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ABSTRACT
Machine learning is widely used in security-sensitive set-
tings like spam and malware detection, although it has been
shown that malicious data can be carefully modified at test
time to evade detection. To overcome this limitation, adversary-
aware learning algorithms have been developed, exploiting
robust optimization and game-theoretical models to incorpo-
rate knowledge of potential adversarial data manipulations
into the learning algorithm. Despite these techniques have
been shown to be effective in some adversarial learning tasks,
their adoption in practice is hindered by different factors, in-
cluding the difficulty of meeting specific theoretical require-
ments, the complexity of implementation, and scalability
issues, in terms of computational time and space required
during training. In this work, we aim to develop secure
kernel machines against evasion attacks that are not com-
putationally more demanding than their non-secure counter-
parts. In particular, leveraging recent work on robustness
and regularization, we show that the security of a linear
classifier can be drastically improved by selecting a proper
regularizer, depending on the kind of evasion attack, as well
as unbalancing the cost of classification errors. We then
discuss the security of nonlinear kernel machines, and show
that a proper choice of the kernel function is crucial. We also
show that unbalancing the cost of classification errors and
varying some kernel parameters can further improve classi-
fier security, yielding decision functions that better enclose
the legitimate data. Our results on spam and PDF malware
detection corroborate our analysis.
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1. INTRODUCTION
In recent years, machine learning has been increasingly

used in security-related applications, including spam, mal-
ware and network intrusion detection [1, 4, 6–8, 15, 33].
One of the main reasons is that, thanks to its generaliza-
tion capability, machine learning has the potential to detect
never-before-seen attacks and threats. However, it has been
shown that specific vulnerabilities of learning algorithms can
be exploited by skilled attackers to mislead learning, i.e., the
learning algorithm can be itself the weakest link in the se-
curity chain. In one relevant scenario, usually referred to
as evasion, malicious samples are carefully modified at test
time to evade detection. Another pertinent setting is re-
lated to the so-called poisoning attacks, where the attacker
can inject poisoning samples into the training data used
to learn the classifier, in order to compromise the training
phase [8, 33]. In this paper we restrict our focus on evasion
attacks, and on how to learn more secure classifiers against
them, without increasing training complexity.

The intrinsic vulnerabilities of learning algorithms to well-
crafted attacks are essentially rooted on their underlying
stationarity assumption. In particular, learning algorithms
have been originally designed by assuming that training and
testing samples are drawn from the same distribution. How-
ever, such an assumption is clearly violated when attackers
manipulate the input data either at training or testing time.
From a very general theoretical viewpoint, this means that
the class-conditional distribution of malicious samples ob-
served at test time is different from that observed at training
time. In the case of evasion attacks, only malicious data at
test time is affected. Thus, by denoting the input samples
with x ∈ X (in a continuous feature space), and their class
labels with y ∈ {−1,+1} (respectively, for legitimate and
malicious samples), this can be formalized as:

pts(x
′|y = +1) =

∫
x∈X

p(x′|x, y = +1)ptr(x|y = +1)dx ,

where x′ = a(x), being a : X 7→ X a manipulation func-
tion representing the attack strategy, i.e., defining how the
attacker manipulates the initial malicious data x as x′ to
evade detection at test time. The term p(x′|x, y = +1)
characterizes the probability of having the initial malicious
sample x modified as x′, and pts and ptr respectively denote
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the testing and training class-conditional distributions of the
malicious samples. This straightforward model, albeit being
not directly useful to design secure learning algorithms (see,
e.g., [2]), clarifies the connection between the manipulation
function a and the adversarial drift that it induces in the
probability distribution of malicious samples.

To account for this potential, adversarial drift between
training and testing distributions, adversary-aware learning
algorithms have been developed, based on robust optimiza-
tion, and probabilistic and game-theoretical models (see,
e.g., [9, 14, 31]). The underlying idea of these algorithms is
that of incorporating knowledge of the potential adversarial
data manipulations into the learning phase, either by simu-
lating such manipulations at training time, through the defi-
nition of suitable manipulation functions a(x), or by model-
ing the distribution drift directly (in generative models). In
practice, both options reflect a similar effect, i.e., an adver-
sarial shift of the malicious distribution, as witnessed by the
aforementioned probability model. The only difference is the
level at which assumptions on the attacker model are made,
i.e., either at the level of each malicious sample, or at the
higher level of their global probability distribution. Clearly,
making assumptions at the sample level allows one to more
finely define the potential adversarial data manipulations,
which can be advantageous when application-specific con-
straints on data manipulation can be accounted for. On
the other hand, secure learning techniques based on this ap-
proach tends to exhibit a much higher training complexity,
especially in terms of computational time and space. This
is one of the main factors that hinders the adoption of these
algorithms in practice, along with the difficulty of meeting
some theoretical requirements, and, in some cases, the com-
plexity of their implementation.

