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ABSTRACT
Algorithms are now regularly used to decide whether defendants

awaiting trial are too dangerous to be released back into the com-

munity. In some cases, black defendants are substantially more

likely than white defendants to be incorrectly classi�ed as high

risk. To mitigate such disparities, several techniques have recently

been proposed to achieve algorithmic fairness. Here we reformulate

algorithmic fairness as constrained optimization: the objective is to

maximize public safety while satisfying formal fairness constraints

designed to reduce racial disparities. We show that for several past

de�nitions of fairness, the optimal algorithms that result require de-

taining defendants above race-speci�c risk thresholds. We further

show that the optimal unconstrained algorithm requires applying

a single, uniform threshold to all defendants. �e unconstrained

algorithm thus maximizes public safety while also satisfying one

important understanding of equality: that all individuals are held

to the same standard, irrespective of race. Because the optimal

constrained and unconstrained algorithms generally di�er, there is

tension between improving public safety and satisfying prevailing

notions of algorithmic fairness. By examining data from Broward

County, Florida, we show that this trade-o� can be large in prac-

tice. We focus on algorithms for pretrial release decisions, but the

principles we discuss apply to other domains, and also to human

decision makers carrying out structured decision rules.
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1 INTRODUCTION
Judges nationwide use algorithms to help decide whether defen-

dants should be detained or released while awaiting trial [13, 32].

One such algorithm, called COMPAS, assigns defendants risk scores

between 1 and 10 that indicate how likely they are to commit a

violent crime based on more than 100 factors, including age, sex and
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criminal history. For example, defendants with scores of 7 reo�end

at twice the rate as those with scores of 3. Accordingly, defendants

classi�ed as high risk are much more likely to be detained while

awaiting trial than those classi�ed as low risk.

�ese algorithms do not explicitly use race as an input. Never-

theless, an analysis of defendants in Broward County, Florida [2]

revealed that black defendants are substantially more likely to be

classi�ed as high risk. Further, among defendants who ultimately

did not reo�end, blacks were more than twice as likely as whites

to be labeled as risky. Even though these defendants did not go

on to commit a crime, being classi�ed as high risk meant they

were subjected to harsher treatment by the courts. To reduce racial

disparities of this kind, several authors recently have proposed a

variety of fair decision algorithms [16, 21, 22, 24, 25, 27].
1

Here we reformulate algorithmic fairness as constrained opti-

mization: the objective is to maximize public safety while satisfying

formal fairness constraints. We show that for several past de�ni-

tions of fairness, the optimal algorithms that result require applying

multiple, race-speci�c thresholds to individuals’ risk scores. One

might, for example, detain white defendants who score above 4,

but detain black defendants only if they score above 6. We further

show that the optimal unconstrained algorithm requires applying a

single, uniform threshold to all defendants. �is safety-maximizing

rule thus satis�es one important understanding of equality: that all

individuals are held to the same standard, irrespective of race. Since

the optimal constrained and unconstrained algorithms in general

di�er, there is tension between reducing racial disparities and im-

proving public safety. By examining data from Broward County, we

demonstrate that this tension is more than theoretical. Adhering to

past fairness de�nitions can substantially decrease public safety;

conversely, optimizing for public safety alone can produce stark

racial disparities.

We focus here on the problem of designing algorithms for pretrial

release decisions, but the principles we discuss apply to other do-

mains, and also to human decision makers carrying out structured

decision rules. We emphasize at the outset that algorithmic decision

making does not preclude additional, or alternative, policy inter-

ventions. For example, one might provide released defendants with

robust social services aimed at reducing recidivism, or conclude that

it is more e�ective and equitable to replace pretrial detention with

non-custodial supervision. Moreover, regardless of the algorithm

used, human discretion may be warranted in individual cases.

1
We consider racial disparities because they have been at the center of many recent

debates in criminal justice, but the same logic applies across a range of possible

a�ributes, including gender.
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2 BACKGROUND
2.1 De�ning algorithmic fairness
Existing approaches to algorithmic fairness typically proceed in

two steps. First, a formal criterion of fairness is de�ned; then, a

decision rule is developed to satisfy that measure, either exactly

or approximately. To formally de�ne past fairness measures, we

introduce a general notion of (randomized) decision rules. Suppose

we have a vector xi ∈ Rp
that we interpret as the visible a�ributes

of individual i . For example, x might represent a defendant’s age,

gender, race, and criminal history. We consider binary decisions

(e.g., a0 = release and a1 = detain), and de�ne a decision algorithm,

or a decision rule, to be any function d that speci�es which action

is taken for each individual. To allow for probabilistic decisions,

we require only that d(x) ∈ [0, 1].

De�nition 2.1 (Decision rule). A decision rule is any measurable

function d : Rp 7→ [0, 1], where we interpret d(x) as the probability

that action a1 is taken for an individual with visible a�ributes x .

Before de�ning algorithmic fairness, we need three additional

concepts. First, we de�ne the group membership of each individ-

ual to take a value from the set {д1, . . . ,дk }. In most cases, we

imagine these groups indicate an individual’s race, but they might

also represent gender or other protected a�ributes. We assume

an individual’s racial group can be inferred from their vector of

observable a�ributes xi , and so denote i’s group by д(xi ). For ex-

ample, if we encode race as a coordinate in the vector x , then д is

simply a projection onto this coordinate. Second, for each individ-

ual, we suppose there is a quantity y that speci�es the bene�t of

taking action a1 relative to action a0. For simplicity, we assume y
is binary and normalized to take values 0 and 1, but many of our

results can be extended to the more general case. For example, in

the pretrial se�ing, it is bene�cial to detain a defendant who would

have commi�ed a violent crime if released. �us, we might have

yi = 1 for those defendants who would have commi�ed a violent

crime if released, andyi = 0 otherwise. Importantly,y is not known

exactly to the decision maker, who at the time of the decision has

access only to information encoded in the visible features x . Finally,

we de�ne random variables X and Y that take on values X = x
and Y = y for an individual drawn randomly from the population

of interest (e.g., the population of defendants for whom pretrial

decisions must be made).

