genome-wide expression data processing and modeling. Proceedings of the
National Academy of Sciences 97, 18 (2000), 10101–10106.

[2] R. Bhatia. 2015. Positive De�nite Matrices. Princeton University Press.

[3] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. 2004. Near-Optimal Column-

Based Matrix Reconstruction. SIAM J. Comput. 43, 2 (2004), 687–717.

[4] C. Boutsidis and A. Gi�ens. 2013. Improved matrix algorithms via the Subsam-

pled Randomized Hadamard Transform. SIAM Journal of MAtrix Analysis and
Applications 34, 3 (2013), 1301–1340.

[5] C. Boutsidis and D.P. Woodru�. 2014. Optimal CUR matrix decompositions. In

Proceedings of the forty-sixth annual ACM symposium on �eory of computing.

353–362.

[6] E.J. Candes and B. Recht. 2009. Exact Matrix Completion via Matrix Completion.

Foundations of Computational Mathematics 9 (2009), 717–772.

[7] K.L. Clarkson, P. Drineas, M. Magdon-Ismail, M.W. Mahoney, X. Meng, and D.P.

Woodru�. 2013. �e Fast Cauchy Transform and Faster Robust Linear Regression.

In Annual ACM-SIAM Symposium on Discrete Algorithms. 466–477.

[8] K.L. Clarkson and D.P. Woodru�. 2013. Low rank approximation and regression

in input sparsity time. In Annual ACM Symposium on theory of computing.

[9] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman. 1990.

Indexing by latent semantic analysis. Journal of the American Society for Infor-
mation Science 41, 6 (1990), 391–407.

[10] P. Drineas, R. Kannan, and M.W. Mahoney. 2006. Fast Monte Carlo algorithms

for matrices II: computing a low-rank approximation to a matrix. SIAM Journal
of Computing 36, 1 (2006), 158–183.

[11] P. Drineas, M. Magdon-Ismail, M.W. Mahoney, and D.P. Woodru�. 2012. Fast

approximation of matrix coherence and statistical leverage. Journal of Machine
Learning Research 13, 1 (2012), 3475–3506.

[12] P. Drineas and M.W. Mahoney. 2005. On the Nyström Method for Approximating

a Gram Matrix for Improved Kernel-Based Learning. Journal of Machine Learning
Research 6 (2005), 2153–2175.

[13] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. 2004. Spectral grouping using the

Nyström method. IEEE Transactions on Pa�ern Analysis and Machine Intelligence
26, 2 (2004), 214–225.

[14] A. Frieze, R. Kannan, and S. Vempala. 2004. Fast monte-carlo algorithms for

�nding low-rank approximations. J. ACM 51, 6 (2004), 1025–1041.

[15] G. H. Golub and C. F. Van Loan. 1996. Matrix Computation. Johns Hopkins

University Press.

[16] S.A. Goreinov, E.E. Tyrtyshnikov, and N.L. Zamarashki. 1997. A theory of

pseudoskeleton approximations. Linear Algebra Appl. 261, 1 (1997), 1–21.

[17] N. Halko, P.G. Martinsson, and J.A. Tropp. 2011. Finding Structure with Ran-

domness: Probabilistic Algorithms for Constructing Approximate Matrix De-

compositions. SIAM Rev. 53, 2 (2011), 217–288.

[18] S. Kumar, M. Mohri, and A. Talwalkar. 2012. Sampling methods for the Nyström

method. Journal of Machine Learning Research 13, 1 (2012), 981–1006.

[19] L. Lan, K. Zhang, H. Ge, W. Cheng, J. Liu, A. Rauber, X. Li, J. Wang, and H. Zha.

2017. Low-rank Decomposition Meets Kernel Learning: A Generalized Nyström

Method. Arti�cial Intelligence 250 (2017), 1–15.

[20] D.D. Lee and H.S. Seung. 1999. Learning the parts of objects by non-negative

matrix factorization. Nature 401, 6755 (1999), 788 – 791.

[21] E. Liberty. 2013. Simple and deterministic matrix sketching. In ACM SIGKDD
international conference on Knowledge discovery and data mining. 581–588.

[22] E. Liberty, F. Woolfe, P. Martinsson, V. Rokhlin, and M. Tygert. 2007. Randomized

algorithms for the low-rank approximation of matrices. Proceedings of National
Academy of Sciences 104, 51 (2007), 20167–20172.

[23] Y. Linde, A. Buzo, and R.M. Gray. 1980. An Algorithm for Vector �antizer

Design. IEEE Transactions on Communications 28, 1 (1980), 84–95.

[24] M.W. Mahoney. 2011. Randomized Algorithms for Matrices and Data. Foundations
and Trends in Machine Learning 3, 2 (2011), 123 – 224.

[25] M.W. Mahoney and P. Drineas. 2009. CUR matrix decompositions for improved

data analysis. Proceedings of National Academy of Sciences 106 (2009), 697–702.

[26] I. Mitliagkas, C. Caramanis, and P. Jain. 2013. Memory limited, streaming PCA.

In Advances in Neural Information Processing Systems. 2886–2894.

[27] J. Nelson and H.L. Nguyên. 2015. OSNAP: Faster Numerical Linear Algebra

Algorithms via Sparser Subspace Embeddings. In IEEE Annual Symposium on
Foundations of Computer Science (FOCS). 135–143.

[28] S. Wang and Z. Zhang. 2012. A Scalable CUR Matrix Decomposition Algorithm:

Lower Time Complexity and Tighter Bound. In Advances in Neural Information
Processing Systems 25. 647–655.

[29] S. Wang, Z. Zhang, and T. Zhang. 2016. Towards More E�cient Nystrom Approx-

imation and CUR Matrix Decomposition. Journal of Machine Learning Research
17 (2016), 1–49.

[30] C.K. I. Williams and M. Seeger. 2001. Using the Nystrom Method to Speed

Up Kernel Machines. In Advances in Neural Information Processing Systems 13.

682–688.

[31] S. Yun, M. lelarge, and A. Proutiere. 2015. Fast and Memory Optimal Low-Rank

Matrix Approximation. In Advances in Neural Information Processing Systems 28.

3177–3185.

[32] H. Zha, C. Ding, M. Gu, X. He, and H. Simon. 2002. Spectral relaxation for

K-means clustering.. In Neural Information Processing Systems 14.

[33] K. Zhang, L. Lan, Z. Wang, and F. Moerchen. 2012. Scaling up Kernel SVM on

Limited Resources: A Low-rank Linearization Approach. In Proceedings of the Fif-
teenth International Conference on Arti�cial Intelligence and Statistics (Proceedings
of Machine Learning Research), Vol. 22. 1425–1434.

[34] K. Zhang, I. Tsang, and J. Kwok. 2008. Improved Nyström low-rank approxima-

tion and error analysis. In International conference on Machine learning. 1232–

1239.

[35] T. Zhou and D. Tao. 2011. Godec: Randomized low-rank & sparse matrix decom-

position in noisy case (2011). In International Conference on Machine Learning.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

623

	Abstract
	1 Introduction
	2 Related Work
	2.1 Quadratic-Cost Algorithms
	2.2 Linear-Cost Algorithms

	3 Theoretic Analysis of Matrix Bilateral Decomposition
	3.1 A New Error Bound
	3.2 Low-rank Compression Sampling

	4 Cascaded Compression Sampling
	4.1 The sketching Routine
	4.2 Algorithmic Boosting Property
	4.3 Relation with Matrix Coherence

	5 Experiments
	6 Conclusions
	References