In this work, we aim to overcome these limitations by
developing secure kernel machines against evasion attacks
that are not computationally more demanding than their
non-secure counterparts. To this end, we first clarify differ-
ences between sparse and dense evasion attacks, depending
on whether it is convenient for the attacker to significantly
modify few features, or slightly modify many of them. We
also intuitively explain the source of classifier vulnerability
to evasion attacks, depending on the shape of the decision
function. As an aside contribution of this work, we also
discuss briefly how to evade non-differentiable classification
functions, like those exhibited by decision trees and random
forests, through the use of a surrogate classifier (Sect. 2).
In Sect. 3, we summarize recent findings on regularization
and robustness properties of learning algorithms [17, 34],
which will subsequently help us to shed light on the role
of regularization and cost-sensitive learning to design more
secure linear classifiers, depending on the kind of evasion
attack. In Sect. 4, we devise some upper bounds on the
worst-case impact of sparse and dense evasion attacks on
linear and nonlinear classification functions. Besides con-
firming the findings in [17, 34], our analysis also allows us
to investigate robustness properties of nonlinear kernel ma-
chines. We indeed show that a proper choice of the kernel
function is crucial to improve security depending on the hy-
pothesized kind of evasion attack, similarly to the role of
regularization in linear classifiers. Our analysis also sug-
gests that unbalancing the cost of classification errors and
varying some kernel parameters can further improve classi-
fier security. In Sects. 5-6, we describe some secure (linear

and nonlinear) classifiers developed according to our find-
ings. In Sect. 7, we conduct an experimental analysis on
spam and PDF malware detection to corroborate our anal-
ysis. We conclude this paper by discussing related work
(Sect. 8) and future research directions (Sect. 9).

2. EVASION ATTACKS
To analyze possible attacks against machine learning and

devise principled countermeasures in a more systematic man-
ner, a formal model of the attacker has been proposed in [1,
4, 6, 7, 15]. The model relies upon the definition of the
attacker’s goal, knowledge of the classifier, and capability
of manipulating the input data. Here we formalize evasion
attacks in terms of this model, as done in [4, 7].

Attacker’s goal. In evasion attacks, the goal is to modify
a single malicious sample (e.g., a spam email) to have it
misclassified as legitimate (with the largest confidence) by
the classifier.

Attacker’s knowledge. The attacker can have different
levels of knowledge of the targeted classifier; she may have
limited or perfect knowledge about the training data, the
feature set, and the classification algorithm [4, 7]. In this
work, we focus on perfect-knowledge (worst-case) attacks.
Although it may be overly pessimistic to assume that the
attacker knows everything about the targeted system, this
often reveals interesting properties of learning algorithms,
as it highlights the worst possible performance degradation
that may be incurred under attack.

Attacker’s capability. In evasion attacks, the attacker
can only modify malicious samples, and the amount of fea-
sible manipulations is often bounded, as the malicious data
has to preserve its intrusive functionality. For example, mal-
ware has to embed a valid exploitation code for the attack
to be effective, and spam emails have to remain readable
by humans. It is thus clear that excessive obfuscation or
manipulation of such samples is not possible without com-
promising the functionality of the attack. This behavior
has been formalized in terms of application-dependent con-
straints in previous work [4, 32]; in particular, in terms of
bounds on the distance between the initial malicious sample
x and the manipulated one x′ in feature space. As discussed
in [32], two kinds of constraints have been mostly used when
modeling real-world adversarial settings, leading one to de-
fine sparse (`1) and dense (`2) attacks. Bounding the `1
distance between x and x′ yields a sparse attack, as it rep-
resents the case when the cost depends on the number of
modified features. For instance, when instances correspond
to text (e.g., the email’s body) and each feature represents
the occurrences of a given term in the text, the attacker
usually aims to change as few words as possible. Instead,
the `2 distance yields a dense attack, as it represents the
case when the cost of modifying features is proportional to
the distance between the original and modified sample in
Euclidean space. For example, when considering images as
the input data, usually the attacker prefers making small
changes to many or even all pixels, rather than significantly
modifying only few of them. This amounts to only slightly
blurring the image, instead of obtaining a salt-and-pepper
noise effect (as produced by sparse attacks), and the final
effect is less visible to the human eye (as we will show in the
examples of manipulated handwritten digits in Sect. 7).

Attack strategy. Having defined the attacker’s goal, knowl-

60



Figure 1: Evasion attacks against different classifiers, trained on blue (legitimate) and red (malicious) samples.
A linear SVM classifier against sparse (first plot) and dense (second plot) evasion attacks, an SVM with the
RBF kernel (third plot) and a random forest (fourth plot) against sparse evasion attacks. The initial malicious
point x is found at the center of the distance constraint, while the evasion sample x? is denoted with a green
star. For each classifier, g(x) values are shown in colors, and the black line denotes the decision boundary.

edge and capability, one can finally formalize the attack
strategy, i.e., the procedure for obfuscating malicious data
to evade detection, in terms of an optimization problem.
Let us denote the legitimate and malicious class labels re-
spectively with −1 and +1, and assume that the classifier’s
decision function is f(x) = sign (g(x)), where g(x) ∈ R is
the classifiers’ linear discriminant function, and x is the rep-
resentation of a sample in a d-dimensional feature space. For
example, for linear classifier, g(x) = w>x + b ∈ R, where
w ∈ Rd are the feature weights, and b ∈ R is the bias.
Given a malicious sample x, the goal is to find the sample
x∗ that minimizes the classifier’s discriminant function g(·)
(i.e., that is classified as legitimate with the highest possible
confidence) subject to the constraint that x∗ lies within a
distance dmax from x:

x∗ = arg min
x′

g(x′) (1)

s.t. d(x′,x) ≤ dmax , xlb � x′ � xub , (2)

where xlb � x′ � xub represent a box constraint (as features
are often normalized onto a compact domain), and the dis-
tance measure d(·, ·) is defined in terms of the cost of data
manipulation (e.g., the number of modified words in each
spam) [4, 7, 13, 21, 36]. Sparse and dense evasion attacks
are simply defined based on whether d(·, ·) corresponds to
the `1 or to the `2 distance, respectively.

