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ABSTRACT
We address the problem of ciphertext-policy attribute-based
encryption with fine access control, a cryptographic primi-
tive which has many concrete application scenarios such as
Pay-TV, e-Health, Cloud Storage and so on. In this context
we improve on previous LSSS based techniques by building
on previous work of Hohenberger and Waters at PKC’13 and
proposing a construction that achi- eves ciphertext size lin-
ear in the minimum between the size of the boolean access
formula and the number of its clauses. Our construction
also supports fast decryption. We also propose two inter-
esting extensions: the first one aims at reducing storage and
computation at the user side and is useful in the context of
lightweight devices or devices using a cloud operator. The
second proposes the use of multiple authorities to mitigate
key escrow by the authority.

Keywords
Ciphertext-policy attribute-based encryption, DNF access
policy, LSSS access policy, Fast decryption, multi-authority.

1. INTRODUCTION
In the ”era of modern cryptography”, cryptographic schemes

become more and more complex to satisfy the needs of mod-
ern applications. Regarding data encryption, many new sce-
narios require advanced capabilities and flexible ways to do
it beyond simple semantically secure encryption with a key.
For instance a desirable property is the ability to encrypt
a message according to a specific policy. In such scenario,
only receivers who possess enough attributes satisfying this
specific policy can decrypt the encrypted message.

We consider the following practical scenario, in a faculty
of computer science, there are faculty members and ad-
minsitrative staff and there are three international research
groups: Crypto, Wireless Communications, and Image pro-
cessing. In the Crypto group we have two projects: Garbled
computer and Security for IoT-based Applications. In the
Wireless Communications group we also have two projects:
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Fog Computing and Internet of Things. In such system,
the attributes are: Faculty members, Administrative staff,
Crypto, Wireless Communications, Image processing, Gar-
bled computer, Security for IoT-based Applications, Fog
computing, and Internet of Things. When the dean of the
faculty wants to put a document in the cloud server for the
faculty members in the Crypto group who are working in
the Garbled computer project, as well as faculty members
in the Wireless Communications group who are working in
the Fog Computing project, the access policy should be:

(Faculty member and Crypto and Garbled computer) or
(Faculty member and Wireless Communications and Fog Com-
puting).
In this access policy, the size of the boolean formula is six
(counting the reused attribute Faculty member) while the
number of clauses in DNF form is only two. Recently, this
type of encryption is applied to more and more contexts
such as pay-TV system, e-Health, or internet of things.

Addressing this problem, Sahai and Waters [25] intro-
duced the concept of attribute-based encryption (ABE) where
both the encryption and decryption steps are performed by
using the user’s attributes. Recent researches have investi-
gated two variants of ABE: the first one is named ciphertext-
policy attribute-based encryption (CP-ABE) and the second
one is named key-policy attribute-based encryption (KP-
ABE). In a CP-ABE scheme, the secret key is associated
with a set of attributes and the ciphertext is associated with
an access policy (structure) over a universe of attributes: a
user can then decrypt a given ciphertext if the set of at-
tributes related to his/her secret key satisfies the access
policy underlying the ciphertext. In contrast, in a KP-ABE
scheme, the access policy is for the secret key and the set
of attributes is for the ciphertext.

In the context of ABE, the set of privileged users is deter-
mined by the access policy. To date, several types of access
policy have been investigated. Two limited ones are AND-
gates and threshold. In [11, 9], the access structure is con-
structed by AND-gates on multi-valued attributes. In [17,
13, 8], the access policy is threshold, meaning that there is
no distinction among attributes in the access policy: any-
one who possesses enough attributes (equal or bigger than
a threshold chosen by the sender) will be able to decrypt.
In some modern applications, finer-grained access control is
needed such as boolean formula, and the common technique
so far to construct such access control is based on LSSS ma-
trix [26] (LSSS-based scheme - so called). In LSSS-based
schemes, the ciphertext size is usually linear in the size of
the access boolean formula. We note that, in several specific
types of boolean formula especially the DNF form (i.e., with
disjunctions (OR) of conjunctions (AND) of attributes), the
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size of the boolean formula could be much bigger than the
number of clauses (as we showed in the above example).
In contrast, in CNF form (i.e., with conjunctions (AND)
of disjunctions (OR) of attributes) the size of the boolean
formula could be much smaller than the number of clauses
in the corresponding DNF form. This leads us to research a
construction where the ciphertext size could be linear in ei-
ther the size of the boolean formula or the number of clauses
depending on which is smaller between them.

In some practical contexts such as mobile pay-TV sys-
tem or internet of things, the power of user’s devices are
restricted which means that the decrypting complexity and
the user’s storage are essential. In addition, in those con-
texts a CP-ABE scheme is more suitable than a KP-ABE
scheme as shown in [19], therefore designing a CP-ABE scheme
with fast decryption, limited user’s storage, and supporting
fine-grained access control such as boolean formula is desir-
able. Another problem that we were keen on adressing is
that CP-ABE, as some other cryptographic primitives, suf-
fers from the key escrow problem since the authority knows
all private keys of users. We thus researched the possibil-
ity to implement a multi-authority ABE scheme to mitigate
this risk.

1.1 Related Work
Attribute-base encryption has been deeply researched in

recent years with a lot of proposed papers [25, 16, 22, 11,
19, 17, 26, 3, 21, 18, 23, 8, 28, 27, 10, 12, 14, 6], to name
a few. Regarding the ABE scheme supporting the fine-
grained access control, the first construction [16] is based
on the tree structure where the authors extended the Sahai
and Waters’s work [25] to propose the schemes supporting
fine-grained access control, specified by a boolean formula.
Subsequent works in this direction such as [26, 18, 23, 8, 28,
27, 10], are constructed based on the linear secret sharing
scheme (LSSS). The shortcoming of this technique is that
the ciphertext size is usually linear in the size of the access
boolean formula which is not as small as expected especially
when the access boolean formula is in DNF form. Very re-
cently, in [1] and [2] the authors based on LSSS technique
proposed two CP-ABE schemes with constant-size cipher-
text and supporting the fine-grained access control. How-
ever, the public key size and secret key size of those schemes
are very impractical. Multi-authority ABE scheme support-
ing fine-grained access control have been investigated in [20,
24] where each authority takes responsibility for a disjoint
set of attributes. Regarding the fast decryption, only one
of them [18] proposes an efficient CP-ABE scheme with fast
decryption and supports LSSS access policy. Some other
schemes can achieve the fast decryption property but ei-
ther they are in key-policy attribute-based style [18, 3, 16]
or they supports limited access policy such as threshold or
AND-gates [11, 17].