With this setup, we now describe three popular de�nitions of

algorithmic fairness.

(1) Statistical parity means that an equal proportion of defen-

dants are detained in each race group [16, 17, 28, 41]. For

example, white and black defendants are detained at equal

rates. Formally, statistical parity means,

E[d(X ) | д(X )] = E[d(X )]. (1)

(2) Conditional statistical parity means that controlling for a

limited set of “legitimate” risk factors, an equal proportion

of defendants are detained within each race group [15,

27].
2

For example, among defendants who have the same

number of prior convictions, black and white defendants

2
Conditional statistical parity is closely related to the idea of fairness through blind-
ness, in which one a�empts to create fair algorithms by prohibiting use of protected

are detained at equal rates. Suppose ` : Rp 7→ Rm
is

a projection of x to factors considered legitimate. �en

conditional statistical parity means,

E[d(X ) | `(X ), д(X )] = E[d(X ) | `(X )]. (2)

(3) Predictive equality means that the accuracy of decisions

is equal across race groups, as measured by false positive

rate (FPR) [22, 29, 40]. �is condition means that among

defendants who would not have gone on to commit a vio-

lent crime if released, detention rates are equal across race

groups. Formally, predictive equality means,

E[d(X ) | Y = 0, д(X )] = E[d(X ) | Y = 0]. (3)

As noted above, a major criticism of COMPAS is that

the rate of false positives is higher among blacks than

whites [2].

2.2 Related work
�e literature on designing fair algorithms is extensive and inter-

disciplinary. Romei and Ruggieri [36] and Zliobaite [42] survey

various measures of fairness in decision making. Here we focus

on algorithmic decision making in the criminal justice system, and

brie�y discuss several interrelated strands of past empirical and

theoretical work.

Statistical risk assessment has been used in criminal justice for

nearly one hundred years, dating back to parole decisions in the

1920s. Several empirical studies have measured the e�ects of adopt-

ing such decision aids. In a randomized controlled trial, the Philadel-

phia Adult Probation and Parole Department evaluated the e�ec-

tiveness of a risk assessment tool developed by Berk et al. [10],

and found the tool reduced the burden on parolees without signi�-

cantly increasing rates of re-o�ense [1]. In a study by Danner et

al. [14], pretrial services agencies in Virginia were randomly chosen

to adopt supervision guidelines based on a risk assessment tool.

Defendants processed by the chosen agencies were nearly twice as

likely to be released, and these released defendants were on aver-

age less risky than those released by agencies not using the tool.

We note that despite such aggregate bene�ts, some have argued

that statistical tools do not provide su�ciently precise estimates of

individual recidivism risk to ethically justify their use [39].
3

Several authors have developed algorithms that guarantee formal

de�nitions of fairness are satis�ed. To ensure statistical parity,

Feldman et al. [16] propose “repairing” a�ributes or risk scores

by converting them to within-group percentiles. For example, a

black defendant riskier than 90% of black defendants would receive

the same transformed score as a white defendant riskier than 90%

of white defendants. A single decision threshold applied to the

transformed scores would then result in equal detention rates across

groups. Kamiran et al. [27] propose a similar method (called “local

a�ributes, such as race. However, as frequently noted, it is di�cult to restrict to “legit-

imate” features that do not at least partially correlate with race and other protected

a�ributes, and so one cannot be completely “blind” to the sensitive information [15].

Moreover, unlike the other de�nitions of fairness, this one does not necessarily re-

duce racial disparities. Conditional statistical parity mitigates these limitations of the

blindness approach while preserving its intuitive appeal.

3
Eric Holder, former A�orney General of the United States, has been similarly critical of

risk assessment tools, arguing that “[e]qual justice can only mean individualized justice,

with charges, convictions, and sentences be��ing the conduct of each defendant and

the particular crime he or she commits” [23].
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massaging”) to achieve conditional statistical parity. Given a set of

decisions, they stratify the population by “legitimate” factors (such

as number of prior convictions), and then alter decisions within

each stratum so that: (1) the overall proportion of people detained

within each stratum remains unchanged; and (2) the detention rates

in the stratum are equal across race groups.
4

Finally, Hardt et al.

[22] propose a method for constructing randomized decision rules

that ensure true positive and false positive rates are equal across

race groups, a criterion of fairness that they call equalized odds;
they further study the case in which only true positive rates must

be equal, which they call equal opportunity.

�e de�nitions of algorithmic fairness discussed above assess

the fairness of decisions; in contrast, some authors consider the fair-

ness of risk scores, like those produced by COMPAS. �e dominant

fairness criterion in this case is calibration.
5

Calibration means

that among defendants with a given risk score, the proportion who

reo�end is the same across race groups. Formally, given risk scores

s(X ), calibration means,

Pr(Y = 1 | s(X ), д(X )) = Pr(Y = 1 | s(X )). (4)

Several researchers have pointed out that many notions of fairness

are in con�ict; Berk et al. [9] survey various fairness measures and

their incompatibilities. Most importantly, Kleinberg et al. [29] prove

that except in degenerate cases, no algorithm can simultaneously

satisfy the following three properties: (1) calibration; (2) balance for

the negative class, meaning that among defendants who would not

commit a crime if released, average risk score is equal across race

group; and (3) balance for the positive class, meaning that among

defendants who would commit a crime if released, average risk

score is equal across race group. Chouldechova [12] similarly con-

siders the tension between calibration and alternative de�nitions

of fairness.

