
BinSequence: Fast, Accurate and Scalable Binary Code
Reuse Detection

He Huang
Concordia Institute for
Information Systems

Engineering
Concordia University,

Montreal, QC, Canada
hua_he@concordia.ca

Amr M. Youssef
Concordia Institute for
Information Systems

Engineering
Concordia University,

Montreal, QC, Canada
youssef@concordia.ca

Mourad Debbabi
Concordia Institute for
Information Systems

Engineering
Concordia University,

Montreal, QC, Canada
debbabi@concordia.ca

ABSTRACT
Code reuse detection is a key technique in reverse engineer-
ing. However, existing source code similarity comparison
techniques are not applicable to binary code. Moreover,
compilers have made this problem even more difficult due
to the fact that different assembly code and control flow
structures can be generated by the compilers even when im-
plementing the same functionality. To address this prob-
lem, we present a fuzzy matching approach to compare two
functions. We first obtain an initial mapping between basic
blocks by leveraging the concept of longest common subse-
quence on the basic block level and execution path level.
We then extend the achieved mapping using neighborhood
exploration. To make our approach applicable to large data
sets, we designed an effective filtering process using Min-
hashing. Based on the proposed approach, we implemented
a tool named BinSequence and conducted extensive experi-
ments with it. Our results show that given a large assembly
code repository with millions of functions, BinSequence is
efficient and can attain high quality similarity ranking of as-
sembly functions with an accuracy of above 90%. We also
present several practical use cases including patch analysis,
malware analysis and bug search.

CCS Concepts
•Security and privacy → Software security engineer-
ing; •Social and professional topics → Software re-
verse engineering;

Keywords
binary code reuse; binary code similarity comparison; patch
analysis; bug search; malware analysis;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3052974

1. INTRODUCTION
Reverse engineering is a primary step towards understand-

ing the functionality and behavior of a software when its
source code is not available. However, reverse engineering
is a tedious and time-consuming process, and its success de-
pends heavily on the experience and knowledge of the reverse
engineer. Moreover, as the software to be analyzed grows in
size, this task becomes overwhelming. Code reuse detection
is thus of a great interest to reverse engineers. For exam-
ple, given a binary and a repository of already analyzed and
commented code, one can speed up the analysis by applying
code reuse detection to the binary to identify identical or
similar code in the repository, and then focus only on the
new functionality or components of the binary.

Consider, for instance, malware reverse engineering. Mal-
ware authors do not create viruses from scratch; instead,
they tend to reuse their existing source code. Besides, in or-
der to not reinvent the wheel, they may leverage some open
source projects that provide certain functionality that they
require. Identifying those reused code not only greatly re-
duces the efforts of analysis, but also helps in understanding
the behavior of malware. For example, Citadel, which is al-
legedly derived from the leaked Zeus source code, keeps most
of the core components of Zeus intact [20], and the malware
Flame makes use of the light-weight database engine SQLite
[10].

Code reuse detection is also of high interest to software
maintainers and consumers. In many software development
environments, it is common practice to copy and paste ex-
isting source code, as this can significantly reduce program-
ming effort and time. However, if the copied code contains
a bug or vulnerability, and the developers copied the code
without fixing the bug, they may bring the bug into their
own project. Library reuse is a special case in which de-
velopers either include the source code of a certain library
into their project, or statically link directly to the library.
In either way, the bug contained in the copied code will be
brought into the new project. Code reuse detection can help
identify such bugs resulting from shared source code.

Last but not least, code reuse detection can be applied in
numerous scenarios such as software plagiarism detection,
open source project license violation detection and binary
diffing.

Code reuse detection can be achieved by calculating the
similarity of two code regions. The higher the similarity, the
more likely these code regions are from the same source code

155

http://dx.doi.org/10.1145/3052973.3052974

base. In this paper, we present an approach for measuring
the similarity of two assembly functions. In particular, our
contributions can be summarized as follows:

• We propose a fuzzy matching approach to compare
assembly functions. To address the mutations intro-
duced by compilers, our fuzzy matching algorithm op-
erates at multiple levels, i.e., instruction level, basic
block level and structure level.

• We design and implement an effective filtering pro-
cess to prune the search space when comparing a tar-
get function against a vast number of functions. We
propose two filters that efficiently rule out functions
that are unlikely to be matched to our target function.
With the help of this filtering process, we can compare
one target function against millions of other functions
within seconds.

• We design and implement a fully functioning tool for
binary code reuse detection based on the proposed ap-
proach. Our extensive experiments show that our tool
is fast, accurate, and scalable.

• We introduce many use cases, including patch analy-
sis, malware analysis, and bug search, to demonstrate
the efficiency and effectiveness of our approach when
applied in real-world scenarios.

2. PROBLEM STATEMENT
The problem we are trying to solve can be described as fol-

lows: Given one target binary function from one executable,
and a large repository with thousands or millions of func-
tions from other executables, how to identify all the identi-
cal or similar functions from the repository. This problem
is two-fold. First, how to compare two assembly functions
and obtain a similarity score. Second, how to efficiently re-
trieve those ones that are likely to be identical or similar
to our target function and at the same time, avoid pairwise
comparison.

In this work, we establish the similarity of two functions
by comparing their control flow graphs (CFGs). The CFG
of an assembly function is a directed graph, where nodes
represent basic blocks, and edges represent the execution
flow between basic blocks.

The compiler is responsible for transforming the source
code into assembly code. Take C++ for example, generally
speaking there are four types of control structures:

- Sequential control structure

- Selection control structure (e.g., if, if-else or switch
statement)

- Iteration control structure (e.g., for, while or do-while
loop)

- Goto structure

Normally the sequential control structure will not bring
addition edges or branches into the control flow graph, while
the later three structures would. Figure 1 shows some typ-
ical examples of those structures and their corresponding
CFGs. Note that as these structures can be nested in source
code, so do their corresponding CFGs.

if(expr)
{
 statement1;
else
 statement2;
}
next statement;

cmp
jle

statement1 statement2

next statement

(a) The “if-else” structure

for(;expr;)
{
 statement;
}
next
statement;

cmp
jge

next statement statement

(b) The “for” loop structure

Figure 1: Examples of control structures and corresponding
CFGs

Although different compilation environments would bring
some mutations or “noise” into the CFGs, still the overall
structure is relatively stable. As can be seen from Figure
1, the mapping between source code statements and basic
blocks is stable as well.

Based on these observations, we choose to use a basic
block-centric approach when comparing two functions. We
first find the mapping of basic blocks between these two
functions and then for every matching basic block pair, we
obtain a matching score. Finally, we calculate the similarity
score of two functions from the matching results of the basic
blocks.

In this paper, we introduce BinSequence, which uses the
similarity score between basic blocks as the building block.
Guided by these scores, we continue to find the mapping of
basic blocks based on the control flow graph. Finally, we
calculate the similarity score from the found mapping.

The rest of the paper is organized as follows. In section 3
we introduce the fuzzy matching approach we use to com-
pare functions. Section 4 provides a detailed description of
our filtering process. In Section 5 we evaluate our approach
with extensive experiments and give the results. We then
review related works in Section 6, and give limitations in
section 7. We conclude the paper in Section 8.