1.2 Our Contribution and Organization of the
Paper

In this paper, we propose a CP-ABE scheme supporting
fine-grained access control and achieving highly desirable
properties:

• small ciphertext size: the ciphertext-size of our scheme
is linear in either the size of the access boolean formula
or the the number of clauses depending on which is
smaller between them;

• fast decryption: in all cases, our scheme just needs
two Pairings for decryption;

• mitigation of key escrow: our scheme can be extended
to support non colluding multiple authorities that can-
not decrypt messages;

• minimization of user storage: our scheme can make a
large part of the encryption and decryption material
public, thus saving storage space and enabling dele-
gation of part of the computation to an outsourced
server.

More precisely, we extend the scheme [18] (section 3.5)
to allow the encryptor to choose the most efficient of two
encryption algorithms at the time of encryption. Starting
with an access boolean formula, the encryptor first describes
this formula in the DNF form (i.e., with disjunctions (OR)
of conjunctions (AND) of attributes). She then compares
between the number of clauses in the DNF form and the size
of the original boolean formula (the number of attributes in
the access boolean formula - counting also the reused at-
tributes). Finally, she will produce the ciphertext depend-
ing on which is smaller between them.

We emphasize that our scheme still takes advantage of
LSSS technique (the ciphertext size is linear in the size of
the original boolean formula), while it overcomes the weak-
ness of LSSS technique when the size of the access boolean
formula is bigger than the number of clauses. It is there-
fore fair to say that our scheme is an improvement of the
scheme [18] (section 3.5).

Note that, it seems not difficult to transform some AND-
gates schemes such as [11, 9] to achieve a new scheme sup-
porting DNF access policy where the ciphertext-size is linear
in the number of clauses. However, since such schemes do
not take advantage of LSSS technique, it is not efficient in
case the size of the access boolean formula is smaller than
the number of clauses, for example when the access boolean
formula is in CNF form. The reason why our scheme can
take advantage of LSSS technique while others cannot is
that our scheme shares a similar key structure with the
scheme [18] (section 3.5).

Regarding decryption efficiency, the new decryption algo-
rithm of our scheme just needs to compute two Pairings and
|I| multiplications, where |I| is the number of attributes for
a decryption key to satisfy a ciphertext access policy.

Furthermore, in our scheme the user just needs to keep
one element secret, the other elements in the user’s secret
key can be made public, it is thus very suitable to the con-
text of lightweight cryptography as it is sufficient for a user
to store only one secret element in the smart card. It can
also be useful in the context of outsourced data storage and
computation, such as in cloud computing, since the user
can store part of the key in the cloud and even have the
cloud perform some steps of the encryption and decryption
algorithms.

Our scheme can also be extended to support multiple non-
colluding authorities by using the splitting technique, where
each user constructs her secret key with the help of θ au-
thorities in the system. The collusion of up to θ − 1 curi-
ous authorities is not enough to compute the secret key of
user. While this solution is not difficult to implement, to
our knowledge we haven’t seen any previous CP-ABE work
mentioning it.

The paper is now organized as follows. The next section
introduces preliminary security definitions and mathemati-
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cal building blocks. In Section 3.1, we introduce our scheme
and prove that it achieves selective security in the follow-
ing section. In section 4 we analyze the performance of our
scheme compared to the literature. Finally, in Section 5,
we discuss how to minimize the user’s storage as well as
support of multiple authorities in our scheme.

2. PRELIMINARIES
We recall in this section several definitions and notions

that are needed for our construction. We first define the
security model of CP-ABE scheme, followed by access struc-
tures, bilinear maps and related security assumptions and
finally LSSS matrices.

2.1 Ciphertext-Policy Attribute-Based Encryp-
tion

Formally, a CP-ABE scheme consists of four probabilistic
algorithms.

Setup(1λ,B): The setup algorithm takes the security pa-
rameter λ and the description of the attributes’ uni-
verse B as inputs. It generates the master key MSK,
as well as the public parameters param of the system.

Extract(u,B(u),MSK, param): Takes as input a user u and
his set of attributes B(u), as well as the public param-
eters param and the master key MSK. It outputs the
user’s private key du.

Encrypt(M,A, param): Takes as input a message M, an
access policy A over the universe of attributes and the
public parameters param. It outputs the ciphertext ct
along with a description of the access policy A.

Decrypt(ct, du, param): Takes as input the ciphertext ct,
the private key du of user u, together with the param-
eters param. It outputs the message M if and only if
B(u) satisfies A. Otherwise, it outputs ⊥.

Security Model:.
We now recall the security model for a CP-ABE scheme [26].

The security model consists of the following probabilistic
game between an attacker A and a challenger C.

Setup(1λ,B). The challenger runs the Setup(1λ,B) algo-
rithm to generate the public parameters param of the
system, as well as a master key MSK. The corruption
list ΛC is set to the empty list (the corruption list
corresponds to the queries of the adversary as will be
described in the next steps).

Query phase 1. The adversaryA chooses a set of attributes
B(u) and asks corruption query corresponding to this
set of attributes: the challenger runs Extract(u,B(u),
MSK, param) and forwards the resulting private key to
the adversary. The user u is appended to the corrup-
tion list ΛC .

Challenge. The adversary A outputs a target access pol-
icy A∗ and two equal length message M∗0,M∗1. Next,

the challenger picks a random b
$← {0, 1} and runs

Encrypt(M∗b ,A∗, param) to obtain ct∗. Finally the
challenger outputs ct∗.

Query phase 2. The adversary A continues to adaptively
ask queries as in the first phase.

Guess. The adversary A eventually outputs its guess b′ ∈
{0, 1} for b.