Solving the evasion problem. Depending on the kind of
decision function and distance metric, Problem (1)-(2) can
be casted in terms of a linear or a nonlinear programming
problem.1 For linear classifiers, the global minimum can be
found, either in the case of `1 or `2 constraints. For nonlin-
ear g(x), the solution is typically found at a local minimum
of the objective function. Problem (1)-(2) can be solved
with standard solvers in both cases, although they may not
be very efficient, as they do not exploit specific knowledge
about the evasion problem (e.g., sparsity of the solution,
compact domain, etc.). We thus devise an ad-hoc solver
based on exploring a descent direction aligned with the gra-
dient of g(x) by means of a bisect line search. Its basic
structure is given as Algorithm 1. To reduce the number
of iterations, and ensure quick convergence, we explore one

1Note that Problem (1)-(2) becomes linear only for linear
classifiers and sparse evasion attacks (using the `1 distance).

Algorithm 1 Evasion Attack

Input: x: the malicious sample; x(0): the initial location
of the attack sample; dmax: the maximum distance be-
tween x and x′ (Eq. 2); xlb, xub: the box constraint
bounds (Eq. 2); ε: a small positive constant.

Output: x′: the evasion attack sample.
1: i← 0
2: repeat
3: i← i+ 1
4: t′ = arg mint g(x(i−1) − t∇g(x(i−1))) (line search)

5: x(i) ← x(i−1) − t′∇g(x(i−1))
6: if constraints in Eq. (2) are violated then

7: Project x(i) onto the feasible domain
8: end if
9: until g(x(i))− g(x(i−1)) > ε

10: return x(i)

feature at a time in the case of `1 attacks (starting from the
more promising feature, i.e., the one exhibiting the highest
gradient variation), as the solution will be sparse. Con-
versely, we simultaneously explore all the features in the
case of `2 attacks, as the solution will be likely to modify
all feature values. We also minimize the number of gradient
and function evaluations to further speed up our evasion al-
gorithm; e.g., we only re-compute the gradient of g(x) when
no better point is found on the descent direction under ex-
ploration. Finally, in the case of nonlinear g(x), we exploit

multiple initializations for x(0) to mitigate issues related to
the presence of multiple local minima.

Examples of (sparse and dense) evasion attacks against
Support Vector Machines (SVMs) and random forests are
shown in Fig. 1. As random forests have a non-differentiable
discriminant function g(x), we construct a differentiable ap-
proximation ĝ(x) by learning a surrogate SVM on the same
training data used to learn the random forest, but replac-
ing the (true) training labels with the classification labels
assigned by the random forest to such data. Then, the sur-
rogate SVM can be used to find a suitable descent direc-
tion, and run the evasion attack against the random forest.
To our knowledge, only preliminary work has attempted the
evasion of non-differentiable classifiers like decision trees, us-
ing black-box optimization strategies like genetic algorithms
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and greedy descent techniques [16, 35]. Learning a surrogate
(differentiable) model to solve the evasion problem should be
more computationally efficient, at least in principle.

Understanding classifier security. Observing the shape
of the nonlinear decision functions in Fig. 1 (third and fourth
plot), and the corresponding evasion samples, one may inter-
estingly note that, in some cases (see, e.g., the evasion sam-
ple in the third plot), to evade detection, it suffices to create
a sample that is far enough from the known malicious sam-
ples (learned by the classifier during training), without even
mimicking any legitimate sample. In some other cases (see,
e.g., the evasion sample in the fourth plot), the attacker is in-
stead required to mimic the characteristics exhibited by the
legitimate samples, which can be a much harder task in real-
world applications. This reveals an interesting insight on
the security of nonlinear classifiers, as also already pointed
out in recent work [3, 4], i.e., that decision functions that
better enclose the legitimate data tend to be more secure
against evasion attacks. In practice, the main vulnerability
of learning algorithms relies upon the fact that, sometimes,
it is possible to evade detection by creating samples which
are far enough from the rest of the training data.2 In pre-
vious work [3], this vulnerability has been referred to as a
vulnerability of the classification algorithm. Conversely, if
the classifier only allows evasion if the attack sample is close
enough to the legitimate data, and the attacker can never-
theless construct evasion samples successfully, then the vul-
nerability is related to the feature representation. In fact, if
a legitimate and a malicious sample become indistinguish-
able from each other in terms of their feature values, then
the vulnerability is clearly related to the choice of the feature
representation.

Constructing real-world attack samples. The attack
strategy discussed in this section allows one to find an eva-
sion sample in terms of a set of desired feature values. Clearly,
feature mappings in real-world security-related tasks can be
very difficult to reverse-engineer and, accordingly, construct-
ing the corresponding real-world attack samples (e.g., mal-
ware samples) may not be trivial. As widely discussed in
previous work [4, 6, 7, 15], it is clear that this problem de-
mands for application-specific solutions, and it is thus out
of the scope of this work. On the other hand, in some cases,
feature mappings can be easily inverted and the correspond-
ing samples easily constructed.