3. ALGORITHM DESCRIPTION
Figure 2 depicts an overview of BinSequence framework.

First, a collection of interesting binaries such as previously
analyzed malware or open source projects that may have
been reused, is disassembled. The output is a set of func-

156

By Fingerprint
Similarity

By Basic Block
Number

Filtering Storing Disassembling
& Normalizing

Target
Function Binaries

Matching

Basic Block Mapping
& Function Similarity

Result

Candidate

Target

Longest Path Generation Path Expl. Neighborhood Expl.

Ranking

Figure 2: Workflow of BinSequence

tions. We then keep all the functions in a large repository
after normalizing them. Given a target function, the naive
way is to compare it with every function in the repository
and rank the results. However, this is not efficient as most of
the functions in the repository are not similar to our target
and should thus not be compared. To speed up the process,
we focus only on those functions that are likely to be similar
with our target. To this end, we adopt a filtering process
in which we use two filters. The first filter is based on the
number of basic blocks, while the second is based on the
similarity of feature sets that we extracted as fingerprints
for every function. The output of the filtering process is a
subset of functions from the repository, which we call the
candidate set. We then perform pairwise comparisons of
the target function with every function in the candidate set.
The comparison consists of three phases. First, we generate
the longest path of the target function. Then we explore
the reference function in the candidate set to find the cor-
responding matching path, from which we can obtain the
initial mapping of basic blocks. We then improve the map-
ping through neighborhood exploration in both the target
and reference functions. The output is the mapping of basic
blocks and the similarity score of these two functions. After
we have done this to every function in the candidate set, we
obtain a ranking of functions based on the similarity score.

3.1 Disassembly and Normalization
Given a collection of binaries, the first step is to disassem-

ble each binary to a set of functions. In our experiments,
we use IDA Pro [5] as our front-end to perform code anal-
ysis and to generate the control flow graph for every func-
tion. Since the compiler has many choices with regard to
mnemonics, registers and memory allocations when gener-
ating the assembly code, it is essential that every assembly
instruction in the basic block is normalized before compari-
son [26].

Note that for most architectures like X84 and X86-64 an
assembly instruction consists of a mnemonic and a sequence
of up to 3 operands. When normalizing instructions, we keep
the mnemonics untouched, and only normalize the operands.

We classify the operands into three categories, namely reg-
isters, memory references and immediate values. For imme-
diate values, we further normalize them into two categories,
memory offsets (addresses) and constant values. The rea-
son to differentiate between addresses and constant values
is that addresses would change according to different assem-
bly code layouts while constant values do not. If an imme-
diate value is classified as constant value, we keep the literal
value. The motivation is that normally constants stay the
same even when different compilers or optimization levels
have been used. Some literatures also consider strings as a
special type of data constants [12, 17]. In [12] David and
Yahav replace an offset with the string and take the string
into comparison if the offset points to a string. However, we
consider only integers. The reason is that most strings come
directly from source code and thus can be modified with-
out difficulty. A malware author could easily evade those
string based detection techniques by changing the strings
inside the source code without changing the functionality.
However, the integers are more related to the functionality,
which makes them a better target in reverse engineering.

3.2 Instruction Comparison
Inspired by the recent work in [12], we use a similar strat-

egy when comparing instructions. As depicted in Algo-
rithm 1, for two normalized instructions, if they have dif-
ferent mnemonics, then their matching score is 0 regardless
of their operands. Otherwise, we give them a score for iden-
tical mnemonic and continue to compare their operands. If
their corresponding operands are the same after normaliza-
tion, then we give them an additional score for each match-
ing operand. Notice that mnemonics represent the low-
level machine operations and carry more information than
operands, thus we should give a higher score to identical
mnemonic. At the same time, to avoid the information car-
ried by operands from getting neglected, this score could
not be overly high. Constants also carry much information
from the source. When comparing two constant operands,
we further compare their literal values. If their literal val-
ues are the same, we then give them an additional score.

157

During our experiments we found that it is appropriate to
give score 1, 2 and 3 to identical operand, mnemonic and
constant respectively. Using these score values, we can al-
low those important parts of instructions to match, and at
the same time, without getting misled by this biased score
strategy. Following this strategy, we can calculate that, the
score of comparing push eax with push ebx is 3, as both are
push REG after normalization, while the score of comparing
push 0 with push 1 is only 2 as the literal value of their
operands is not the same.

Algorithm 1: Compare two instructions

Input: Two normalized instructions
Output: The matching score of two instructions

1 Function CompIns(ins1,ins2)
2 score = 0
3 if ins1.Mnemonic == ins2.Mnemonic then
4 n = num of operands(ins1)
5 score += IDENTICAL MNEMONIC SCORE
6 for i = 0; i < n; + + i do
7 if operand(ins1)[i] == operand(ins2)[i] then
8 if type(operand(ins1)[i]) ==

CONSTANTS then
9 score +=

IDENTICAL CONSTANT SCORE

10 else
11 score +=

IDENTICAL OPERAND SCORE

12 end

13 end

14 end

15 else
16 score = 0
17 end
18 return score

19 end

Instead of comparing original instructions, we choose to
compare the normalized instructions. The first advantage
is more resistance to register reassignment, which is very
common in compiler optimization. Second, we want to do a
fuzzy matching. This is different from what David and Ya-
hav did in [12], where they use exact matching when com-
paring operands. Besides, we allow partial matching. For
example, we give a score of 5 to instruction pair cmp [eax],0

and cmp ebx, 0, although they are two types of instructions.
The first instruction is comparing an immediate value with
a memory reference while the second with an register. The
reason for allowing partial matching is that, even for the
same variable, compilers have the freedom to represent it as
a register variable or a memory variable. Allowing partial
matching can tolerate these differences.

3.3 Basic Block Comparison
We leverage the longest common subsequence (LCS) method

of dynamic programming [11] to compare two basic blocks.
The LCS problem is to find the longest subsequence which
is common to both sequences. Note that a basic block is
also a sequence of assembly instructions. We then leverage
the LCS to calculate the similarity score of two basic blocks.
We consider every instruction as a letter and use the score
strategy presented in Algorithm 1 to obtain the matching

score. Notice that we do not draw any conclusion about
whether these two basic blocks are identical or should be
matched according to this score. Unlike the work in [12],
we just use the similarity score as a guide for later use. As
shown in Algorithm 2, the output is the largest similarity
score that these two basic blocks can achieve with respect
to the score strategy we are using. By backtracking the
memoization table, we can also obtain the mapping of in-
structions between this two basic blocks. Some literatures
such as [12] also denote this process of leveraging dynamic
programming to obtain the mapping, as “alignment”. Af-
ter this “alignment”, instructions that cannot be matched
can be jumped over. This jumping over instructions is our
fuzzy matching at the basic block level. However, for now
this mapping is of no interest to us, as we only need the
maximum similarity score. Note that there may be different
mappings that give us the same maximum score, however,
the maximum score is unique. In our algorithm, it is always
in the last cell of the memoization table.