We say the adversary wins the game if b′ = b, and if B(u)
does not satisfy A∗ for all u ∈ ΛC (the corruption list). We
then denote the advantage of adversary to win the game by

AdvA = Pr
[
b = b′

]
− 1

2
.

Definition 1 A ciphertext-policy attribute-based encryption
scheme is secure if all polynomial time adversaries have at
most a negligible advantage in the above game.

There is also a classical restricted scenario: a selective at-
tacker provides the target access policy A∗ at the beginning
of the security game.

Definition 2 (Selective Security) A CP-ABE scheme is
said to be selectively secure if it is secure against a selective
adversary in the above security game.

2.2 Access Structures

Definition 3 (Access Structures) Let {Att1, Att2, . . . , Attn}
be a set of attributes. A collection A ⊆ 2{Att1,Att2,...,Attn} is
monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A. An
access structure (respectively, monotone access structure) is
a collection (respectively, monotone collection) A of non-

empty subsets of {Att1, Att2, . . . , Attn}, i.e,A ⊆ 2{Att1,Att2,...,Attn}\
{∅}. The sets in A are called the authorized sets, and the
sets not in A are called the unauthorized sets.

We note that the access structure A will contain the autho-
rized sets of attributes. In this paper, we consider monotone
access structures only. However, as explained in [26], it is
also possible to achieve general access structures at the cost
of doubling the number of attributes in the system.

2.3 Bilinear Maps and (P,Q, f)−GDDHE Assump-
tions

Let G, G̃ and GT denote three finite multiplicative abelian
groups of large prime order p > 2λ where λ is the security
parameter. Let g be a generator of G and g̃ be a generator

of G̃
An admissible bilinear map is a function e : G× G̃→ GT ,

which verifies the following properties for all a, b ∈ Zp:

1. e(ga, g̃b) = e(g, g̃)ab,

2. e(ga, g̃b) = 1 iff a = 0 or b = 0,

3. e(ga, g̃b) is efficiently computable.

If such a function exists, we say that (p,G, G̃,GT , e) is a
bilinear map group system. We say that the bilinear map
group system is in:

1. Type 1 Pairings if G = G̃

2. Type 2 Pairings if G 6= G̃ but there is an efficiently

computable homomorphism φ : G̃→ G

3. Type 3 Pairings if G 6= G̃ but there are no efficiently

computable homomorphism between G̃ and G
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We now recall the generalization of the Diffie-Hellman
exponent assumption in Type 1 Pairings bilinear map group
system (which was first introduced in [5]).

Let (p,G,GT , e(·, ·)) be a bilinear map group system and
g ∈ G be a generator of G. Set gT = e(g, g) ∈ GT . Let
s, n be positive integers and P,Q ∈ Fp[X1, . . . , Xn]s be two
s-tuples of n-variate polynomials over Fp. In other words,
P and Q are two lists containing s multivariate polynomials
each. We write P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs)
and impose that p1 = q1 = 1. For any function h : Fp → Ω
and vector (x1, . . . , xn) ∈ Fnp , h(P (x1, . . . , xn)) stands for
(h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))) ∈ Ωs. We use a
similar notation for the s-tuple Q. Let f ∈ Fp[X1, . . . , Xn].
We say that f depends on (P,Q), denoted f ∈ 〈P,Q〉, when
there exists a linear decomposition

f =
∑

1≤i,j≤s

ai,j · pi · pj +
∑

1≤i≤s

bi · qi, ai,j , bi ∈ Zp

Let P,Q be as above and f ∈ Fp[X1, . . . , Xn]. The (P,Q, f)−
GDHE problem is defined as follows.

Definition 4 ((P,Q, f)− GDHE) [5].

Given the tuple H(x1, . . . , xn) = (gP (x1,...,xn), g
Q(x1,...,xn)
T ) ∈

Gs ×GsT compute g
f(x1,...,xn)
T .

Definition 5 ((P,Q, f)− GDDHE) [5].

Given the tuple H(x1, . . . , xn) = (gP (x1,...,xn), g
Q(x1,...,xn)
T )

∈ Gs ×GsT and T ∈ GT decide whether T = g
f(x1,...,xn)
T .

In this paper, we will prove that our scheme is semantically
secure under (P,Q, f)−GDDHE assumption. Note that our
scheme can be naturally extended to the Type 3 Pairings.

2.4 LSSS Matrices
Let p be a prime and B be the attributes’ universe. If A is

an access structure on B, then one can find an LSSS matrix
M ∈ Z`×np , and a function ρ, that labels the rows of M with
the attributes from B that appear in A (making use of the
standard techniques in [4] if needed), i.e. ρ ∈ F([`] → B).
The pair (M,ρ) is called an LSSS access policy. Define the

vector −→y = (s, y2, . . . , yn)⊥
$← Znp with sharing secret value

s, and denote the vector shares
−→
λ = M.−→y . Let S denote

an authorized set for A encoded by the policy (M,ρ), I be
the set of rows of M whose labels are in S, i.e. I = {i|i ∈
[`] ∧ ρ(i) ∈ S}. There exists constants {ωi}i∈I in Zp such
that for any valid shares {λi = (M.−→y )i}i∈I of a sharing
secret s,

∑
i∈I ωiλi = s, and the constants {ωi}i∈I can be

found in time polynomial in the size of matrix M . For
completeness, we recall from [20] the algorithm to convert
from a boolean formula to a corresponding LSSS matrix in
Appendix B.

We now consider the following example, assume that the
set of attributes are:

• Faculty member(FM), Administrative staff(AS), Crypto,
Wireless Communications(WC), Image processing(IP),
Garbled computer(GC), Security for IoT-based Appli-
cations(SIoTA), Fog computing(FC), and Internet of
Things(IoT).

We define the following access policy on the set of at-
tributes:

• (Faculty member and Crypto and Garbled computer) or
(Faculty member and Wireless Communications and Fog
Computing).

This access policy is already in DNF form and contains only
two clauses.