3. ROBUSTNESS AND REGULARIZATION
We clarify here the connection between regularization and

input data uncertainty highlighted by the recent findings
in [17, 20, 23, 30, 34]. In particular, Xu et al. [34] have
considered the following robust optimization problem:

min
w,b

max
u1,..,un∈U

∑n
i=1

(
1− yi(w>(xi − ui) + b)

)
+
, (3)

where (z)+ is equal to z ∈ R if z > 0 and 0 otherwise,
u1, ...,un ∈ U define a set of bounded perturbations of the
training data {xi, yi}ni=1 ∈ Rn×{−1,+1}n, and the so-called
uncertainty set U is defined as

U ∆
= {(u1, . . . ,un)|

∑n
i=1 ‖ui‖

∗ ≤ c} , (4)

2They have been also referred to as blind spots in [24], and
as adversarial examples in recent work related to the evasion
of deep learning algorithms [25, 26].

being ‖ · ‖∗ the dual norm of ‖ · ‖. Typical examples of
uncertainty sets according to the above definition include `1
and `2 balls [30, 34].

Problem (3) amounts to minimizing the hinge loss for a
two-class classification problem under worst-case, bounded
perturbations of the training samples xi, i.e., a typical set-
ting in robust optimization [17, 20, 23, 30, 34]. Under some
mild assumptions easily verified in practice (including non-
separability of the training data), the authors have shown
that the above problem is equivalent to the following non-
robust, regularized optimization problem (cf. Th. 3 in [34]):

minw,b c‖w‖+
∑n
i=1

(
1− yi(w>xi + b)

)
+
. (5)

This means that, if the `2 norm is chosen as the dual norm
characterizing the uncertainty set U , then w is regularized
with the `2 norm, and the above problem is equivalent to
a standard SVM. If input data uncertainty is modeled with
the `1 norm, instead, the optimal regularizer would be the
`∞ regularizer, and vice versa.3

Uncertainty sets and cost-sensitive learning. The
work by Xu et al. [34] only considers uncertainty sets of
the same size, i.e., the same perturbation is applied on both
the legitimate and the malicious class. However, it is clear
that, under evasion, the malicious samples are potentially
affected by a stronger worst-case perturbation than legiti-
mate data. Interestingly, in their recent work, Katsumata
and Takeda [17] have shown that different uncertainty sets
can be accounted for on each sample (and thus, on each class
too), by simply modifying the cost of each classification er-
ror. This means that it suffices to penalize differently errors
in different classes to consider uncertainty sets of different
sizes. In the SVM learning algorithm, this can be simply
accounted for by setting a different C value for legitimate
and malicious samples. This in turn suggests that classi-
fier security can be improved by unbalancing the costs of
classification errors in different classes.

Kernelization. To conclude, note that these findings mostly
hold for linear classifiers. In the case of nonlinear (kernel-
ized) classifiers, the authors have essentially repeated their
analysis but considering perturbations directly in the fea-
ture space induced by the kernel function, instead of retain-
ing them in the input space. Although this may be useful to
understand how to regularize nonlinear functions, the result-
ing perturbation in the feature/kernel space depends on the
kernel mapping itself, and it is not trivial to understand how
it could be modified by the kernel function. For instance,
if one considers an `1 perturbation in input space, and an
RBF kernel k(x,z) = exp(−γ‖x − z‖22), the corresponding
perturbation in the feature/kernel space is likely to become
dense for sufficiently small γ values. Intuitively, this can be
explained by the fact that a sparse modification on an input
sample x tends to affect almost all kernel values computed
between x and the rest of the training data. This analysis
is thus not very helpful in the case of evasion attacks, as the
corresponding perturbations are clearly applied in the input
space. As we will see in the next section, in fact, for nonlin-
ear classifiers it is not the choice of the regularization term
that plays a crucial role for improving security, but rather
the selection of a proper kernel function.

3Note that the `1 norm is the dual norm of the `∞ norm,
and vice versa, while the `2 norm is the dual norm of itself.
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4. CLASSIFIER SECURITY
We discuss here different strategies that can be exploited

to improve security of linear and nonlinear classifiers, respec-
tively. Our rationale is to show that the maximum variation
of a classifier’s discriminant function under an evasion at-
tack can be bounded, highlighting the factors that may harm
classifier security, and discussing how to limit their impact.
This will give us a set of guidelines to help designing more
secure learning algorithms against evasion. It is also worth
remarking that, very interestingly, some of the results aris-
ing from our analysis corroborate the findings discussed in
the previous section for linear classifiers.

4.1 Linear Classifiers
We start by analyzing the worst-case variation of the dis-

criminant function of a linear classifier under evasion. The
discriminant function of a linear classifier is simply given as
g(x) = w>x + b. Assuming that x is an initial malicious
sample, and x′ the corresponding manipulated evasion sam-
ple, one yields:

∆g = g(x)− g(x′) = w>(x− x′) . (6)

Note that, from the attacker’s perspective, this variation has
to be maximized to increase chances of successfully evade the
targeted classifier, as the attacker’s strategy in Problem (1)-
(2) aims to minimize g(x′).