A special case is to use Algorithm 2 to compare a basic
block with itself. No doubt that the highest score will be
achieved only when every instruction is mapped to itself.
We define that score as the “self” score of that basic block.
Intuitively, this score can be used to measure the information
that a basic block carries. A large basic block results in a
high self score.

Algorithm 2: Calculate the similarity score of two
basic blocks
Input: Two basic blocks BB1, BB2
Output: The similarity score of two basic blocks
/* M: the memoization table */

1 Algorithm CompBBs(BB1, BB2)
2 M = InitTable(|BB1|+ 1, |BB2|+ 1)
3 for i = 1; i <= |BB1|; + + i do
4 for j = 1; j <= |BB2|; + + j do
5 M [i, j] = Max(
6 CompIns(BB1[i], BB2[j]) +M [i− 1, j − 1],
7 M [i− 1, j],
8 M [i, j − 1])

9 end

10 end
11 return M [|BB1|, |BB2|]
12 end

3.4 Longest Path Generation
We have explained how to compare two basic blocks. For

every basic block pair, we can obtain a similarity score. The
larger the score, the more similar these two basic blocks
are. However, this score is derived from the assembly code
only, and is thus not sufficient. For example, for one target
basic block, we might find multiple basic blocks that have
the same similarity score with it. Even worse, we may end
up matching it with a wrong basic block simply because its
assembly code is more similar to the target by chance.

Inspired by the recent work in [19], we realize that path
in the CFG is a robust feature, since path can record every
selection the execution flow took when a branch is encoun-
tered, and one path represents one complete particular ex-
ecution. Notice that the functionality of one path is spread
across consisting nodes (basic blocks). If we succeed in find-

158

ing two paths that are equivalent in terms of functionality, it
would be trivial to further match their nodes. Again, we can
treat the problem of finding matching nodes as an alignment
problem where dynamic programming can be applied. Intu-
itively, one short path does not carry as much information as
a long path. Besides, the longer the path, the more match-
ing nodes we could obtain by aligning it with its matching
path, which improves both the accuracy and efficiency of
neighborhood exploration process (Section 3.6). Thus, we
choose the longest path. We use depth first search to tra-
verse the CFG, and then choose the path with the largest
number of nodes.

3.5 Path Exploration
After we obtained the longest path of the target func-

tion, the next step is to explore the reference function, to
try to find the best match of that path in the reference
function. We adopt the approach in [19] to do the explo-
ration. In [19] Luo et al. used a breadth-first search com-
bined with dynamic programming to compute the highest
score of longest common subsequence of semantically equiv-
alent basic blocks. In our case, we leveraged their algorithm
to find the corresponding path which has the largest simi-
larity score based on Algorithm 2.

The algorithm for path exploration is similar to the com-
mon dynamic programming for computing the LCS of two
strings. Since a path is also a sequence of basic blocks, we
can treat every basic block as a letter and use the Algorithm
2 as our score strategy. However, there are two differences.
First, the length of a string is constant, thus when comput-
ing the LCS of two strings the length of the memoization
table is also fixed. In path exploration, however, we do not
know the length of the memoization table in advance, so
we set the initial length to one (Line 2) and add more rows
on the run (Line 9). Second, the letters in a given string
are sequential; every previous letter has at most one letter
following it while a node in a CFG may have multiple succes-
sors. That is why we need to combine breadth-first search
with the original dynamic programming.

We modified the algorithm in [19] to fit our needs. Given
a longest path P from the target function and the CFG G of
the reference function, we always start from the head node
of G (Line 5). At the beginning of each iteration, we pop out
a node from the working queue Q as the current node (line
7). Then we add a new row to the memoization table δ and
update the table correspondingly using function LCS (Line
10). It is worth noting that when comparing the current
node with every node in path P , we require them to have
the same in-degree and out-degree to be matched (Line 22).
Otherwise we do not allow them to match by giving them
a score of 0 (Line 25). The motivation is that we want to
quickly match the “skeleton” of the CFG first. If we failed to
match some nodes whose in-degree or out-degree have been
changed, we can leave them to the next step, neighborhood
exploration. Also note that because of the complexity of
the CFG, there might be multiple paths that can lead the
execution flow to a certain node. To improve the efficiency,
it is important to reduce the search space and prune the
unprofitable path. To this end, we use an array σ to store
the largest similarity score that we have achieved so far for
each node. Every time after updating the table δ for certain
node, we continue to compare the obtained new score with
the largest score stored in σ (Line 11). If the new score is

larger, we then update σ and insert every successor of this
node to our working queue Q. Otherwise we do not further
explore its successors. The algorithm terminates after Q is
empty. The output is the memoization table δ.

Algorithm 3: Path exploration

Input: P : the longest path from the target function,
G: the CFG of the reference function

Output: δ: The memoization table
/* σ: the array that stores the largest LCS

score for every node in G */

1 Function PathExploration(P ,G)
2 δ = InitTable(1, |P |+ 1)
3 σ = InitArray(|G|)
4 Q = InitQueue()
5 Q.pushback(G1) //always start from the head node
6 while Q is not empty do
7 currNode = Q.front()
8 Q.pop front()
9 δ.AddNewRow() //always add a new row to δ

10 LCS(currNode,P) //compare currNode with
every node in P and update the table δ

11 if σ(currNode) < δ(currNode, |P |) then
12 σ(currNode) = δ(currNode, |P |)
13 for each successor s of currNode do
14 Q.pushback(s)
15 end

16 end

17 end
18 return δ

19 end

20 Function LCS(u,P)
21 for each node v of P do
22 if SameDegree(u,v) then
23 sim = CompBB(u, v)
24 else
25 sim = 0
26 end
27 δ(u, v) = Max(
28 δ(parent(u), parent(v)) + sim,
29 δ(parent(u), v),
30 δ(u, parent(v)))

31 end

32 end

Figure 3 presents an example. Figure 3a shows two sim-
plified CFGs of two functions from open source projects; the
grey nodes denote the longest path we found in the target
CFG. These two functions are from the same source code.
However due to the noise introduced by the compiler, their
structures are not isomorphism. Basic block J in the target
function consists of one “JMP” instruction, directing the ex-
ecution flow to the tail block “6”. Basic block 3 in the target
CFG modifies the value of a local variable in the stack. As
can be seen from Figure 3a, basic block 3 does not have a
corresponding basic block in the reference CFG because the
compiler used the register “ESI” to represent this variable
in the reference function. Moreover, the reference CFG has
one more basic block R, that restores the original value of
“ESI”, and then directs the execution flow to the tail. All
these changes are very common.