By following the algorithm defined in Appendix B we ob-
tain the access tree and corresponding LSSS matrix as in
the figure 1. Where the LSSS matrix is:

1 1 0 0 0
1 0 0 1 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

Here, the number of rows of the LSSS matrix is 6 (count-
ing the reused attribute FM) which is bigger than the num-
ber of clauses (which is 2). Here the ratio is only three
because we took a simple example with few attributes and
clauses. In a more general DNF formula where each clause
contains many attributes, the number of rows of the LSSS
matrix will even be orders of magnitude bigger than the
number of clauses. This is what motivated our new con-
struction that we describe in the next section.

3. CONSTRUCTION

3.1 Overview of Our Approach
In this construction, we reuse the Setup algorithm and

the Key generation algorithm of [18]. Regarding the en-
cryption phase, starting with an access boolean formula,
the encryptor first describes this formula in the DNF form
(the disjunctions (OR) of conjunctions (AND) of attributes)
and then compares between the number of clauses in the re-
sulting DNF form and the size of the original access boolean
formula. Next, the encryptor produces the ciphertext de-
pending on which is smaller between them, by using either
our new encryption algorithm or the existing encryption al-
gorithm from [18] (section 3.5). The decryption phase auto-
matically follows using either our new decryption algorithm
or the existing decryption algorithm from [18] (section 3.5).

Regarding our new encryption and decryption algorithms,
to achieve a constant number of Pairing computations for
decryption we do not use the LSSS matrix in the construc-
tion, instead of that we only make use of LSSS technique
in the proof. Note that, when using LSSS matrix in the
construction almost existing schemes [26, 23, 8, 28, 27, 10]
to name a few require at least |I| Pairing computations for
decryption, |I| is the number of attributes for a decryption
key to satisfy a ciphertext access policy.

3.2 Detailed Construction
The construction of our scheme is detailed as follows.

Setup(λ,B): The algorithm takes as input the security pa-
rameter and attribute universe description, it gener-
ates the parameters of the system as follows: Let
N = |B| be the maximal number of attributes in the
system, let (p,G,GT , e(·, ·)) be a bilinear group sys-
tem. The algorithm first picks a random generator
g ∈ G, random scalars a, α ∈ Zp, and then computes
ga, gα. Next, the algorithm generates N group ele-
ments in G associated with N attributes in the system
h1, . . . , hN .

The master secret key is set as:

MSK = gα
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Figure 1: Access tree on the left and corresponding LSSS matrix on the right.

The global parameters are set as:

param = (g, ga, e(g, g)α, h1, . . . , hN )

Extract(u,B(u),MSK, param): The set of attributes of user
u is B(u). The algorithm picks randomly a scalar
su ∈ Zp, and computes the secret key for user u as

du = (du0 , d
′
u0
, {dui}i∈B(u))

where:

du0 = gα · ga·su , d′u0
= gsu , {dui = hsui }i∈B(u)

In section 5.1 we show that user just needs to keep
du0 secret, she can publish the rest of her secret key
to the public domain.

Encrypt(M, β, param): Starting with an access boolean for-
mula β, assume that the size of β is |β|. The encryptor
first describes β in the form of DNF access policy as
β = (β1∨· · ·∨βm), where each βi is a set of attributes,
i = 1, . . . ,m.

The encryptor picks a scalar s
$← Zp, then computes

the first two elements of the ciphertext:

C =M · e(g, g)α·s, C0 = gs

To compute other elements, the encryptor compares
between m and |β|. If m ≤ |β| the encryptor uses our
new algorithm and computes:

C1 = (ga
∏
i∈β1

hi)
s, . . . , Cm = (ga

∏
i∈βm

hi)
s

Else, she reverts to the encryption algorithm of [18].
The encryptor constructs an LSSS matrix M repre-
senting the original boolean formula β, and a map
function ρ such that (M,ρ) ∈ (Z`×np ,F([`] → [N ])).
She then chooses a random vector−→v = (s, y2, . . . , yn) ∈
Znp . For i = 1, . . . , ` she computes λi = −→v ·Mi, where
Mi is the vector corresponding to the i’th row of M .
She computes:

Ci = ga.λih−sρ(i), i = 1, . . . , `

Finally, the output is ct = (C,C0, . . . , Cm) along with
a description of β, or ct = (C,C0, . . . , C`) along with
a description of (M,ρ).

Decrypt(ct, du, param): The user u first parses the ct and
checks the number of elements in ct. If it is equal
to m + 1, it means that she needs to use our new
decryption algorithm. She parses the ct as (C0, C1,
. . . Cm), then she finds j such that βj ⊂ B(u), and
computes:

e(C0, du0

∏
i∈βj dui)

e(d′u0
, Cj)

=
e(gs, gα(ga

∏
i∈βj hi)

su)

e(gsu , (ga
∏
i∈βj hi)

s)

= e(g, g)α·s = K

Then she recovers the plaintext as M = C ·K−1.

Else, she reverts to the decryption algorithm of [18].
She defines the set I ⊂ {1, 2, . . . , `} such that I = {i :
ρ(i) ∈ B(u)}. Let {ωi ∈ Zp}i∈I be a set of constants
such that if {λi} are valid shares of any secret s ac-
cording to M then

∑
i∈I ωiλi = s. Note that from

the relation
∑
i∈I ωiMi = (1, 0, . . . , 0) where Mi is

the i-th row of the matrix M , she can determine these
constants. She parses the ct as (C0, C1, . . . C`) and
computes:

e(
∏
i∈I

C−ωii , d′u0
) · e(C0, du0

∏
i∈I

d−ωiuρ(i)
) = K

Then she recovers the plaintext as M = C ·K−1.

Remark 1 In our scheme, to achieve the selective security,
all sets βi must be disjoint subsets, i = 1, . . . ,m. That
means the attributes cannot be reused in the access formula.
To overcome this drawback, we allow each attribute to have
kmax copies of itself as in [18] (section 3.5). This means
that, as in [18], the key-size in our scheme will increase
by a factor of kmax, where kmax is the maximum number
of times an attribute can appear in the access formula. In
section 5.1, we show that in our scheme the user just needs
to keep one element du0 secret, the rest of the user’s secret
key can be made public.