Sparse Attacks. Under sparse evasion attacks, it is not
difficult to see that ∆g (from Eq. 6) is upper bounded by
the following quantity:

∆g ≤ ‖w‖∞ × ‖x− x′‖1 , (7)

where we remind the reader that ‖w‖∞ = maxj=1,...,d |wj |.
In fact, for sparse attacks, the solution x′ is found by modi-
fying the features that have been assigned the highest abso-
lute weight values (see, e.g., Fig. 1, first plot). In the worst
case, the maximum ∆g is attained by modifying the most
relevant feature of a quantity equal to ‖x− x′‖1.

Dense Attacks. Under dense evasion attacks, instead, the
worst-case increase of ∆g corresponds to a linear shift of x
towards the decision boundary (along the opposite direction
to the hyperplane normal w), i.e., x′ = x− ‖x− x′‖2 w

‖w‖2
(see Fig. 1, second plot), which implies that:

∆g ≤ w>w

‖w‖2
× ‖x− x′‖2 = ‖w‖2 × ‖x− x′‖2 . (8)

The analysis of the worst-case ∆g values for linear classi-
fiers highlights two interesting facts. The former is that the
feature values should be bounded, to bound the maximum
variation of the relevant features. This is normally not a
problem, if feature normalization is used, as normalization
techniques often map the input samples onto a compact do-
main. The latter fact is that, under sparse attacks, one
should bound the infinity-norm of w, while under dense at-
tacks, it is better to penalize its `2 norm. This means that it
is better to use `∞ and `2 regularization respectively against
sparse and dense evasion attacks. This novel result in the
context of adversarial learning also confirms the findings by
Xu et al. [34] related to the relationship between robustness
and regularization of learning algorithms.

4.2 Nonlinear Kernel Machines
Let us now analyze how to bound the maximum variation

of ∆g for decision functions of the form:

g(x) =
∑n
i=1 αik(x,xi) + b , (9)

where k : X ×X 7→ R is the kernel function, and xi’s are the
training samples. For example, for SVMs, the αi’s are not
null only for the support vectors, and positive (respectively,
negative) for malicious (legitimate) samples. The value of
∆g in these cases is simply given as:

∆g =

n∑
i=1

αi
(
k(x,xi)− k(x′,xi)

)
. (10)

As we aim to obtain decision functions that can poten-
tially enclose the legitimate data (as discussed in Sect. 2),
we focus here on kernels with an exponential form, includ-
ing the RBF and the Laplacian kernel. They are respectively
given by k(x,x′) = exp(−γ‖x − x′‖pp), with p = 1, 2. The
reason is that such kernels yield decision functions whose
values tend to decrease while getting farther from the train-
ing data, thus yielding enclosing decision functions around
one of the two classes.4 For these kernels, it is not difficult
to see that:

k(x′,xi) = e−γ‖x
′−xi‖pp ≥ e−γ‖x

′−x‖ppe−γ‖x−xi‖pp , (11)

where we use the triangle inequality ‖(x′−x)+(x−xi)‖p ≤
‖x′−x‖p+‖x−xi‖p to upper bound the `p norm (valid for
p = 1, 2). Substituting the above lower bound for k(x′,xi)
into Eq. (10), one yields:

∆g ≤
n∑
i=1

αik(x,xi)
(

1− e−γ‖x
′−x‖pp

)
. (12)

This upper bound reveals some interesting properties about
the security of nonlinear kernels. First, it is clear that,
if x′ = x, ∆g = 0. Instead, if ‖x′ − x‖pp → ∞, ∆g =∑
i αik(x,xi) and, thus, g(x′) = b. This means that, if

b ≥ 0 and x′ is far enough from the training data, the deci-
sion function encloses the legitimate class, and x′ is classi-
fied as malicious (and vice versa for b < 0), confirming the
class-enclosing property of such kernels.

Kernel selection. The upper bound in Eq. (12) depends
on ‖x′ − x‖pp. Since sparse and dense evasion attacks tend
to minimize the `1 and the `2 distance between the same
points, it should be clear that p should be chosen accord-
ingly. Namely, if the evasion attack is sparse, then one
should select the Laplacian kernel; otherwise, in case of
dense attacks, the RBF kernel should be preferred. The rea-
son is that such choices will minimize the value of ‖x′−x‖pp,
i.e., they will enable one to map the evasion samples in
a region of the kernel space which is closer to the non-
manipulated malicious samples (thus yielding a lower varia-
tion of g, and requiring more modifications to evade detec-
tion). This is an important observation, and it has a similar
effect to the choice of the regularization term for linear clas-
sifiers; in fact, if one knows whether a sparse or a dense
attack is deemed more likely, then a better regularizer (for

4This has also been discussed in [28], exploiting a probabilis-
tic model defined for open-set recognition, where the goal is
to find enclosed decision functions around known training
classes, to be able to detect novel classes at test time.
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Figure 2: Decision boundaries for SVM (first plot), I-SVM (second plot), and their cost-sensitive versions,
C-SVM (third plot) and cI-SVM (fourth plot). In the first and the second plot, we also report `2 and `1 balls
over the margin support vectors, to visually clarify why the orientation of the decision hyperplane changes.

Figure 3: Decision boundaries, and g(x) values (in colors), for RBF-SVM (first plot), cRBF-SVM (second
plot), and γRBF-SVM (third plot). Note how the classifiers in the second and third plot provide a better
enclosing of the legitimate data.

linear classifiers) or kernel function (for nonlinear classifiers)
can be selected.