159

1

2

3

4

5

6

J

1

2

4

5

R

6

(a) The CFGs of two versions of the
same functions and the grey nodes rep-
resent the longest path in the target
CFG

(b) The memoization table

Figure 3: An example of path exploration for two CFGs

To do the path exploration, we first initialize the memo-
ization table δ and array σ. Then we insert the head node 1
of the candidate CFG to the working queue Q. We compare
node 1 with path P using the function LCS in Algorithm 3
and update the memoization table correspondingly. Notice
that here for the purpose of simplicity, we assume that the
matching score is either 1 or 0, while a true match has a
score of 1, otherwise 0. Since node 1 has two successors,
node 6 and 2, we insert them into Q and continue the explo-
ration. Assume we visit node 6 first, then node 2. Node 6
has no successor, we then update the table δ for node 6, and
continue to work on node 2. Node 2 has two successors, node
6 and node 4. We also insert them into our working queue.
We first work on node 6. Note that this is the second time
we insert node 6 into Q. The first time its parent node is 1,
and the corresponding partial path is “1→6”, this time its
parent node is 2 and the partial path is “1→2→6”. We allow
the same node to be inserted into Q as long as they represent
different execution paths. Node 6 has no successor. After
we finish comparing node 6 with every node in path P , the
working queue Q has only one element: node 4. We then
work on node 4. It is worth noting that although node 4

in the reference CFG has a corresponding node (node 4) in
the path P , the in-degrees of these two nodes are different.
Thus, we give them a matching score of 0. Then we put the
successors of node 4 into Q. Now Q has two elements, node
5, and node R (parent is node 4). We visit node 5 first, and
put its successor node R into Q. Now Q has two elements,
node R from node 4 (partial path“1→2→4→R”) and node R
from node 5 (partial path “1→2→4→5→R”). Both elements
will lead us to node 6, but with different LCS scores. The
one from node 4 (complete path “1→2→4→R→6”) will have
a final score of 3 while the one from node 5 (complete path
“1→2→4→5→R→6”) gives us a score of 4.

We can then backtrack the memoization table δ to get
the corresponding path that has the largest sum of simi-
larity score with the target longest path. However, during
our experiments we found that considering only the sum of
the similarity score may sometimes give undesirable results.
We might wrongly match the target path with a long path
in the reference CFG. So we decided to normalize the sim-
ilarity score by taking the target and the found path into
consideration. Recall that a path is a sequence of basic
blocks, and the self score of one basic block b can be cal-
culated as CompBB(b, b) using Algorithm 2. Then the self
score of a path is the sum of self scores of all the consist-
ing basic blocks. We then normalize the score between the
target path P and the found path Pf using the following
equation:

NormScore(P, Pf) =
LCSScore

Score(P) + Score(Pf)

where the LCSScore is the score obtained from the memo-
ization table δ and Score() is a function that returns the self
score of the given path.

We then choose the path with the highest normalized
score. By backtracking the memoization table δ, we can
obtain a mapping of basic blocks. In the example shown in
Figure 3 we can obtain 4 matching basic block pairs: basic
block 1 with 1, 2 with 2, 5 with 5 and 6 with 6 in the target
and reference, respectively.

3.6 Neighborhood Exploration
While we can continue to extract more paths from the

target function and match them in the reference function,
this is not efficient. First, the path exploration process takes
time. Besides, when we explore certain target path in the
reference function, some of the basic blocks may have al-
ready been matched in previous paths and we cannot gain
much by rematching them. Inspired by the work in [24], we
decided to use a greedy, localized fuzzy matching approach
to extend the existing mapping. Because we already have
all the mappings from path exploration of the longest path,
there is a high chance that we can find the correct basic
block mapping between two functions.

We first put every matching basic block pair obtained from
path exploration into a priority queue based on their simi-
larity score. Then we choose the pair on the top, namely the
pair with the largest similarity score as our starting point to
initialize the search. We then explore the neighbors of the
chosen basic block pair. Note that for every basic block pair
in the queue, the two basic blocks have the same in-degree
or out-degree. We first consider the successors of these two
basic blocks if they have the same out-degree. If they both
have only one successor, then we match their successors di-

160

rectly, unless it is inconsistent with the mapping we already
have. If they both have more than one successor, then we
leverage the Hungarian algorithm [21] to find the best map-
ping between the two sets of successors that maximize the
sum of the similarity score. Similarly, if the found mapping
is inconsistent with the mapping we already have, we dis-
card the corresponding match but continue to check other
successors. We then do the same to their predecessors if
they have the same in-degree.

It is important to note that for those found mapping pairs,
the corresponding basic blocks in the pair do not necessarily
have the same in-degree or out-degree. If they have the
same in-degree, we put them into the priority queue but
only explore their predecessors later, when they become the
element with the highest priority (similarity score) in the
queue. If they have the same out-degree, we explore their
successors. If neither their in-degree nor out-degree is the
same, we still allow these two basic blocks to be matched,
however, we do not put them into the priority queue. In
other words, we do not explore their neighborhood, because
the likelihood of them being a correct match is relatively
lower. By doing this, we achieve a fuzzy matching between
the basic blocks of two functions. At the same time, if we
mismatched a pair of basic blocks, we still require these two
basic blocks to have the same in-degree or out-degree to
further examine and match their predecessors or successors.
As a result, the error would not propagate. On the other
hand, for basic blocks that are correctly matched, we could
explore their neighborhood in two directions efficiently.

We continue to do this until the priority queue is empty,
i.e., until there is no more neighbors to be explored, or all
the neighbors have different in-degree and out-degree and
can not be further explored. We then leverage the obtained
matching basic block pairs to calculate the similarity be-
tween the target function and the reference function.

An assembly function can be looked at as a set of ba-
sic blocks, we then calculate the self score of a function
by adding the self scores of all the consisting basic blocks.
Given two functions, f and g, suppose γ is the set of all the
matching basic block pairs we obtained during path explo-
ration and neighborhood exploration, the similarity of these
two functions can be calculated as follows:

Similarity(f, g) =
2
∑

∀(u,v)∈γ CompBB(u, v)

Score(f) + Score(g)

where u, v are basic blocks, u ∈ f , v ∈ g and Score() is a
function that returns the self score of the given function.

4. FILTERING
We have introduced how to pairwise compare two func-

tions. However, we still need to address the scalability prob-
lem, especially when dealing with large data sets. Suppose
we have a function repository consisting of one million func-
tions, to find similar functions to a given target function, we
have to compare the target function with every function in
the repository and rank the results. This is not efficient as a
large number of functions are not similar to the target and
should not be compared.

To this end, we adopt a heuristic approach to prune the
search space by excluding functions that are not likely to
be matched. We designed two filters, based on the number
of basic blocks and function fingerprint similarity threshold,
respectively.

4.1 Filtering By Number of Basic Blocks
The reason to filter by the number of basic blocks is straight-

forward. It is very unlikely that a function with only one
basic block can be matched to another function with one
hundred basic blocks. Thus we set a number threshold. If
we require two CFGs to be exactly the same, namely iso-
morphism, then the numbers should also be the same. Since
BinSequence performs a fuzzy matching, which allows two
structurally-different functions to be matched, the numbers
of basic blocks should be allowed to be different. Thus we
set up a threshold. This threshold should not be too small,
as we may rule out the correct match. On the other hand,
the threshold should not be too large, otherwise we can not
save much time as not many functions can be ruled out.
Assume the threshold is γ, given a target function f , then
those functions whose sizes are between |f | − γ and |f |+ γ
will pass this filter.

4.2 Filtering By Fingerprint Similarity
The next filter is based on the syntactic property of the

code. For every function, we use its normalized instruction
set as its fingerprint. More specifically, we use the same
technique as introduced in section 3.1 to normalize all the
instructions inside a function, to get the normalized instruc-
tion set. Given a target function, we then calculate the
Jaccard similarity (index) between the fingerprints of the
target and every function in the repository. If the Jaccard
similarity is above a certain threshold, we then continue to
compare the function against the target. Otherwise we sim-
ply discard it.