3 OPTIMAL DECISION RULES
Policymakers wishing to satisfy a particular de�nition of fairness

are necessarily restricted in the set of decision rules that they can

apply. In general, however, multiple rules satisfy any given fairness

criterion, and so one must still decide which rule to adopt from

among those satisfying the constraint. In making this choice, we

assume policymakers seek to maximize a speci�c notion of utility,

which we detail below.

In the pretrial se�ing, one must balance two factors: the bene�t

of preventing violent crime commi�ed by released defendants on

the one hand, and the social and economic costs of detention on the

other.
6

To capture these costs and bene�ts, we de�ne the immediate
utility of a decision rule as follows.

De�nition 3.1 (Immediate utility). For c a constant such that

0 < c < 1, the immediate utility of a decision rule d is

u(d, c) = E [Yd(X ) − cd(X )]
= E [Yd(X )] − cE [d(X )] . (5)

4
In their context, they consider human decisions, rather than algorithmic ones, but

the same procedure can be applied to any rule.

5
Calibration is sometimes called predictive parity; we use “calibration” here to distin-

guish it from predictive equality, meaning equal false positive rates.

6
Some jurisdictions consider �ight risk, but safety is typically the dominant concern.

�e �rst term in Eq. (5) is the expected bene�t of the decision

rule, and the second term its costs.
7

For pretrial decisions, the

�rst term is proportional to the expected number of violent crimes

prevented under d , and the second term is proportional to the

expected number of people detained. �e constant c is the cost of

detention in units of crime prevented. We call this immediate utility

to clarify that it re�ects only the proximate costs and bene�ts of

decisions. It does not, for example, consider the long-term, systemic

e�ects of a decision rule.

We can rewrite immediate utility as

u(d, c) = E [E [Yd(X ) − cd(X ) | X ]]
= E

[
pY |Xd(X ) − cd(X )

]
= E

[
d(X )(pY |X − c)

]
(6)

where pY |X = Pr(Y = 1 | X ). �is la�er expression shows that it is

bene�cial to detain an individual precisely when pY |X > c , and is

a convenient reformulation for our derivations below.

Our de�nition of immediate utility implicitly encodes two im-

portant assumptions. First, since Y is binary, all violent crime is

assumed to be equally costly. Second, the cost of detaining every

individual is assumed to be c , without regard to personal character-

istics. Both of these restrictions can be relaxed without signi�cantly

a�ecting our formal results. In practice, however, it is o�en di�cult

to approximate individualized costs and bene�ts of detention, and

so we proceed with this framing of the problem.

Among the rules that satisfy a chosen fairness criterion, we

assume policymakers would prefer the one that maximizes imme-

diate utility. For example, if policymakers wish to ensure statistical

parity, they might �rst consider all decision rules that guarantee

statistical parity is satis�ed, and then adopt the utility-maximizing

rule among this subset.

For the three fairness de�nitions we consider (statistical parity,

conditional statistical parity, and predictive equality) we show next

that the optimal algorithms that result are simple, deterministic

threshold rules based on pY |X . For statistical parity and predictive

equality, the optimal algorithms detain defendants when pY |X ex-

ceeds a group-speci�c threshold. For example, black defendants

might be detained if pY |X ≥ 0.2, and white defendants detained if

pY |X ≥ 0.1. �e exact thresholds for statistical parity di�er from

those for predictive equality. For conditional statistical parity, the

thresholds in the optimal decision rule depend on both group mem-

bership and the “legitimate” factors `(X ). Finally, we show that the

unconstrained utility-maximizing algorithm applies a single, uni-

form threshold to all individuals, irrespective of group membership.

Importantly, since the optimal constrained algorithms di�er from

the optimal unconstrained algorithm, fairness has a cost.

To prove these results, we require one more technical criterion:

that the distribution of pY |X has a strictly positive density on [0, 1].
Intuitively, pY |X is the risk score for a randomly selected individual

with visible a�ributes X . Having a density means that the distri-

bution of pY |X does not have any point masses: for example, the

probability that pY |X exactly equals 0.1 is zero. Positivity means

that in any sub-interval, there is non-zero (though possibly small)

7
We could equivalently de�ne immediate utility in terms of the relative costs of false

positives and false negatives, but we believe our formulation be�er re�ects the concrete

trade-o�s policymakers face.
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probability an individual has risk score in that interval. From an

applied perspective, this is a relatively weak condition, since start-

ing from any risk distribution we can achieve this property by

smoothing the distribution by an arbitrarily small amount. But the

criterion serves two important technical purposes. First, with this

assumption, there are always deterministic decision rules that sat-

isfy each fairness de�nition; and second, it implies that the optimal

decision rules are unique. We now state our main theoretical result.

Theorem 3.2. Suppose D(pY |X ) has positive density on [0, 1].
�e optimal decision rules d∗ that maximize u(d, c) under various
fairness conditions have the following form, and are unique up to a
set of probability zero.

(1) �e unconstrained optimum is

d∗(X ) =
{

1 pY |X ≥ c

0 otherwise

(2) Among rules satisfying statistical parity, the optimum is

d∗(X ) =
{

1 pY |X ≥ tд(X )
0 otherwise

where tд(X ) ∈ [0, 1] are constants that depend only on group
membership. �e optimal rule satisfying predictive equality
takes the same form, though the values of the group-speci�c
thresholds are di�erent.

(3) Additionally suppose D(pY |X | `(X ) = l) has positive den-
sity on [0, 1]. Among rules satisfying conditional statistical
parity, the optimum is

d∗(X ) =
{

1 pY |X ≥ tд(X ), `(X )
0 otherwise

where tд(X ), `(X ) ∈ [0, 1] are constants that depend on group
membership and “legitimate” a�ributes.