3.3 Security
We will now prove the security of our construction in the

model defined in section 2.1. We first define a modified
BDHE assumption [7], and then prove the selective security
of our scheme under this assumption.
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Definition 6 Modified-BDHE problem: Let (p,G,GT , e)
be a bilinear group system, choose a, t, s, q

$← Zp, a genera-

tor g ∈ G. Given ~Y =

g, gs, ga, . . . , ga
q

, ga
q+2

, . . . , ga
2q

, gs(at+a), gat,

ga
2t, . . . , ga

qt, ga
q+2t, . . . , ga

2qt

it must remain hard to distinguish between T = e(g, g)a
q+1s

∈ GT and a random element T = R ∈ GT .

An adversary A that outputs b ∈ {0, 1} has advantage ε in
solving Modified-BDHE problem in G if∣∣∣Pr
[
A(~Y , T = e(g, g)a

q+1s) = 0
]
− Pr

[
A(~Y , T = R) = 0

]∣∣∣ ≥ ε
Definition 7 We say that the Modified-BDHE assumption
holds if no polytime adversary has a non-negligible advan-
tage in solving the Modified-BDHE problem.

Intuitively, to compute e(g, g)a
q+1s one needs to know the

values ga
q+1

or ga
q+1t, but these elements are not provided

in ~Y . For completeness, we prove that this assumption holds
in the generic group model.

Proof. We first rewrite the Modified-BDHE assumption
in the form of GDDHE assumption as follows:

P = {1, s, sa(t+ 1), a, a2, . . . , aq, aq+2, . . . , a2q, at,

a2t, . . . , aqt, aq+2t, . . . , a2qt}
Q = {1}
f = {aq+1s}

Suppose that f is not independent to (P,Q), i.e., one can
find bi,j , ci such that the following equation holds

f =
∑

{pi,pj}⊂P

bi,j · pi · pj + ci

We will use s to analyze f , so it is easy to deduce that one
needs to find the constant b1, b2, b3, di, ej , 1 ≤ i ≤ 2q, 1 ≤
j ≤ 2q such that the following equation holds

aq+1s = (b1.s+ b2.s.a(s+ 1))(b3 + d1a+ d2a
2 + · · ·+ dqa

q+

dq+2a
q+2 + . . . d2qa

2q + e1at+ e2a
2t+ · · ·+ eqa

qt+

eq+2a
q+2t+ · · ·+ e2qa

2qt)

⇐⇒ aq+1 = (b1 + b2.a(t+ 1))(b3 + d1a+ d2a
2 + · · ·+ dqa

q+

dq+2a
q+2 + . . . d2qa

2q + e1at+ e2a
2t+ · · ·+ eqa

qt+

eq+2a
q+2t+ · · ·+ e2qa

2qt)

We manage to put the term related to aq+1 in the left
equation, we have:

aq+1(1− b2(dq + eq.t)(t+ 1)) = L (1)

where there is no term related to aq+1 appearing in L. Since
a, t, s are chosen at random, so to let the equation (1) hold,
one needs to choose b2, eq, dq such that (1−b2(dq+eq.t)(t+
1)) = t2b2eq + (b2dq + b2eq)t+ b2dq − 1 = 0, ∀t , this cannot
hold because one cannot find b2, eq, dq such that simultane-
ously b2eq = 0 and b2dq + b2eq = 0 and b2dq − 1 = 0. That
means the equation (1) cannot hold or f is independent to
(P,Q).

Theorem 1 Assume that β∗ is the challenge access policy
and from β∗ construct the corresponding challenge LSSS
matrix L’ of size `′ × n′ and map function ρ′. Describe
β∗ = β∗1 ∨ · · · ∨ β∗m where β∗i , i = 1, . . . ,m are disjoint sets
and then construct the corresponding challenge LSSS ma-
trix L∗ of size `∗ × n∗ and map function ρ∗. If those LSSS
matrices satisfy `′, n′, `∗, n∗ ≤ q, our scheme is selectively
secure under the Modified-BDHE assumption.

Proof. The simulator S is first given an instance of
Modified - BDHE assumption, it will simulate an adversary
A who attacks our scheme in the selective secure game with
non-negligible advantage and then use the output of A to
break the security of Modified-BDHE assumption.

Setup The simulator is first given an instance of Modified-
BDHE assumption, and then receives challenge access
policy β∗ from A. Assume the size of β∗ is |β∗|.
She first describes β∗ in the DNF form as β∗ = β∗1 ∨
· · · ∨ β∗m where β∗i , i = 1, . . . ,m are disjoint sets (us-
ing the copies of attributes as needed as explained in
Remark 1). Then she compares between m and |β∗|
(the size of the original β∗). There are two cases:

First Case: m > |β∗|. Our scheme now is exactly the same
as the scheme in [18] (section 3.5). We thus refer the
reader to the proof of scheme in [18] (section 3.5).
Note that the instance of Modified-BDHE assumption
includes the instance of BDHE assumption.

Second Case: m ≤ |β∗|. The simulator first constructs LSSS
matrix (M∗`∗×n∗ , ρ

∗) from β∗ = β∗1 ∨ · · · ∨ β∗m where
both `∗, n∗ ≤ q. To program the value e(g, g)α, the

simulator picks α′
$← Zp and implicitly sets α = α′ +

aq+1. She computes e(g, g)α = e(ga, ga
q

)e(g, g)α
′
.

The simulator finds disjoint sets of rows of matrix M∗:
I1, . . . , Im where {ρ(i), i ∈ Ij} = β∗j .

β∗ is now described as: (∧ρ(i))i∈I1∨(∧ρ(i))i∈I2∨· · ·∨
(∧ρ(i))i∈Im .

To program the group elements h1, . . . , hN , the simu-
lator implicitly defines the vector

−→y = (t, ta, ta2, . . . , tan
∗−1)⊥ ∈ Zn

∗
p

Let
−→
λ = M∗ · −→y be the vector shares, thus for j =

1, . . . , `∗

λj =
∑
i∈[n∗]

M∗j,ita
i−1

She then finds the set {ωi}1≤i≤`∗ such that for all
j = 1, . . . ,m: ∑

i∈Ij

ωi · λi = t

For each hj , 1 ≤ j ≤ N, where there exists an indice
i ∈ [`∗] such that j = ρ(i) (note that the function

ρ is injective), the simulator chooses zj
$← Zp and

computes: Note that the simulator knows matrix M∗

and gta
k

where k ∈ [n∗] from the instance of Modified-
BDHE assumption.

hj = gzj · gωi
∑
k∈[n∗]M

∗
i,kta

k

= gzj · gaωiλi
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Otherwise, the simulator chooses zj
$← Zp and com-

putes hj = gzj . We note that {hj}j=1,...,N are dis-
tributed randomly due to choosing randomly zj . Fi-
nally, the simulator gives

param = (g, ga, e(g, g)α, h1, . . . , hN )

to A and ends the Setup phase.