In order to avoid pairwise comparison of fingerprints, we
leveraged Minhashing [9] and the banding technique [18].
Minhashing is a technique of using k different hash func-
tions to generate the minhash signature. The banding tech-
nique divides the minhash signature into b bands of r rows
each. Given a target function, we first generate its finger-
print and the minhash signature of its fingerprint. We divide
its minhash signature into b bands of r rows, each. Then the
candidate set should be all the functions whose minhash sig-
natures agree in all the rows of at least one band with the
signature of the target function. More generally, if we choose
n hash functions, b bands, r rows and n = br, the Jaccard
similarity threshold t imposed by this banding technique is

approximately 1/b1/r [18].
In general, similar to the filter using number of basic

blocks, this filter is lossy as well. Some true matches may
have significantly different normalized instruction set, and
consequently, fail to pass this filter. To address this problem,

in our implementation, we choose b and r so that t = 1/b1/r

equals to a relatively low value, e.g., 0.65, so that those
functions that are true matches, but with low Jaccard simi-
larity could pass this filter and remain in the candidate set.
After using these techniques, to root out all the functions
whose Jaccard similarity is above certain threshold, we only
need to first choose b and r so that the desired threshold is
imposed by the banding technique. and then select all the
functions whose minhash signatures agree in all the row of
at least one band with the signature of the target function,
which can be achieved by one time lookup in the database.

161

5. EVALUATION
We conducted extensive experiments to evaluate BinSe-

quence in terms of accuracy, performance and scalability.
We also performed several experiments on practical scenar-
ios to demonstrate the effectiveness and efficiency of Bin-
Sequence when applied to real-world use cases. All experi-
ments were performed on a PC with an Intel Xeon E31220
Quad-Core processor, 16 GB of RAM running Microsoft
Windows 7 64-bit.

5.1 Function Reuse Detection
The first experiment is function reuse detection from a

large repository. We first try to perform function reuse de-
tection between two versions of the same binary. In this
experiment, four different versions of zlib libraries, namely
1.2.5 through 1.2.8 were used. The reason to choose zlib
library is it is widely used in many software and operat-
ing systems. Since zlib is a well maintained library, we
assumed that functions with identical function (symbolic)
name across different versions should have the same or sim-
ilar functionality, and thus, should be matched. We also
introduced one group of noise functions, which are all the
functions of 1,701 system dynamic library files obtained from
Microsoft Windows operating system. The total size of these
files including four zlib libraries and 1,701 dynamic library
files is around 1 GB and the total number of functions is
2,055,584.

Every time we use the previous version of zlib to match
its next version. For example, we first use zlib 1.2.5 as our
target set, and put all the functions of its successive version
zlib 1.2.6 together with the two million noise functions into
database. Then, for every function (with at least four ba-
sic blocks) in zlib 1.2.5, we use BinSequence to search for
it. Only when the corresponding function in zlib 1.2.6 is
ranked first, which means it has the highest similarity, we
consider it as a correct match. Otherwise, we consider it as
wrongly matched. Afterwards, we do the same process to
other versions of zlib.

For all the tests, we used three different fingerprint simi-
larity thresholds: 0.6, 0.65 and 0.7. Those functions whose
Jaccard similarity below these thresholds would be ruled out
using the techniques explained in Section 4.2. Intuitively as
we increase the fingerprint similarity threshold, the number
of functions that could pass this filter would decrease. So we
choose three different values to thoroughly study its effect.
The threshold for the number of basic blocks is set to 35
throughout our experiments.

Table 1a shows the obtained results. Recall that for every
target function, we use two filters to obtain a small candidate
set from the whole database. The column “Candidate Size”
is the sum of the size of the candidate sets for every target
function. Intuitively, as we increase the similarity thresh-
old, we end up with a smaller candidate set. As a result, the
processing time decreases. We expected that as we increase
the fingerprint threshold, the overall accuracy would drop
(like zlib 1.2.5 in the table), or at the best would stay the
same (like zlib 1.2.6 in the table) because we would get a
smaller candidate set and the true match could have been
ruled out. The zlib 1.2.7 was a surprise. As we increased
the fingerprint threshold from 0.6 to 0.7, the overall accu-
racy increased from 96.52% to 98.26%. We looked into the
reason. When the fingerprint threshold is 0.6, there were
two functions, whose true matches did not have the largest

Version
Fingerprint Overall Candidate Time
Threshold Accuracy Size (per function)

1.2.5
0.6 96.26% 12346 2.806s
0.65 94.39% 2727 1.468s
0.7 91.59% 1911 0.897s

1.2.6
0.6 100% 16315 2.927s
0.65 100% 2848 1.558s
0.7 100% 1989 0.913s

1.2.7
0.6 96.52% 16312 2.884s
0.65 97.39% 2847 1.572s
0.7 98.26% 1988 0.918s

(a) Function reuse detection between different versions of zlib

Version
Fingerprint Overall Candidate Time
Threshold Accuracy Size (per function)

1.2.8
0.6 92.5% 3526 2.204s
0.65 92.5% 751 1.258s
0.7 92.5% 242 0.95s

(b) Function reuse detection between zlib and libpng

Table 1: Results for function reuse detection

similarity; instead, two other functions that happened to
have similar code and structure were ranked first. The true
matches were ranked #2. As we increased the fingerprint
similarity threshold from 0.6 to 0.7, these two functions were
ruled out by the filter; as a result, those true matches be-
come the ones with the highest similarity. This also suggest
that though our filters are in general lossy, however do not
necessarily always decrease the accuracy.

We also conducted function reuse detection between two
different binaries: zlib and libpng. Libpng is a library for
processing PNG image format files and is dependent on zlib
library. As a result, part of the functions from zlib library
are reused by libpng. We first compiled zlib 1.2.8 and libpng
1.6.17 with the debugging information attached. By manu-
ally checking both libraries, we identified 40 functions that
were user functions in zlib and were reused in libpng. We
then used these 40 functions (with at least four basic blocks)
in zlib as our target functions, and searched for them in the
repository. If the corresponding function in libpng is ranked
first, we consider it as a correct match. As shown in Ta-
ble 1b, we correctly identified 37 reused functions for all the
three different fingerprint thresholds, and the overall accu-
racy was consistently 92.5%.

5.2 Patch Analysis
The next experiment is to use BinSequence to recover the

vulnerability information. Nowadays as a result of the de-
velopment of vulnerability mining techniques, more vulner-
abilities are being discovered everyday. After a vulnerability
is reported to the software vendor, they would release a se-
curity patch to fix it often without revealing the detail of the
vulnerability or the part of code they have modified to the
public. However, by comparing the patched and unpatched
versions of the binary, reverse engineers can analyze and un-
derstand the vulnerability and the patch within hours. This
kind of technique is especially useful for Microsoft’s binaries
as they release the patch regularly and the patched vulner-
ability are concentrated in small areas in the binary [23].