Before presenting the formal proof of �eorem 3.2, we sketch

out the argument. From Eq. (6), it follows immediately that (un-

constrained) utility is maximized for a rule that deterministically

detains defendants if and only if pY |X ≥ c . �e optimal rule satisfy-

ing statistical parity necessarily detains the same proportion p∗ of

defendants in each group; it is thus clear that utility is maximized

by se�ing the thresholds so that the riskiest proportion p∗ of defen-

dants is detained in each group. Similar logic establishes the result

for conditional statistical parity. (In both cases, our assumption on

the distribution of the risk scores ensures these thresholds exist.)

�e predictive equality constraint is the most complicated to ana-

lyze. Starting from any non-threshold rule d satisfying predictive

equality, we show that one can derive a rule d ′ satisfying predictive

equality such that u(d ′, c) > u(d, c); this in turn implies a threshold

rule is optimal. We construct d ′ in three steps. First, we show that

under the original rule d there must exist some low-risk defendants

that are detained while some relatively high-risk defendants are

released. Next, we show that if d ′ has the same false positive rate as

d , thenu(d ′, c) > u(d, c) if and only if more defendants are detained

under d ′. �is is because having equal false positive rates means

that d and d ′ detain the same number of people who would not

have commi�ed a violent crime if released; under this restriction,

detaining more people means detaining more people who would

have commi�ed a violent crime, which improves utility. Finally,

we show that one can preserve false positive rates by releasing the

low-risk individuals and detaining an even greater number of the

high-risk individuals; this last statement follows because releasing

low-risk individuals decreases the false positive rate faster than

detaining high-risk individuals increases it.

Proof. As described above, it is clear that threshold rules are

optimal absent fairness constraints, and also in the case of statistical

parity and conditional statistical parity. We now establish the result

for predictive equality; we then prove the uniqueness of these rules.

Suppose d is a decision rule satisfying equal false positive rates

and which is not equivalent to a multiple-threshold rule. We shall

construct a new decision rule d ′ satisfying equal false positive rates,

and such that u(d ′, c) > u(d, c). Since this construction shows any

non-multiple-threshold rule can be improved, the optimal rule must

be a multiple-threshold rule.

Because d is not equivalent to a multiple-threshold rule, there

exist relatively low-risk individuals that are detained and relatively

high-risk individuals that are released. To see this, de�ne ta to be

the threshold that detains the same proportion of group a as d does:

E [d(X ) | д(X ) = a] = E
[
1{pY |X ≥ ta } | д(X ) = a

]
.

Such thresholds exist by our assumption on the distribution ofpY |X .

Since d is not equivalent to a multiple-threshold rule, there must

be a group a∗ for which, in expectation, some defendants below ta∗

will be detained and an equal proportion of defendants above ta∗

released. Let 2β equal the proportion of defendants “misclassi�ed”

(with respect to ta∗ ) in this way:

β = E
[
1{pY |X ≥ ta∗ }(1 − d(X )) | д(X ) = a∗

]
= E

[
1{pY |X < ta∗ }d(X ) | д(X ) = a∗

]
> 0,

where we note that Pr

(
pY |X = ta∗

)
= 0.

For 0 ≤ t1 ≤ t2 ≤ 1, de�ne the rule

d ′t1,t2

(X ) =


1 pY |X ≥ t2, д(X ) = a∗

0 pY |X < t1, д(X ) = a∗

d(X ) otherwise

.

�is rule detains

β2(t1, t2) = E
[
1{pY |X ≥ t2}(1 − d(X )) | д(X ) = a∗

]
defendants above the threshold who were released under d . Further,

γ2(t1, t2) = E
[
1{pY |X ≥ t2}(1 − d(X ))(1 − pY |X ) | д(X ) = a∗

]
≤ (1 − t2)β2(t1, t2)

defendants are newly detained and “innocent” (i.e., would not have

gone on to commit a violent crime). Similarly, d ′t1,t2

releases

β1(t1, t2) = E
[
1{pY |X < t1}d(X ) | д(X ) = a∗

]
defendants below the threshold that were detained under d , result-

ing in

γ1(t1, t2) = E
[
1{pY |X < t1}d(X )(1 − pY |X ) | д(X ) = a∗

]
≥ (1 − t1)β1(t1, t2)

fewer innocent detainees.
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Now choose t1 < ta∗ < t2 such that β1(t1, t2) = β2(t1, t2) =
β/2. Such thresholds exist because: β1(ta∗ , ta∗ ) = β2(ta∗ , ta∗ ) = β ,

β1(0, ·) = β2(·, 1) = 0, and the functions βi are continuous in each

coordinate. �en, γ1(t1, t2) ≥ (1−t1)β/2 andγ2(t1, t2) ≤ (1−t2)β/2,

so γ1(t1, t2) > γ2(t1, t2). �is inequality implies that d ′t1,t2

releases

more innocent low-risk people than it detains innocent high-risk

people (compared to d).

To equalize false positive rates between d and d ′ we must equal-

ize γ1 and γ2, and so we need to decrease t1 in order to release fewer

low-risk people. Note that γ1 is continuous in each coordinate,

γ1(0, ·) = 0, and γ2 depends only on its second coordinate. �ere

thus exists t ′
1
∈ [0, t1) such that γ1(t ′

1
, t2) = γ2(t1, t2) = γ2(t ′

1
, t2).

Further, since t ′
1
< t1, β1(t ′

1
, t2) < β1(t1, t2) = β2(t1, t2). Conse-

quently, d ′t ′
1
,t2

has the same false positive rate as d but detains more

people.