Cost-sensitive Learning. Another non-trivial suggestion
coming from Eq. (12) is to set a lower value of the cost
of classification for malicious samples. The reason is that
the (absolute) αi values obtained from SVM learning are
bounded by the corresponding value of the SVM parameter
C. Thus, if we set a lower C value for the malicious samples,
their αi values will decrease. This will in turn decrease the
value of ∆g, and thus, the impact of evasion attacks. Simi-
larly, one may think of increasing C for legitimate data, to
further decrease ∆g. Recall however that the balance con-
dition in SVM learning requires

∑n
i=1 αi = 0 and, thus, the

final αi values will clearly depend on the data at hand (it
is not generally the case that they will be equal to the cor-
responding C value). Moreover, if one subsequently adjusts
the value of b on a validation set to meet some specific re-
quirements (e.g., a desired false positive rate), then it may
be even convenient to unbalance costs in a very different
way. It is thus difficult to draw general conclusions from
Eq. (12), despite the fact that cost-sensitive learning may
be useful to shape the decision boundary in a different way,
potentially improving security.

Kernel correction. Our analysis also suggests that reduc-
ing the value of γ should be beneficial, as it yields smoother
functions. Furthermore, one may also think of assigning

a different γ to each class, and reduce only that assigned
to the malicious training samples (as they are in turn as-
signed positive αi values). Despite this breaks the positive-
semidefiniteness and symmetry of the kernel function, it
could improve classifier security by reducing the maximum
value of ∆g. Although standard SVM learning algorithms
may not converge if the kernel function is not symmetric,
we can still learn a linear SVM in the similarity space in-
duced by our kernel, by essentially using the kernel matrix
as the set of input features. This is a well-known technique
in similarity-based classification, which amounts to learning
the SVM on the squared kernel [10, 27].

5. SECURE LINEAR CLASSIFIERS
Here we discuss how to improve security of linear classi-

fiers against dense and sparse attacks, respectively.

5.1 Countering Dense Attacks
Based on our discussion in Sect. 4.1, and on the findings

in [34], one should consider `2 regularization to counter `2
attacks. Furthermore, as suggested in [17], also using unbal-
anced classification costs may improve classifier security.

SVM. Accordingly, the SVM learning algorithm, with dif-
ferent values of C for each class, should guarantee a higher
level of security against dense evasion attacks. It finds w and
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b by solving the following quadratic programming problem:

minw,b
1
2
‖w‖22 +

∑n
i=1 ci (1− yig(xi))+ , (13)

where ci = C+ (ci = C−) for malicious (legitimate) data.

5.2 Countering Sparse Attacks
For sparse attacks, our analysis, as that in [17, 34], sug-

gests the use of `∞ regularization, potentially with unbal-
anced costs.

Infinity-norm SVM (I-SVM). We thus consider the SVM
formulation, but changing the regularization term:

minw,b ‖w‖∞ +
∑n
i=1 ci (1− yig(xi))+ , (14)

where the ci’s are set as in the SVM case. Differently from
the SVM learning problem, this one can be solved using a
simpler linear programming approach.

Remark I. Examples of decision boundaries for the con-
sidered classifiers are shown in Fig. 2. Note that the effect
of unbalanced classification costs tends to shift the decision
boundary farther from the malicious class. Despite this may
yield higher security, it may increase the fraction of mis-
classified legitimate samples (i.e., the false positive rate).
Therefore, its effectiveness as a valid defense strategy needs
to be empirically assessed in detail, especially in those appli-
cations where keeping the false positive rate low is crucial.

Remark II. Another interesting observation is that the de-
cision hyperplane of the I-SVM tends to yield more evenly-
distributed weight values, i.e., weights that are all equal in
absolute value. This is clear from Fig. 2, as the hyperplane
normal tends to align with a bisect line, i.e., w u (1, 1).
This is an important property for the security of linear clas-
sifiers, empirically validated in previous work [5, 18]. How-
ever, based on the interpretation of robustness and regu-
larization in [34], and on our analysis, we have provided
more theoretically-sound explanations behind the meaning
of “evenly-distributed weights,” and on how to enforce this
behavior with a proper regularizer (instead of exploiting
heuristic techniques).

6. SECURE KERNEL MACHINES
Similarly to the previous section, we consider here secure

kernel machines against dense and sparse attacks.

6.1 Countering Dense Attacks
Based on the discussion in Sect. 4.2, to counter `2 at-

tacks, one may train a standard SVM with the RBF ker-
nel (RBF-SVM), potentially using unbalanced classification
costs (cRBF-SVM). A further option could be to assign dis-
tinct values of γ for the malicious and legitimate training
samples (γRBF-SVM). Examples of decision boundaries for
these classifiers are shown in Fig. 3.

6.2 Countering Sparse Attacks
In the case of sparse attacks, similar considerations can

be made, despite the fact that one should use a Laplacian
kernel. We thus consider the following classifiers: SVM with
the Laplacian kernel (Lap-SVM), Lap-SVM with unbalanced
costs (cLap-SVM), and Lap-SVM with different γ values for
each class (γLap-SVM).