We take MS15-034 [6] as a case study. There is a vul-

162

nerability in HTTP.sys; when an attacker sends a specially
crafted HTTP request to an affected system, the HTTP
protocol stack may parse it improperly. As a result, the
attacker may execute arbitrary code. Microsoft released a
patch MS15-034 to address this problem. In order to re-
veal the information of the vulnerability and the patch, we
used BinSequence to compare the unpatched and patched
versions of HTTP.sys. Since the goal is to find out which
functions have been patched, we only report functions whose
similarity is not 1 after being patched, as similarity 1 means
the function remains identical (after normalization) in the
patched version.

In total, BinSequence identified 11 functions, whose simi-
larity is not 1 between the patched and unpatched versions.
We manually checked these 11 function pairs and found out
that 6 functions were actually the same, but were disassem-
bled differently by IDA Pro. Table 2 lists the remaining 5
functions.

Function Similarity
UlpParseRange 0.971783

UlpBuildSingleRangeMdlChainFromSlices 0.915530
UlpBuildMultiRangeMdlChainFromSlices 0.849870

UlpDuplicateChunkRange 0.804167
UlAdjustRangesToContentSize 0.501853

Table 2: Patched Functions

id=45
sub eax, edi
sbb ecx, edx
add eax, 1
adc ecx, 0

mov [esi], eax
mov [esi+4], ecx

id=45
push esi
push 0

sub eax, edi
push 1

sbb ecx, edx
push ecx
push eax

call RtlULongLongAdd
test eax, eax
jl loc 6F184

Figure 4: The basic block 45 before and after patching

We then take a closer look at the UlpParseRange func-
tion. Both the pathched and unpatched versions have 60
basic blocks. BinSequence successfully matched all the ba-
sic blocks. Among all these pairs, 59 pairs have a similarity
of 1, which means they remain the same after being patched
(after normalization). The only changed basic block is basic
block number 45.

Figure 4 depicts the basic block 45 before and after the
patch. We can see that the patched version is calling a func-
tion _RtlUlongLongAdd while the unpatched version does
not. We can infer that the original function might contain
an integer overflow vulnerability. The patched version in-
vokes the _RtlULongLongAdd to fix it. Moreover, we can
see that the out-degrees of these two basic blocks have been
changed. The out-degree of the unpatched is 1 while the
patched is 2. Despite this structure change, our fuzzy struc-
ture matching approach still succeeded in matching these
two basic blocks.

5.3 Malware Analysis
Our next experiment is conducted on two well known mal-

ware, Citadel and Zeus. We know that Citedel is derived
from Zeus [20]. We also know that Zeus uses RC4 stream
cipher function, and Citadel reuses this function with a slight
modification [25]. Given the RC4 function in Zeus, our in-
tention is to use BinSequence to identify the reused RC4
function in Citadel.

We first disassembled Zeus using IDA Pro and extracted
the RC4 function. We then used it as our target function.
We also disassembled Citadel and then compared the tar-
get function with every function in Citadel, and ranked the
results according to the similarity score. Table 3 shows the
top 3 functions that have the largest similarity score.

Function Similarity
sub_42E92D 0.689474
sub_432877 0.429091
sub_430829 0.423913

Table 3: The result of searching RC4 function in Citadel

We manually checked the sub_42E92D function, and con-
firmed that this is the modified RC4 function in Citadel. In
total, IDA Pro identified 794 assembly functions in Citadel.
That is to say, we successfully identified the modified RC4
function from these 794 functions. Since 794 functions is
a relatively small data set, we put the RC4 function of
Citadel into those two million functions we used in Section
5.1 and repeated the experiment. Still, BinSequence ranked
the modified RC4 function as first, from a repository with
more than two million functions.

We also used three binary diffing tools namely BinDiff [1],
Diaphora [3] and PatchDiff2 [7] to do this experiment. Bin-
Diff is the de facto standard commercial tool for comparing
binary files and both Diaphora and PatchDiff2 are IDA Pro
plugins for program diffing. Using the RC4 function in Zeus
as target, BinDiff matched it with Decrypt_String_by_Index

in Citadel, which is not correct. Diaphora reported sub_40A8B0

with a similarity of 0.22, which is also not correct. We failed
to use PatchDiff2 to do this experiment.

(a) RC4 in Zeus (b) RC4 in Citadel

Figure 5: The RC4 function

Figure 5a and Figure 5b show the RC4 function in Zeus
and Citadel respectively. Clearly we can see these two CFGs
are by no means isomorphism, yet BinSequence ranked the
modified RC4 first with the highest similarity. Again, this
result demonstrates that our fuzzy matching approach is ef-
fective and accurate.

163

In fact, most of the functions in Zeus have counterparts
in Citadel with a higher similarity. More specifically, for 373
(67%) functions in Zeus, Binsequence identified matches in
Citadel with a similarity of 1, which means they are exactly
identical (after normalization) and 513 (92.1%) functions
with a similarity above 0.8. This also confirms that Citadel
reused most of the Zeus’s functions (functionality). Now
when reverse engineering Citadel, the human analyst can
focus on those new components and functionality, instead of
reanalyzing these reused functions.

5.4 Bug Search
The next experiment is a bug search use case. There is

a heap-based buffer overflow in resize_context_buffers

function in libvpx library used by Firefox [2]. Our intention
is to use the resize_context_buffers function in libvpx as
our target and identify the buggy function in the repository,
if there is any. According to the vulnerability data source
[2], this bug only exists in Firefox before version 40.0.0. Ac-
cordingly, we downloaded different versions of Firefox from
33.0.0 to 40.0.0 directly from the official web site. We only
considered the main versions and ignore those subversions.

Firefox Function Similarity Rank
40.0.0 sub_116D3D02 0.427699 1/161,932
39.0.0 sub_1165C97B 0.657224 1/159,589
38.0.0 sub_1153BA02 0.657224 1/155,299
37.0.0 sub_1155BD63 0.657224 1/151,416
36.0.0 sub_115F7CB3 0.657224 1/152,032
35.0.0 sub_100CB36B 0.268199 1/142,304
34.0.0 sub_101800DA 0.268199 1/138,329
33.0.0 sub_108F3DA4 0.141892 1/135,621

Table 4: Search results for different versions of Firefox

In total, there are 1,196,522 functions in these 8 versions
of Firefox, and it took 0.271 seconds for BinSequence to
finish the whole comparison. As shown in Table 4, Bin-
Sequence uniquely identified the equivalent buggy function
in Firefox 36.0.0, 37.0.0, 38.0.0 and 39.0.0. We manually
checked the assembly and the source code and confirmed
the found functions are indeed the buggy ones. We also
checked the sub_116D3D02 function that has the highest
similarity in Firefox 40.0.0, and found that it was actually
the patched resize_context_buffers function. For Firefox
33.0.0 through 35.0.0, BinSequence found three functions
with a relatively low similarity. We found that these three
versions of Firefox were using a different version of libvpx.
As a result, the buggy function actually does not exist in
these three versions. Still, BinSequence reported the ones
with the highest similarity in the corresponding project.