Finally, since false positive rates are equal, detaining extra people

means detaining more people who go on to commit a violent crime.

As a result d ′t ′
1
,t2

has strictly higher immediate utility than d :

u(d ′t ′
1
,t2

, c) − u(d, c) = E
[
d ′t ′

1
,t2

(X )(pY |X − c)
]
−E

[
d(X )(pY |X − c)

]
= E

[
d ′t ′

1
,t2

(X )(1 − c)
]
−E

[
d ′t ′

1
,t2

(X )(1 − pY |X )
]

−E [d(X )(1 − c)] +E
[
d(X )(1 − pY |X )

]
= (1 − c)

(
E

[
d ′t ′

1
,t2

(X )
]
−E [d(X )]

)
= (1 − c)

[
β2(t ′1, t2) − β1(t ′1, t2)

]
> 0.

�e second-to-last equality follows from the fact that d ′t ′
1
,t2

and d

have equal false positive rates, which in turn implies that

E
[
d ′t ′

1
,t2

(X )(1 − pY |X )
]
= E

[
d(X )(1 − pY |X )

]
.

�us, starting from an arbitrary non-threshold rule satisfying pre-

dictive equality, we have constructed a threshold rule with strictly

higher utility that also satis�es predictive equality; as a conse-

quence, threshold rules are optimal.

We now establish uniqueness of the optimal rules for each fair-

ness constraint. Optimality for the unconstrained algorithm is

clear, and so we consider only the constrained rules, starting with

statistical parity. Denote by dα the rule that detains the riskiest

proportion α of individuals in each group; this rule is the unique

optimum among those with detention rate α satisfying statistical

parity. De�ne

f (α) = u(dα , c)
= E

[
dα (X )pY |X

]
− cα .

�e �rst term of f (α) is strictly concave, because dα detains pro-

gressively less risky people as α increases. �e second term of f (α)
is linear. Consequently, f (α) is strictly concave and has a unique

maximizer. A similar argument shows uniqueness of the optimal

rule for conditional statistical parity.

To establish uniqueness in the case of predictive equality, we �rst

restrict to the set of threshold rules, since we showed above that

non-threshold rules are suboptimal. Let dσ be the unique, optimal

threshold rule having false positive rate σ in each group. Now let

д(σ ) be the detention rate under dσ . Since д is strictly increasing,

there is a unique, optimal threshold rule d ′α that satis�es predictive

equality and detains a proportion α of defendants: namely, d ′α =
dд−1(α ). Uniqueness now follows by the same argument we gave

for statistical parity. �

�eorem 3.2 shows that threshold rules maximize immediate

utility when the three fairness criteria we consider hold exactly.

�reshold rules are also optimal if we only require the constraints

hold approximately. For example, a threshold rule maximizes imme-

diate utility under the requirement that false positive rates di�er by

at most a constant δ across groups. To see this, note that our con-

struction in �eorem 3.2 preserves false positive rates. �us, start-

ing from a non-threshold rule that satis�es the (relaxed) constraint,

one can construct a threshold rule that satis�es the constraint and

strictly improves immediate utility, establishing the optimality of

threshold rules.

�reshold rules have been proposed previously to achieve the

various fairness criteria we analyze [16, 22, 27]. We note two im-

portant distinctions between our work and past research. First, the

optimality of such algorithms has not been previously established,

and indeed previously proposed decision rules are not always opti-

mal.
8

Second, our results clarify the need for race-speci�c decision

thresholds to achieve prevailing notions of algorithmic fairness.

We thus identify an inherent tension between satisfying common

fairness constraints and treating all individuals equally, irrespective

of race.

Our de�nition of immediate utility does not put a hard cap on

the number of people detained, but rather balances detention rates

with public safety bene�ts via the constant c . Proposition 3.3 below

shows that one can equivalently view the optimization problem

as maximizing public safety while detaining a speci�ed number of

individuals. As a consequence, the results in �eorem 3.2—where

immediate utility is maximized under a fairness constraint—also

hold when public safety is optimized under constraints on both fair-

ness and the proportion of defendants detained. �is reformulation

is useful for our empirical analysis in Section 4.

Proposition 3.3. Suppose D is the set of decision rules satisfying
statistical parity, conditional statistical parity, predictive equality, or
the full set of all decision rules. �ere is a bijection f on the interval
[0, 1] such that

arg max

d ∈D
E [Yd(X ) − cd(X )] = arg max

d ∈D
E[d (X )]=f (c)

E [Yd(X )] (7)

where the equivalence of the maximizers in (7) is de�ned up to a set
of probability zero.

Proof. Let f (c) = E [d∗(X )], where d∗ is the unique maximizer

of u(d, c) under the constraint d ∈ D. For a �xed c , if a decision rule

maximizes the right-hand side of (7) then it is straightforward to

see that it also maximizes the le�-hand side. By uniqueness of the

solution to the le�-hand side, the solution to the right-hand side is

also unique. �e equality in Eq. (7) thus holds for all c .