Query phase 1 the simulator needs to answer the cor-
rupted queries. To this aim, A first sends the set of
indices of attributes S ⊂ [N ] to simulator with the re-
quirement that the set of attributes associated with S
doesn’t satisfy M∗. The simulator first finds a vector
−→x = (x1, . . . , xn∗) ∈ Zn∗p such that x1 = −1 and for
all i where ρ∗(i) ∈ S the product 〈−→x ·M∗i 〉 = 0. Based
on the property of LSSS matrix, such vector −→x exists.

The simulator continues to pick r
$← Zp and implictly

define the value su as:

su = r + x1a
q + x2a

q−1 + · · ·+ xn∗a
q−n∗+1

The simulator computes

du0 = gα
′
gar

∏
i=2,...,n∗

(ga
q+1−i

)xi = gα · ga·su

Note that x1 = −1 thus ga·su contains the term g−a
q+1

which cancels out the unknown term ga
q+1

in gα. With
the known vector −→x , she continues to compute:

d′u0
= gsu = gr

∏
i=1,...,n∗

(ga
q+1−i

)xi

For j ∈ S such that there is no i ∈ [`∗] satisfying
ρ∗(i) = j. The simulator knows values zj and com-
putes

hsuj = (gsu)zj

For j ∈ S such that there is an indice i ∈ [`∗] satisfying
ρ∗(i) = j. The simulator computes

hsuj = (gsu)zj ·

·g(r+x1a
q+x2a

q−1+···+xn∗a
q−n∗+1)ωi

∑
k∈[n∗]M

∗
i,kta

k

Note that the product 〈−→x ·M∗i 〉 = 0 thus the simulator

doesn’t need to know the unknown term of form ga
q+1t

to compute hsuj , all other terms he knows from the
assumption. If j is outside the set S and there exists
i ∈ [`∗] such that ρ∗(i) = j, the simulator cannot
compute hsuj since 〈−→x ·M∗i 〉 6= 0 (this is exactly the
classical partition technique proof).

Challenge The adversary gives two equal length message
M∗0,M∗1 to the simulator. The simulator picks a ran-
dom bit b, computes:

C∗ =M∗b · T · e(gs, gα
′
), C∗0 = gs

and the other elements (C∗1 , . . . , C
∗
m) =(

gs(a+at)g
∑
i∈I1

szρ(i) , . . . , gs(a+at)g
∑
i∈Im szρ(i)

)
=

(
(ga ·

∏
i∈I1

gzρ(i) · gaωiλi)s, . . . , (ga ·
∏
i∈Im

gzρ(i) · gaωiλi)s
)

=

(
(ga

∏
i∈I1

hρ(i))
s, . . . , (ga

∏
i∈Im

hρ(i))
s

)

=

(ga
∏
i∈β∗1

hi)
s, . . . , (ga

∏
i∈β∗m

hi)
s


The disjoint sets {ρ(i), i ∈ Ij} is β∗j . Note that if

T = e(g, g)a
q+1s then ct∗ is in valid form.

Query phase 2 The same as Phase 1

Guess A sends his guess b′ to simulator, the simulator then

outputs 0 to guess that T = e(g, g)a
q+1s if b′ = b;

otherwise, it outputs 1 to guess that T is a random
group element in GT .

When T = e(g, g)a
q+1s the simulator S gives a perfect

simulation so we have that

Pr
[
S(~Y , T = e(g, g)a

q+1s) = 0
]

=
1

2
+ AdvA

When T is a random group element the message M∗b
is completely hidden from the adversary and we have

Pr[S(~Y , T = R) = 0] =
1

2

Therefore, the simulator can play the Modified - BDHE
game with non-negligible advantage (equal to AdvA)
or she can break the security of Modified-BDHE as-
sumption.

4. PERFORMANCE ANALYSIS
From a performance perspective, it is worth mentioning

that our construction being an improvement of the scheme
proposed in [18], it will perform as good as in the worst
case, which is when the number of clauses is bigger than
the size of the boolean formula. And [18] was already one
of the best performing CP-ABE schemes. In the more fa-
vorable case where the number of clauses is smaller than
the size of the boolean formula our scheme performs much
better since the ciphertext becomes linear in the number of
clauses instead of size of the LSSS matrix, and decryption
time remains the smallest of all CP-ABE schemes proposed
in the literature. If we dig deeper, we can observe that
our new decryption algorithm just needs two pairings and
|I| multiplications in G, while in [18] it needs two pairings,
2|I| exponentiations, and 2|I|multiplications in G. Further-
more, since the user just needs to keep du0 secret, she can
delegate some computing works to a third party so that she
only needs to compute one pairing when decrypting, as we
will explain in section 5.1. To be more precise we give a
comparison table in table 2 where we see various schemes
proposed in the literature compared to ours.