We also used BinDiff, Diaphora and PatchDiff2 to do this
experiment. More specifically we apply these tools on Fire-
fox 39.0.0 and 40.0.0 since Firefox 39.0.0 contains the equiv-
alent buggy function, and Firefox 40.0.0 has the patched
buggy function. BinDiff correctly identified the equivalent
buggy function in Firefox 39.0.0 and the patched function in
Firefox 40.0.0. However, we noticed that the heuristic that
BinDiff used was “string references” and one identical string
exists in these functions. If we modify this string a little
bit and redo the experiment, BinDiff would fail and wrongly
match the buggy function to two other functions. For Fire-

fox 39.0.0 and 40.0.0, both Diaphora and PatchDiff2 failed
to match the buggy function or the patched buggy function.

5.5 Function Matching
In this experiment, we compare BinSequence with FCata-

log [4], Diaphora [3], PatchDiff2 [7] and BinDiff [1] for func-
tion matching. FCatalog performs k-gram analysis and use
minhash signatures to compare two functions. All Diaphora,
PatchDiff2 and BinDiff are binary diffing tools and can cre-
ate a mapping of functions between two versions of the same
binary. BinSequence, however is not confined to comparing
two binaries. In this experiment, given a target function in
one binary, we use BinSequence to compare the target with
every function in the other binary and match the target to
the function with the largest similarity score.

Throughout this experiment, we continue to use zlib 1.2.8.
However, we compile it in release mode using two different
compilers, namely MSVC 2010 and MSVC 2013. The reason
of choosing two compilers is to introduce certain “noise” into
the code. We then use the functions in zlib 1.2.8 compiled
by MSVC 2010 as our target set, and functions compiled by
MSVC 2013 as the candidate set. For every non-empty func-
tion (with at least 4 instructions) in the target set, we use
BinSequence to find the matching function (with the highest
similarity) in the candidate set. In this experiment, all the
function names of both binaries are stripped away. But we
use the function names in the program debug database as
the ground truth to verify if the matching is correct.

Tool
Correctly

Unmatched
Overall

Matched Accuracy
FCatalog [4] 5 139 3.47%
Diaphora [3] 105 10 72.92%

PatchDiff2 [7] 110 28 76.39%
BinDiff [1] 130 5 90.28%

BinSequence 135 0 93.75%

Table 5: Comparison with other tools

Since zlib is a relatively small library, all the tools finished
the comparison within seconds. Table 5 shows the results.
In total, our target set has 144 functions with more than
4 instructions. FCatalog correctly matched 5 functions, but
failed to find any match for the remaining 139 functions. Di-
aphora matched 105 functions. However, for 10 functions,
Diaphora failed to match them and categorized them to“Un-
matched” group. The overall accuracy for Diaphora is about
72.92%. Similarly, if BinDiff failed to match one function
with another, BinDiff would classify it into “Unmatched”.
As shown in Table 5, there are 5 functions that BinDiff failed
to match. However, given one target function, BinSequence
simply compares it with every function in the candidate set
and match it to the one with the highest similarity. As a
result, BinSequence has no “Unmatched” category.

We can see from Table 5 that BinSequence achieves the
highest accuracy, 93.75%. The reason is that BinSequence
is performing a fuzzy matching, which can better address
the mutations introduced by different compilers.

6. RELATED WORKS
A lot of work has been done on the problem of code reuse

detection and function similarity calculation. We briefly re-
view related works in this section.

164

Flake [14] and its extension [13] presented a pioneer work
of structural comparison approach, Bindiff. Throughout our
work we also leverage the structural information to compare
two functions, but we focus more on fuzzy matching. More-
over, BinDiff is mainly used for comparing two different ver-
sions of the same binary, while BinSequence is an assembly
function-centric code reuse detector.

BinHunt [15] also uses a structural approach. It uses sym-
bolic execution to compare basic blocks and backtracking al-
gorithm to try to find the graph isomorphism between CFGs.
However, both techniques are too strict. As a result, Bin-
hunt is suitable for finding semantic differences, not for large
scale code reuse detection.

Khoo et al. [17] presented a binary code search engine
named Rendezvous. In their work, multiple features includ-
ing mnemonic n-grams, control flow subgraphs and data
constants are extracted from the binary functions. How-
ever, they do not take the code of the node into account
when matching control flow subgraphs. Consequently, the
uniqueness of control flow subgraphs is relatively low and
a high number of false positives are produced by their ap-
proach.

Another approach called SIGMA [8] has been proposed
for identifying reused code in binaries. This technique uses a
graph-based representation of code, abstracting away much
of the instruction-level detail in favor of structural properties
of the program. However, the detection algorithm used is
time consuming.

Pewny et al. [24] proposed TEDEM, which is a binary
code reuse detection system which can identify the buggy
function from a set of reference functions. Unlike previ-
ous semantic-based works which leverage symbolic execu-
tion and theorem proving, Pewny et al. designed a novel
way of comparing code regions semantically by leveraging
tree edit distance. However, their approach captures all the
functionality and “side effects” of code regions, which makes
TEDEM suitable for bug search, but inappropriate for code
reuse detection where “noise” is very common.

Ng and Prakash [22] proposed a tool to identify binary
code reuse. They Adopted two approaches, semantic execu-
tion and syntactic matching to compare two function. The
problem is that semantic execution is too strict while syn-
tactic matching on the other hand, is too coarse.

David and Yahav [12] proposed a tracelet-based code search.
They first break the CFG into small tracelets and use LCS
to align two tracertlets. This is also how BinSequence com-
pares two basic blocks. To deal with register reassignment,
they leverage constraint solver to rewrite the assembly code
in tracelet. But they did not take the whole structure of
the CFG into consideration, and many structure informa-
tion was lost when they break down the CFG. As a result,
they admit their tool produces bad results when applied on
functions with less than 100 basic blocks. Besides, their
approach is not scalable.

Luo et al. [19] combined symbolic execution with longest
common subsequence to compare two functions and bina-
ries. The problem is that the overhead of symbolic execution
is very high which renders this approach impractical when
dealing with a large data set. Also, it suffers from scalability
problem.

7. LIMITATIONS
Our approach has the following limitations:

- False positive: BinSequence can compare one target
function with a repository of functions. However, when
there is not a true match in the repository, BinSe-
quence still produce a function ranking according to
similarity scores. It is difficult to determine a thresh-
old, to root out all the function that should be re-
ported.

- Function inlining: If a target function is inlined in
another function, then our approach may not match
these two functions. However, normally function in-
lining only happens to small functions. Consequently,
their functionality are straightforward, and it does not
really help reverse engineers much to search for those
small functions from a large function repository. On
the other hand, if our target function inlined another
small function, then there is a high chance that BinSe-
quence can still match them since we are doing a fuzzy
matching.

- Equivalent instructions: The compilers may use differ-
ent instructions to accomplish the same functionality.
For example, mov eax, 0 and xor eax, eax have the
same functionality but different mnemonics. However,
they will be normalized to different instructions by our
approach. Future versions of BinSequence may over-
come this limitation by dividing instructions into dif-
ferent classes and let instructions in the same class to
be matched.