8
Feldman et al.’s [16] algorithm for achieving statistical parity is optimal only if one

“repairs” risk scores pY |X rather than individual a�ributes. Applying Kamiran et. al’s

local massaging algorithm [27] for achieving conditional statistical parity yields a non-

optimal multiple-threshold rule, even if one starts with the optimal single threshold

rule. Hardt et al. [22] hint at the optimality of their algorithm for achieving predictive

equality—and in fact their algorithm is optimal—but they do not provide a proof.
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It remains to be shown that f is a bijection. For �xed c and α ,

the proof of �eorem 3.2 established that there is a unique, utility-

maximizing threshold rule dα ∈ D that detains a fraction α of

individuals. Let д(α) = u(dα , c). Now,

д′(α) = d

dα
E [Ydα (X ) − cdα (X )]

=
d

dα
(E [Ydα (X )] − cα)

and so д(α) is maximized at α∗ such that

d

dα
E [Ydα (X )] = c

In other words, the optimal detention rate α∗ is such that the mar-

ginal person detained has probability c of reo�ending. �us, as c de-

creases, the optimal detention threshold decreases, and the propor-

tion detained increases. Consequently, if c1 < c2 then f (c1) > f (c2),
and so f is injective. To show that f is surjective, note that f (0) = 1

and f (1) = 0; the result now follows from continuity of f . �

4 THE COST OF FAIRNESS
As shown above, the optimal algorithms under past notions of

fairness di�er from the unconstrained solution.
9

Consequently,

satisfying common de�nitions of fairness means one must in theory

sacri�ce some degree of public safety. We turn next to the question

of how great this public safety loss might be in practice.

We use data from Broward County, Florida originally compiled

by ProPublica [30]. Following their analysis, we only consider black

and white defendants who were assigned COMPAS risk scores

within 30 days of their arrest, and were not arrested for an ordinary

tra�c crime. We further restrict to only those defendants who

spent at least two years (a�er their COMPAS evaluation) outside

a correctional facility without being arrested for a violent crime,

or were arrested for a violent crime within this two-year period.

Following standard practice, we use this two-year violent recidivism

metric to approximate the bene�t yi of detention: we set yi = 1 for

those who reo�ended, and yi = 0 for those who did not. For the

3,377 defendants satisfying these criteria, the dataset includes race,

age, sex, number of prior convictions, and COMPAS violent crime

risk score (a discrete score between 1 and 10).

�e COMPAS scores may not be the most accurate estimates of

risk, both because the scores are discretized and because they are

not trained speci�cally for Broward County. �erefore, to estimate

pY |X we re-train a risk assessment model that predicts two-year

violent recidivism using L1
-regularized logistic regression followed

by Pla� scaling [35]. �e model is based on all available features

for each defendant, excluding race. Our risk scores achieve higher

AUC on a held-out set of defendants than the COMPAS scores (0.75

vs. 0.73). We note that adding race to this model does not improve

performance, as measured by AUC on the test set.

We investigate the three past fairness de�nitions previously

discussed: statistical parity, conditional statistical parity, and pre-

dictive equality. For each de�nition, we �nd the set of thresholds

that produce a decision rule that: (1) satis�es the fairness de�nition;

(2) detains 30% of defendants; and (3) maximizes expected public

9
One can construct examples in which the group-speci�c thresholds coincide, leading

to a single threshold, but it is unlikely for the thresholds to be exactly equal in practice.

We discuss this possibility further in Section 5.

Constraint

Percent of detainees

that are low risk

Estimated increase

in violent crime

Statistical parity 17% 9%

Predictive equality 14% 7%

Cond. stat. parity 10% 4%

Table 1: Based on the Broward County data, satisfying com-
mon fairness de�nitions results in detaining low-risk defen-
dants while reducing public safety. For each fairness con-
straint, we estimate the increase in violent crime committed
by released defendants, relative to a rule that optimizes for
public safety alone; and the proportion of detained defen-
dants that are low risk (i.e., would be released if we again
considered only public safety).

safety subject to (1) and (2). �e proportion of defendants detained

is chosen to match the fraction of defendants classi�ed as medium

or high risk by COMPAS (scoring 5 or greater). Conditional statisti-

cal parity requires that one de�ne the “legitimate” factors `(X ), and

this choice signi�cantly impacts results. For example, if all vari-

ables are deemed legitimate, then this fairness condition imposes

no constraint on the algorithm. In our application, we consider

only a defendant’s number of prior convictions to be legitimate; to

deal with sparsity in the data, we partition prior convictions into

four bins: 0, 1–2, 3–4, and 5 or more.

We estimate two quantities for each decision rule: the increase

in violent crime commi�ed by released defendants, relative to a

rule that optimizes for public safety alone, ignoring formal fairness

requirements; and the proportion of detained defendants that are

low risk (i.e., would be released if we again considered only public

safety). We compute these numbers on 100 random train-test splits

of the data. On each iteration, we train the risk score model and

�nd the optimal thresholds using 70% of the data, and then calculate

the two statistics on the remaining 30%. Ties are broken randomly

when they occur, and we report results averaged over all runs.

For each fairness constraint, Table 1 shows that violent recidi-

vism increases while low risk defendants are detained. For example,

when we enforce statistical parity, 17% of detained defendants are

relatively low risk. An equal number of high-risk defendants are

thus released (because we hold �xed the number of individuals

detained), leading to an estimated 9% increase in violent recidi-

vism among released defendants. �ere are thus tangible costs to

satisfying popular notions of algorithmic fairness.

5 THE COST OF PUBLIC SAFETY
A decision rule constrained to satisfy statistical parity, conditional

statistical parity, or predictive equality reduces public safety. How-

ever, a single-threshold rule that maximizes public safety generally

violates all of these fairness de�nitions. For example, in the Broward

County data, optimally detaining 30% of defendants with a single-

threshold rule means that 40% of black defendants are detained,

compared to 18% of white defendants, violating statistical parity.

And among defendants who ultimately do not go on to commit

a violent crime, 14% of whites are detained compared to 32% of

blacks, violating predictive equality.
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Figure 1: Top: distribution of risk scores for Broward
County data (le�), and simulated data drawn from two beta
distributions with equal means (right). Bottom: using a sin-
gle threshold which detains 30% of defendants in Broward
County violates statistical parity (as measured by detention
rate), predictive equality (false positive rate), and condi-
tional statistical parity (detention rate conditional on num-
ber of prior arrests). We omit the last measure for the sim-
ulated data since that would require making additional as-
sumptions about the relationship of priors and risk in the
hypothetical populations.