Remark 2 Our scheme targets CP-ABE with fine grained
access policies that can be expressed as boolean formulas and
is the most efficient to do so. There is a category of effi-
cient algorithms targeting a more specific policy, the (t,n)-
threshold policy. Such policy can be expressed with boolean
formulas as a DNF and be supported by our construction.
In that case, our construction will be less efficient than the
dedicated algorithms, because the resulting DNF will have
a larger number of clauses. However our construction is
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Policy Ciphertext Private Key Decryption Time Assumption

[15] Tree O(N · `3.42) O(|B(u)| · `3.42) O(N · `3.42)P d-BDH
[19] CNF (2m+ 1) (2N + |B(u)|) (2m+ 1)P GDDHE

[26].1 LSSS (2`+ 1) (|B(u)|+ 2) (2|I|+ 1)P q-parallel BDHE
[18](3.5) LSSS (`+ 1) (kmax|B(u)|+ 2) 2P BDHE

[23] LSSS (3`+ 2) (2|B(u)|+ 2) (3|I|+ 1)P q-type

[2] LSSS O(1) O((B(u)∗.`∗)4) 3|I|P Parametrized
Ours LSSS/DNF (m′ + 1) (kmax|B(u)|+ 2) 2P Modified-BDHE

Figure 2: N denotes the maximal number of attributes in the system, ` denotes the number of rows of the
LSSS matrix, `∗ denotes the maximum of ` (that should be N), |B(u)| denotes the size of attribute set of a
decryption key, B(u)∗ denotes the maximum of |B(u)|, m is the number of clauses in a CNF or DNF. Note
that m′ = m if m ≤ `, else m′ = `. |I| is the number of attributes for a decryption key to satisfy a ciphertext
policy, P denotes Pairing computation, kmax denotes the maximal number of times where one attribute can
be reused in an access formula.

more generic as it supports more expressive policies than
simply threshold ones. Moreover threshold policy is not a
fine-grained access policy since there is no distinction among
attributes. It is therefore fair to say that our approach is the
most efficient for generic and fine-grained policies.

5. EXTENSIONS
In this section we discuss two extensions that can further

improve the performance or security of our construction.

5.1 Minimizing The User’s Storage
We first show that our scheme is still secure under the

same assumption if the user keeps only one element du0

secret. This is a very useful property in cloud-based sce-
nario as it implies that the user can store a minimal amount
of information and delegate some computations in the en-
cryption and decryption phases to the cloud. This means
that the client can thus save both storage and computation
power.

To establish this property, we need to prove that the sim-
ulator still can simulate the adversary when the user keeps
only the element du0 secret. More precisely, regarding a
challenge key d∗u (which can be used to decrypt the chal-
lenge ciphertext), the simulator now needs to provide d∗u
for the adversary except the secret part d∗u0

. We sketch the
proof as follows.

First, the simulator does the same as in the proof above,
implicitly sets α = α′ + aq+1 where aq+1 is the challenge
term from the assumption, therefore she can embed the
challenge term from the assumption to gα. Although simu-

lator doesn’t know ga
q+1

, she can manage to choose su such

that ga·su contains the term g−a
q+1

which cancels out the

unknown term ga
q+1

in gα. Thus, for the not challenge key
the simulator compute

du0 = gα
′
gar

∏
i=2,...,n∗

(ga
q+1−i

)xi = gα · ga·su

Note that with such chosen su, the simulator only can com-
pute the not challenge key du /∈ {d∗u} as explained in the
proof. Fortunately, for the challenge key d∗u the simula-
tor doesn’t need to compute d∗u0

, moreover the term gα

doesn’t appear anywhere except in the part d∗u0
, therefore

she doesn’t need to manage to choose s∗u to cancel out ga
q+1

,
she in fact can choose randomly s∗u and then uses the public
parameter to compute the secret key d∗u (of course except

the d∗u0
part). This leads to the fact that the simulator still

successfully simulates the adversary which means that the
security of the scheme is still unchanged. Finally, we re-
mark that the above trick also can be applied to some other
schemes such as [26, 18, 23] which share a similar key struc-
ture to ours. That shows that our scheme is still secure in
the case m > `.

5.2 Multi-Authorities
In this section, we show that our scheme can be extended

to support multi-authorities. The idea is to use the splitting
technique to split the master key gα into θ parts correspond-
ing to θ authorities. This efficiently solves the problem of
key escrow by the authority which is one of the weaknesses
of current CP-ABE schemes.

To be more precise, in the extract phase, the user needs
to get θ partial secrete keys from θ authorities to compute
the full secret key. On the other hand, the colluding of up
to θ − 1 curious authorities cannot compute the full secret
key of user. For completeness we provide the definition
of multi-authority ABE scheme and the security model in
Appendix A.

Regarding the construction, we will make some changes
on the setup algorithm and extract algorithm while we re-
tain the encryption and decryption algorithms. For the se-
curity, in our system we have an additional new type of
adversary called the curious authority (Type II adversary),
we need to prove that our scheme is secure against this
adversary. We detail the construction and the security as
follows.

5.2.1 Description of the multi-authorities construc-
tion

Setup(λ,B, θ): The algorithm takes as input the security
parameter, attribute universe description, and the max-
imum number of authorities θ in the system. It gen-
erates the parameters of the system as follows: Let
N = |B| be the maximal number of attributes in the
system and let (p,G,GT , e(·, ·)) be a bilinear group
system. The algorithm first picks a random generator
g ∈ G, a random scalar a ∈ Zp, and then computes ga.
Next, the algorithm generates N group elements in G
associated with N attributes in the system h1, . . . , hN .

Next, the authority i ∈ [1, . . . , θ] picks a random scalar
αi ∈ Zp. Computes gαi , e(g, g)αi , sets MSKi = gαi as
his secret key and e(g, g)αi as his public key.
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The algorithm implicitly sets α = α1 + · · ·+ αθ, then
computes e(g, g)α = e(g, g)α1 · · · e(g, g)αθ .

The global parameters are set

param = (g, ga, h1, . . . , hN , e(g, g)α)

Extract(u,B(u),MSKi, param): This algorithm is run by
the authority i-th. For notational simplicity, assume
that the set of attributes of user u is B(u) = (Att1, . . . , Attk),
k ≤ N . Picks randomly scalar siu ∈ Zp, the i-th partial

secret key for user u is diu = (diu0
, d
′i
u0
, diu1

, . . . , diuk )
where:

diu0
= gαi · ga·s

i
u , d

′i
u0

= gs
i
u , diu1

= h
siu
1 , . . . , diuk = h

siu
k

The above algorithm is run θ times by θ different au-
thorities. Finally, the full secret key of user is set

du0 = gα · ga·su , d′u0
= gsu , du1 = hsu1 , . . . , duk = hsuk

where: su = s1u + · · ·+ sθu.

Encrypt(M, β, param): unchanged.
We notice that (hρ(i))i∈Ij , j = 1, . . . ,m, are disjoint
subsets.