- Instruction reordering: The compiler may change the
order of instructions for alignment or pipelining. When
we use LCS to compare two basic blocks, we take the
order of their consisting instructions into account. As
a result this will decrease the final similarity score a
litter bit, but it will not jeopardise the entire rank-
ing. The reason is that the layout of instructions inside
one basic block corresponds to the layout of the source
code. Besides, some instructions may have dependen-
cies upon previous instructions. Thus, the compilers
can not change the order randomly. We can still catch
the overall pattern using LCS.

- Basic block reordering: Similarly, basic block reorder-
ing decreases the final similarity score because we take
the order into consideration when doing path explo-
ration and neighborhood exploration. However, the
overall layout of basic blocks still corresponds to the
source code. Besides, some basic blocks might have
some dependencies upon previous basic blocks, as a re-
sult, their orders cannot be changed. Thus, our fuzzy
matching approach can still capture these patterns.

- Obfuscation: When designing BinSequence, we assume
that the binary is unobfuscated. In other words, Bin-
Sequence mainly deals with unobfuscated code. How-
ever, we also evaluated the robustness of BinSequence
on obfuscated code. We used obfuscator-llvm [16] as
our obfuscator, and experimented with three obfusca-
tion techniques: bogus control flow, control flow flat-
tening and instructions substitution. In our test, the
accuracy of BinSequence after these three obfuscations

165

have been applied is 53.01%, 3.61% and 93.98%, re-
spectively. We can see that control flow flattening is
a challenge for BinSequence since we the structure of
CFGs into consideration. Future work may involve
merging basic blocks, or spiliting one basic into multi-
ple basic blocks, to achieve a better matching for this
case. Besides, deobfuscators could be used as a front-
end, to help analyze the obfuscated code.

8. CONCLUSION
In this paper we presented a fast, accurate and scalable bi-

nary code reuse detection system named BinSequence. Un-
like previous literatures, we focus on fuzzy matching that op-
erates at instruction level, basic block level and control flow
structure level. To enable BinSequence on large data sets,
we designed two filters to save analysis effort by ruling out
functions that are not likely to be matched.We conducted
extensive experiments and our results strongly suggest that
BinSequence can achieve high performance function ranking.

We also applied BinSequence on many practical use cases.
By leveraging BinSequence on both patched and unpatched
executables, we succeeded in revealing the vulnerability and
the patch information. By performing function reuse detec-
tion, we managed to identify the reused RC4 function in two
real-world malware, Zeus and Citadel. We also successfully
identified the buggy function in various versions of Firefox.
We believe that BinSequence can be of great help in many
reverse engineering and security scenarios.

Acknowledgment
The research leading to this work is supported by a research
grant under the Department of National Defence/Natural
Sciences and Engineering Research Council of Canada (NSERC)
grant in collaboration with Google.

9. REFERENCES
[1] BinDiff. http://www.zynamics.com/bindiff.html.

[2] CVE-2015-4485.
http://www.cvedetails.com/cve/CVE-2015-4485/.

[3] Diaphora: A Program Diffing Plugin for IDA Pro.
Available at:
https://github.com/joxeankoret/diaphora.

[4] FCatalog. http://www.xorpd.net/pages/fcatalog.html.

[5] IDA Pro. https://www.hex-rays.com/products/ida/.

[6] MS15-034. https://technet.microsoft.com/en-us/
library/security/ms15-034.aspx.

[7] PatchDiff2: Binary Diffing Plugin for IDA. Available
at: https://code.google.com/p/patchdiff2/.

[8] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi.
Sigma: A semantic integrated graph matching
approach for identifying reused functions in binary
code. Digital Investigation, 12:S61–S71, 2015.

[9] A. Andoni and P. Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. In Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science,
2006. FOCS’06, pages 459–468, 2006.

[10] B. Bencsáth, G. Pék, L. Buttyán, and M. Felegyhazi.
skywiper (aka flame aka flamer): A complex malware
for targeted attacks. CrySyS Lab Technical Report,
2012.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 2009.

[12] Y. David and E. Yahav. Tracelet-based code search in
executables. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 349–360, 2014.

[13] T. Dullien and R. Rolles. Graph-based comparison of
executable objects (english version). SSTIC, 5:1–3,
2005.

[14] H. Flake. Structural comparison of executable objects.
In Proceedings of the IEEE Conference on Detection
of Intrusions and Malware & Vulnerability
Assessment, pages 161–173, 2004.

[15] D. Gao, M. K. Reiter, and D. Song. Binhunt:
Automatically finding semantic differences in binary
programs. In Proceedings of the 10th International
Conference on Information and Communications
Security, pages 238–255, 2008.

[16] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin.
Obfuscator-LLVM – software protection for the
masses. In Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection,
SPRO’15, pages 3–9, 2015.

[17] W. M. Khoo, A. Mycroft, and R. Anderson.
Rendezvous: A search engine for binary code. In
Proceedings of the 10th Working Conference on
Mining Software Repositories, pages 329–338, 2013.

[18] Leskovec, Jure and Rajaraman, Anand and Ullman,
Jeffrey D. Mining of Massive Datasets. Cambridge
University Press, 2014.

[19] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu.
Semantics-based obfuscation-resilient binary code
similarity comparison with applications to software
plagiarism detection. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 389–400, 2014.

[20] J. Milletary. Citadel trojan malware analysis. Dell
SecureWorks, 2012.

[21] J. Munkres. Algorithms for the assignment and
transportation problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1):32–38, 1957.

[22] B. H. Ng and A. Prakash. Exposé: discovering
potential binary code re-use. In Proceedings of the
2013 IEEE 37th Annual Computer Software and
Applications Conference, pages 492–501, 2013.

[23] J. Oh. Fight against 1-day exploits: Diffing binaries vs
anti-diffing binaries. In Blackhat technical Security
Conference, 2009.

[24] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and
C. Rossow. Leveraging semantic signatures for bug
search in binary programs. In Proceedings of the 30th
Annual Computer Security Applications Conference,
pages 406–415, 2014.

[25] A. Rahimian, R. Ziarati, S. Preda, and M. Debbabi.
On the reverse engineering of the citadel botnet. In
Foundations and Practice of Security, pages 408–425.
Springer, 2014.

[26] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and
Z. Su. Detecting code clones in binary executables. In
Proceedings of the 18th international symposium on
Software testing and analysis, pages 117–128, 2009.

166

http://www.zynamics.com/bindiff.html
http://www.cvedetails.com/cve/CVE-2015-4485/
https://github.com/joxeankoret/diaphora
http://www.xorpd.net/pages/fcatalog.html
https://www.hex-rays.com/products/ida/
https://technet.microsoft.com/en-us/library/security/ms15-034.aspx
https://technet.microsoft.com/en-us/library/security/ms15-034.aspx
https://code.google.com/p/patchdiff2/

	Introduction
	Problem Statement
	Algorithm Description
	Disassembly and Normalization
	Instruction Comparison
	Basic Block Comparison
	Longest Path Generation
	Path Exploration
	Neighborhood Exploration

	Filtering
	Filtering By Number of Basic Blocks
	Filtering By Fingerprint Similarity

	Evaluation
	Function Reuse Detection
	Patch Analysis
	Malware Analysis
	Bug Search
	Function Matching

	Related Works
	Limitations
	Conclusion
	References