�e reason for these disparities is that white and black defen-

dants in Broward County have di�erent distributions of risk, pY |X ,

as shown in Figure 1. In particular, a greater fraction of black de-

fendants have relatively high risk scores, in part because black

defendants are more likely to have prior arrests, which is a strong

indicator of reo�ending. Importantly, while an algorithm designer

can choose di�erent decision rules based on these risk scores, the

algorithm cannot alter the risk scores themselves, which re�ect

underlying features of the population of Broward County.

Once a decision threshold is speci�ed, these risk distributions

determine the statistical properties of the decision rule, including

the group-speci�c detention and false positive rates. In theory, it is

possible that these distributions line up in a way that achieves sta-

tistical parity or predictive equality, but in practice that is unlikely.

Consequently, any decision rule that guarantees these various fair-

ness criteria are met will in practice deviate from the unconstrained

optimum.

Kleinberg et al. [29] establish the incompatibility of di�erent

fairness measures when the overall risk Pr(Y = 1 | д(X ) = дi ) dif-

fers between groups дi . However, the tension we identify between

maximizing public safety and satisfying various notions of algorith-

mic fairness typically persists even if groups have the same overall

risk. To demonstrate this phenomenon, Figure 1 shows risk score

distributions for two hypothetical populations with equal average

risk. Even though their means are the same, the tail of the red dis-

tribution is heavier than the tail of the blue distribution, resulting

in higher detention and false positive rates in the red group.

�at a single decision threshold can, and generally does, result in

racial disparities is closely related to the notion of infra-marginality

Figure 2: Recidivism rate by COMPAS risk score and race.
White and black defendants with the same risk score are
roughly equally likely to reo�end, indicating that the scores
are calibrated. �e y-axis shows the proportion of defen-
dants re-arrested for any crime, including non-violent of-
fenses; the gray bands show 95% con�dence intervals.

in the econometric literature on taste-based discrimination [3, 4,

34, 37]. In that work, taste-based discrimination [6] is equated

with applying decision thresholds that di�er by race. �eir se�ing

is human, not algorithmic, decision making, and so one cannot

directly observe the thresholds being applied; the goal is thus to

infer the thresholds from observable statistics. �ough intuitively

appealing, detention rates and false positive rates are poor proxies

for the thresholds: these infra-marginal statistics consider average
risk above the thresholds, and so can di�er even if the thresholds

are identical (as shown in Figure 1). In the algorithmic se�ing, past

fairness measures notably focus on these infra-marginal statistics,

even though the thresholds themselves are directly observable.

6 DETECTING DISCRIMINATION
�e algorithms we have thus far considered output a decision d(x)
for each individual. In practice, however, algorithms like COMPAS

typically output a score s(x) that is claimed to indicate a defendant’s

risk pY |X ; decision makers then use these risk estimates to select

an action (e.g., release or detain).

In some cases, neither the procedure nor the data used to gener-

ate these scores is disclosed, prompting worry that the scores are

themselves discriminatory. To address this concern, researchers

o�en examine whether scores are calibrated [29], as de�ned by

Eq. (4).
10

Since the true probabilities pY |X are necessarily cali-

brated, it is reasonable to expect risk estimates that approximate

these probabilities to be calibrated as well. Figure 2 shows that the

COMPAS scores indeed satisfy this property. For example, among

defendants who scored a seven on the COMPAS scale, 60% of white

defendants reo�ended, which is nearly identical to the 61% percent

of black defendants who reo�ended.

However, given only scores s(x) and outcomes y, it is impossible

to determine whether the scores are accurate estimates of pY |X
10

Some researchers also check whether the AUC of scores is similar across race

groups [38]. �e theoretical motivation for examining AUC is less clear, since the true

risk distributions might have di�erent AUCs, a pa�ern that would be reproduced in

scores that approximate these probabilities. In practice, however, one might expect

the true risk distributions to yield similar AUCs across race groups—and indeed this is

the case for the Broward County data.
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or have been strategically designed to produce racial disparities.

Hardt et al. [22] make a similar observation in their discussion of

“oblivious” measures. Consider a hypothetical situation where a

malicious decision maker wants to release all white defendants,

even if they are high risk. To shield himself from claims of discrim-

ination, he applies a facially neutral 30% threshold to defendants

regardless of race. Suppose that 20% of blacks recidivate, and the

decision-maker’s algorithm uses additional information, such as

prior arrests, to partition blacks into three risk categories: low

risk (10% chance of reo�ending), average risk (20% chance), and

high risk (40% chance). Further suppose that whites are just as

risky as blacks overall (20% of them reo�end), but the decision

maker ignores individual characteristics and labels every white

defendant average risk. �is algorithm is calibrated, as both whites

and blacks labeled average risk reo�end 20% of the time. However,

all white defendants fall below the decision threshold, so none are

detained. By systematically ignoring information that could be used

to distinguish between white defendants, the decision maker has

succeeded in discriminating while using a single threshold applied

to calibrated scores.

Figure 3 illustrates a general method for constructing such dis-

criminatory scores from true risk estimates. We start by adding

noise to the true scores (black curve) of the group that we wish

to treat favorably—in the �gure we use N(0, 0.5) noise. We then

use the perturbed scores to predict the outcomes yi via a logistic

regression model. �e resulting model predictions (red curve) are

more tightly clustered around their mean, since adding noise re-

moves information. Consequently, under the transformed scores,

no one in the group lies above the decision threshold, indicated

by the vertical line. �e key point is that the red curve is a per-

fectly plausible distribution of risk: without further information,

one cannot determine whether the risk model was �t on input data

that were truly noisy, or whether noise was added to the inputs to

produce disparities.