Secure LLR with unbalanced γ (γSec-LLR). To pro-
vide an example of a secure generative classifier, we consider

the well-known log-likelihood ratio rule, for which the dis-
criminant function is computed as:

g(x) = log p(x|y = +1)− log p(x|y = −1) , (15)

where the class-conditional probabilities are estimated through
kernel density estimation, i.e., p(x|y) = 1

ny

∑
i|yi=y k(x−xi

h
).

Clearly, to counter sparse attacks, we select again the Lapla-
cian kernel, and set a higher kernel variance through the
parameter h (i.e., lower γ) for the malicious (positive) class.

7. EXPERIMENTAL ANALYSIS
We report here our experiments on linear and nonlinear

secure learning algorithms.

7.1 Experiments on Linear Classifiers
For linear classifiers, we consider dense and sparse evasion

attacks on handwritten digit data, to visually demonstrate
their blurring and salt-and-pepper effect on images. We
then consider an adversarial application example on spam
filtering, against sparse evasion attacks. We first discuss the
datasets used in this set of experiments.

Handwritten Digit Classification. For this task, we use
the MNIST digit data [19], where each image is represented
by a vector of 784 features, corresponding to its gray-level
pixel values. As in [4], we simulate an adversarial classifi-
cation problem where the digits 8 and 9 correspond to the
legitimate and malicious class, respectively.

Spam Filtering. We consider this task, as spam filtering
is a well-known application subject to adversarial attacks.
Most spam filters include an automatic text classifier that
analyzes the email’s body text. In the simplest case Boolean
features are used, each representing the presence or absence
of a given term. For our experiments we use the TREC 2007
spam track data, consisting of about 25000 legitimate and
50000 spam emails [11]. We extract a dictionary of terms
(features) from the first 5000 emails (in chronological or-
der) using the same parsing mechanism of SpamAssassin,
and then select the 200 most discriminant features accord-
ing to the information gain criterion [29]. We simulate a
well-known (sparse) evasion attack in which the attacker
aims to modify only few terms. Adding or removing a term
amounts to switching the value of the corresponding Boolean
feature [4, 7, 18, 22, 36].

Experimental Setup. In these experiments, we consider
the classifiers described in Sect. 5, namely, SVM, cSVM,
I-SVM, cI-SVM. We randomly select 500 legitimate and
500 malicious samples from MNIST dataset, 2500 legiti-
mate and 2500 malicious samples from the Spam dataset,
and equally subdivide them to create a training and a test-
ing set. We optimize the regularization parameter C (or
the cost-sensitive parameters C+, C−) of each SVM through
3-fold cross-validation, maximizing a trade-off between the
detection rate (i.e., the fraction of correctly-classified ma-
licious samples, also referred to as true positive rate, TP)
at 1% false positive rate (FP) in the absence of attack, and
under attack (estimated by simulating the attacks on the
validation set, for different dmax values).

After classifier training, we perform sparse and dense eva-
sion attacks on all malicious digit testing samples, and sparse
evasion attacks on all malicious spam testing samples, for in-
creasing values of dmax. For the digit data, dmax represents
either the `2 or `1 distance between the non-manipulated
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Figure 4: Security evaluation curves (TP at FP=1% vs dmax) for the 9-vs-8 digit classification task against
dense (first plot) and sparse (second plot) evasion attacks, and for the spam filtering data against sparse
evasion attacks (third plot).

and the manipulated image, respectively, for dense and sparse
attacks. In the case of sparse attacks, this corresponds to the
number of gray-level pixel values modified by the attack. For
spam filtering, it instead represents the number of modified
words in each spam. We evaluate the corresponding per-
formance in terms of TP at FP=1%, against an increasing
value of dmax (recall that the performance in the absence of
attack corresponds to dmax = 0). We repeat this procedure
five times, and report the average results on the original and
modified testing data. The corresponding (averaged) curves
are called security evaluation curves [4, 7].

Results. Results are reported in Fig. 4. The reported se-
curity evaluation curves show that the main improvement
in classifier security is due to the choice of a proper regu-
larizer. In fact, I-SVM (i.e., infinity-norm regularization) is
much more secure than SVM (i.e., `2 regularization) against
sparse attacks, and vice versa for dense attacks, confirming
the discussion in Sect. 5. The use of different classification
costs only introduces a slight improvement in terms of secu-
rity, as it is difficult to achieve an improved level of security
while retaining FP=1%. Images of manipulated digits under
dense and sparse evasion attacks are reported in Fig. 5.

7.2 Experiments on Nonlinear Classifiers
For nonlinear classifiers, we consider another adversarial

application example involving the detection of malware in
PDF files, following the detection approach proposed in [12].