Decrypt(ct, du,B(u), param): unchanged

Remark 3 Compared to other existing multi-authority ABE
schemes supporting fine-grained access policies [20, 24] the
advantage of our scheme is that it achieves ful user pri-
vacy and not partial user privacy as in their schemes. In
fact their scheme aim at distributing the set of attributes
among different authorities and they do not efficiently solve
the problem of key escrow, they simply distribute the load
and responsibility among different authoritites by making
each authority responsible for a disjoint set of attributes (but
the authorities can still decrypt messages where the access
policy is expressed with attributes from only one authority).
Moreover, the efficiency of our scheme is better than the
efficiency of their schemes in terms of ciphertext size and
decryption time.

5.2.2 Security Proof
Regarding the Type I adversary, it is the same as in the

section 3.1, here we will focus on the Type II adversary.

Theorem 2 Assume that β∗ is the challenge access policy
and from β∗ construct the corresponding challenge LSSS
matrix L’ of size `′ × n′ and map function ρ′. Describe
β∗ = β∗1 ∨ · · · ∨ β∗m where β∗i , i = 1, . . . ,m are disjoint sets
and then construct the corresponding challenge LSSS ma-
trix L∗ of size `∗ × n∗ and map function ρ∗. If those LSSS
matrices satisfy `′, n′, `∗, n∗ ≤ q, our scheme is selectively
secure against Type II adversary under the Modified-BDHE
assumption.

Proof. Compare to the Type I adversary, for the Type
II adversary the simulator needs to provide additional θ− 1
partial master keys, without loss of generality we suppose
that these are MSK1, . . . ,MSKθ−1.

The simulator simply picks randomly θ−1 scalars α1, . . . ,
αθ−1 and implicitly sets αθ = α−α1−· · ·−αθ−1. Note that
the simulator doesn’t know αθ, however she knows e(g, g)α

thus she still can compute e(g, g)αθ . Therefore, she can pro-
vide the master keys MSK1, . . . ,MSKθ−1 to the adversary.
The rest of the proof still remains.

6. CONCLUSION
In this paper, we propose a CP-ABE scheme that extends

the solution of [18]. Our scheme is more efficient than [18]
when the size of the boolean formula is bigger than the
number of clauses, otherwise it has the same efficiency. Our
construction also achieves fast decryption time, hence it is
already an improvement to [18] which was one of the best
constructions for CP-ABE supporting fine grained policies.
On top of that, our scheme can be extended to allow the user
to keep only part of the encryption and decryption material
secret, which lends itself well to the case where the user has
limited storage and computation capabilities or when the
client is taking advantage of a cloud. Finally we proposed a
support for multiple non-colluding authorities to effectively
mitigate the problem of key-escrow by the authority that
extracts the key.
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APPENDIX
A. MULTI-AUTHORITY CP - ABE

Formally, a multi-authority CP-ABE scheme consists of
four probabilistic algorithms.

Setup(1λ,B, θ): The setup algorithm takes the security pa-
rameter λ, the description of the attributes’ universe
B, and the maximum number of authorities in the sys-
tem θ as inputs. It generates θ partial master key
MSK1, . . . ,MSKθ, as well as the global public parame-
ters param of the system.

Extract(u,B(u),MSKi, param): Takes as input a user u and
his set of attributes B(u), as well as the public parame-
ters param and a partial master key MSKi (1 ≤ i ≤ θ).
It outputs the partial user’s private key diu. This algo-
rithm is run θ times by θ different authorities. Finally,
the full secret key of user is computed from θ partial
user’s private key.

Encrypt(M,A, param): Takes as input a message M, an
access policy A over the universe of attributes and the
global public parameters param. It outputs the cipher-
text ct along with a description of the access policy
A.

Decrypt(ct, du, param): Takes as input the ciphertext ct,
the private key du of user u, together with the global
public parameters param. It outputs the messageM if
and only if B(u) satisfies A. Otherwise, it outputs ⊥.

Security Model.
We consider two types of adversary for a multi-authority

CP-ABE scheme, named Type I adversary A1 (related to
Game I below) and Type II adversary A2 (related to Game
II below).

In fact, A1 represents a third party adversary against the
multi-authority CP-ABE scheme. Then, A1 does not know
any partial master secret key. On contrary, the adversary
A2 represents a curious authority who generates partial se-
cret key of users. Then, besides knowing other information
as A1 does A2 also knows additionally at most θ−1 partial
master secret keys.

It is straightforward to realize that a multi-authority CP-
ABE scheme is secure if it resists Type II adversary.

Game I: it is almost the same as the definition of security
model in the section 2.1.
Game II: it is also almost the same as the definition of
security model in the section 2.1, except that the simulator
has to provide at most θ − 1 partial master keys for the
adversary.

B. CONVERSION FROM A BOOLEAN FOR-
MULA TO A CORRESPONDING LSSS
MATRIX

In this section, we recall from [20] the algorithm to con-
vert from a boolean formula to a corresponding LSSS ma-
trix. The algorithm works as follows.

We first consider the boolean formula as an access tree,
where interior nodes are AND and OR gates and the leaf
nodes correspond to attributes. We will use (1, 0, . . . , 0)
as the sharing vector for the LSSS matrix. We begin by
labeling the root node of the tree with the vector (1) (a
vector of length 1). We then go down the levels of the tree,
labeling each node with a vector determined by the vector
assigned to its parent node. We maintain a global counter
variable c which is initialized to 1.

If the parent node is an OR gate labeled by the vector v,
then we also label its children by v (and the value of c stays
the same). If the parent node is an AND gate labeled by
the vector v, we pad v with 0’s at the end (if necessary) to
make it of length c. Then we label one of its children with
the vector v|1 (where | denotes concatenation) and the other
with the vector (0, . . . , 0)| − 1, where (0, . . . , 0) denotes the
zero vector of length c. Note that these two vectors sum to
v|0. We now increment the value of c by 1. Once we have
finished labeling the entire tree, the vectors labeling the leaf
nodes form the rows of the LSSS matrix. If these vectors
have different lengths, we pad the shorter ones with 0’s at
the end to arrive at vectors of the same length.
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