�ese examples relate to the historical practice of redlining, in

which lending decisions were intentionally based only on coarse

information—usually neighborhood—in order to deny loans to well-

quali�ed minorities [11]. Since even creditworthy minorities o�en

resided in neighborhoods with low average income, lenders could

deny their applications by adhering to a facially neutral policy

of not serving low-income areas. In the case of redlining, one

discriminates by ignoring information about the disfavored group;

in the pretrial se�ing, one ignores information about the favored

group. Both strategies, however, operate under the same general

principle.

�ere is no evidence to suggest that organizations have intention-

ally ignored relevant information when constructing risk scores.

Similar e�ects, however, may also arise through negligence or un-

intentional oversights. Indeed, we found in Section 4 that we could

improve the predictive power of the Broward County COMPAS

scores with a standard statistical model. To ensure an algorithm is

equitable, it is thus important to inspect the algorithm itself and

not just the decisions it produces.

Figure 3: Calibration is insu�cient to assess discrimination.
In the le� plot, the black line shows the distribution of
risk in a hypothetical population, and the red line shows
strategically altered risk estimates in the same population.
Both sets of risk scores are calibrated (right plot), but the
altered risk scores are less informative and as a result guar-
antee that no defendants fall above the detention threshold
(dashed vertical line).

7 DISCUSSION
Maximizing public safety requires detaining all individuals deemed

su�ciently likely to commit a violent crime, regardless of race.

However, to satisfy common metrics of fairness, one must set mul-

tiple, race-speci�c thresholds. �ere is thus an inherent tension

between minimizing expected violent crime and satisfying com-

mon notions of fairness. �is tension is real: by analyzing data

from Broward County, we �nd that optimizing for public safety

yields stark racial disparities; conversely, satisfying past fairness

de�nitions means releasing more high-risk defendants, adversely

a�ecting public safety.

Policymakers face a di�cult and consequential choice, and it

is ultimately unclear what course of action is best in any given

situation. We note, however, one important consideration: with

race-speci�c thresholds, a black defendant may be released while an

equally risky white defendant is detained. Such racial classi�cations

would likely trigger strict scrutiny [18], the most stringent standard

of judicial review used by U.S. courts under the Equal Protection

Clause of the Fourteenth Amendment. A single-threshold rule thus

maximizes public safety while satisfying a core constitutional law

rule, bolstering the case in its favor.

To some extent, concerns embodied by past fairness de�nitions

can be addressed while still adopting a single-threshold rule. For

example, by collecting more data and accordingly increasing the

accuracy of risk estimates, one can lower error rates. Further, one

could raise the threshold for detaining defendants, reducing the

number of people erroneously detained from all race groups. Fi-

nally, one could change the decision such that classi�cation errors

are less costly. For example, rather than being held in jail, risky de-

fendants might be required to participate in community supervision

programs.

When evaluating policy options, it is important to consider how

well risk scores capture the salient costs and bene�ts of the decision.

For example, though we might want to minimize violent crime

conducted by defendants awaiting trial, we typically only observe
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crime that results in an arrest. But arrests are an imperfect proxy.

Heavier policing in minority neighborhoods might lead to black

defendants being arrested more o�en than whites who commit

the same crime [31]. Poor outcome data might thus cause one to

systematically underestimate the risk posed by white defendants.

�is concern is mitigated when the outcome y is serious crime—

rather than minor o�enses—since such incidents are less susceptible

to biased observation. In particular, Skeem and Lowencamp [38]

note that the racial distribution of individuals arrested for violent

o�enses is in line with the racial distribution of o�enders inferred

from victim reports and also in line with self-reported o�ending

data.

One might similarly worry that the features x are biased in the

sense that factors are not equally predictive across race groups, a

phenomenon known as subgroup validity [4]. For example, housing

stability might be less predictive of recidivism for minorities than

for whites. If the vector of features x includes race, an individual’s

risk score py |x is in theory statistically robust to this issue, and

for this reason some have argued race should be included in risk

models [7]. However, explicitly including race as an input feature

raises legal and policy complications, and as such it is common

to simply exclude features with di�erential predictive power [14].

While perhaps a reasonable strategy in practice, we note that dis-

carding information may inadvertently lead to the redlining e�ects

we discuss in Section 6.

Risk scores might also fail to accurately capture costs in speci�c,

idiosyncratic cases. Detaining a defendant who is the sole caretaker

of her children arguably incurs higher social costs than detaining a

defendant without children. Discretionary consideration of indi-

vidual cases might thus be justi�ed, provided that such discretion

does not also introduce bias. Further, the immediate utility of a

decision rule might be a poor measure of its long-term costs and

bene�ts. For example, in the context of credit extensions, o�ering

loans preferentially to minorities might ultimately lead to a more

productive distribution of wealth, combating harms from historical

under-investment in minority communities.

Finally, we note that some decisions are be�er thought of as

group rather than individual choices, limiting the applicability of

the framework we have been considering. For example, when

universities admit students, they o�en aim to select the best group,

not simply the best individual candidates, and may thus decide

to deviate from a single-threshold rule in order to create diverse

communities with varied perspectives and backgrounds [33].

Experts increasingly rely on algorithmic decision aids in diverse

se�ings, including law enforcement, education, employment, and

medicine [5, 8, 19, 20, 26]. Algorithms have the potential to improve

the e�ciency and equity of decisions, but their design and appli-

cation raise complex questions for researchers and policymakers.

By clarifying the implications of competing notions of algorithmic

fairness, we hope our analysis fosters discussion and informs policy.
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