PDF Malware Detection. This is another application
that is often targeted by attackers. A PDF file can host dif-
ferent kinds of contents, like Flash and JavaScript, making it
an appealing vector to convey malware. In fact, such third-
party applications can be exploited by attacker to execute
arbitrary operations. We use here the Lux0r dataset [12],
which consists of 17,782 unique PDF documents embedding
JavaScript code: 12,548 malicious samples and 5,234 benign
samples. The whole dataset is the result of an extensive
collection of PDF files from security blogs such as “Con-
tagio”, and “Malware don’t need Coffee”, analysis engines
such as VirusTotal, and search engines such as Google and
Yahoo. Every file is represented using 736 features that cor-
respond to the number of occurrences of a predefined set of
Javascript function calls (API), where every API represents
an action performed by one of the objects that are contained
into the PDF file (e.g., opening another document that is
stored inside the file). An attacker cannot trivially remove
an API from a PDF file without corrupting its functional-
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Figure 6: Security evaluation curves (TP at FP=1%
vs dmax) for PDF malware detection against sparse
evasion attacks.

ity. Conversely, she can easily add new APIs by inserting
new function calls. For this reason, we simulate this attack
by only considering feature increments (i.e., decrementing a
feature value is not allowed). Accordingly, the most conve-
nient strategy to mislead a malware detector (classifier) is
to insert as many occurrences of a given API as possible,
which is a sparse attack.5

Experimental Setup. We consider the classifiers secure
to sparse evasion attacks described in Sect. 6, namely, Lap-
SVM, cLap-SVM, and γLap-SVM. We randomly split the
dataset into training and testing sets of 5,000 samples each,
and optimize the classifiers’ parameters as done in the previ-
ous experimental setup. As in [12], we select a subset of 100
features from the training data, by retaining those exhibit-
ing higher values in malicious data, such that mimicking
legitimate samples becomes more difficult.

Results. The results averaged over five repetitions are re-
ported in Fig. 6. It is easy to appreciate how the secure
variants of the Lap-SVM algorithms outperform the base-
line algorithm.

8. RELATED WORK
As mentioned in Sect. 1, several adversary-aware learn-

ing algorithms have been proposed to date, each relying on
a different model of the attacker. As for linear classifiers,

5Despite no upper bound on the number of injected APIs
may be set, we set the maximum value for each API to the
corresponding one observed during training.
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Figure 5: Original and manipulated handwritten digits at dmax = 3000 by sparse attacks (top row), and at
dmax = 250 by dense attacks (bottom row), against SVM (second column), c-SVM (third column), I-SVM
(fourth column), and cI-SVM (fifth column). Values of g(x) are also reported for each digit and classifier,
confirming that sparse attacks are less effective against I-SVM and cI-SVM, and that dense attacks are less
effective against SVM and cSVM. Note also how the blurring effect induced by dense attacks is more difficult
to spot for humans than the salt-and-pepper noise induced by sparse attacks.

the underlying rationale has been that of devising classifiers
with more evenly-distributed feature weights, to intuitively
enforce the attacker to manipulate more feature values to
evade detection [5, 18]. Based on this intuition, different
heuristic techniques have been proposed. In this work, high-
lighting connections between robustness and regularization,
and thanks to our analysis in Sect. 4, we have provided a
clearer explanation and a theoretically-sound approach to
devise secure linear classifiers. First, we have clarified the
notion of sparse and dense attacks, as done in [32]. Then, we
have shown that infinity-norm regularization is the optimal
solution against worst-case sparse attacks (as the ones only
qualitatively envisioned in [5, 18]).

More complicated approaches have been exploited in [9,
14, 31], relying on game theory and robust optimization to
model interactions between the classifier and the attacker.
The main drawback of these approaches is their increased
training complexity. For example, game-theoretical approaches
(as that advocated in [9]) require simulating the attacks dur-
ing training, and iteratively adjust the classification func-
tion. Another issue is that such approaches require specific
assumptions to be met, to guarantee existence of a unique
equilibrium in the game. For instance, in [9] the objective
function of the attacker is required to be twice differentiable,
and this is clearly not the case for sparse attacks (since the
`1 distance representing the attacker’s cost to modify data
is not differentiable). This means in turn that this approach
can not deal with sparse attacks, at least in principle. The
underling idea of the work in [14, 31] is instead to consider
a worst-case loss suited to sparse attacks in which features
can be set to their maximum/minimum values. In this case
too, training complexity becomes higher with respect to the
non-robust versions of the same algorithms.

9. CONCLUSIONS AND FUTURE WORK
In this work, we have provided several insights on how to

enforce security of linear and nonlinear classifiers, from the
choice of the regularization term and the kernel function, to
the selection of different classification costs and kernel pa-
rameters. We have developed secure kernel machines that
are not computationally more demanding than their non-
secure counterparts, to reduce the risks associated to evasion
attacks at test time. We believe that this would help over-
coming the intrinsic limitations of current secure learning
algorithms, namely, their strong theoretical requirements,
complexity of implementation, and scalability issues due to
their training complexity, to finally favor the wide adoption
of more secure learning algorithms in practical settings.

As for future work, we aim to better systematize the state
of the art in secure learning, and to extend our experimen-
tal analysis also to current secure-learning approaches. It
may be worth considering also application settings in which
the attack can be a combination of sparse and dense attacks,
and try to mitigate their impact by exploiting a convex com-
bination of `∞ and `2 regularization. As another extension
of this work, we plan to investigate, in a similar manner, the
security properties of learning algorithms against poisoning
attacks. Given that in a poisoning scenario the attacker
can only inject few samples into the training set to mis-
lead learning, poisoning can be considered a sparse attack
(in terms of the number of samples). Thus, an interesting
idea may be to consider an infinity-norm regularization on
the α values of nonlinear kernel machines, such that more
evenly-distributed weights are assigned to the training sam-
ples. This should indeed reduce the impact of each poisoning
(outlying) sample in the training set, making learning more
robust even in the presence of poisoning.
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