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ABSTRACT

Chu et al. (ASIACCS 2012) proposed group signature with
time-bound keys (GS-TBK) where each signing key is asso-
ciated to an expiry time τ . In addition to prove the mem-
bership of the group, a signer needs to prove that the ex-
piry time has not passed, i.e., t < τ where t is the current
time. A signer whose expiry time has passed is automatically
revoked, and this revocation is called natural revocation.
Simultaneously, signers can be revoked before their expiry
times have passed due to the compromise of the credential.
This revocation is called premature revocation. A nice prop-
erty of the Chu et al. proposal is that the size of revocation
lists can be reduced compared to those of Verifier-Local Re-
vocation (VLR) group signature schemes, by assuming that
natural revocation accounts for most of signer revocations in
practice, and prematurely revoked signers are only a small
fraction. In this paper, we point out that the definition of
traceability of Chu et al. did not capture unforgeability of
expiry time of signing keys which guarantees that no adver-
sary who has a signing key associated to an expiry time τ can
compute a valid signature after τ has passed. We introduce
a security model that captures unforgeability, and propose
a GS-TBK scheme secure in the new model. Our scheme
also provides the constant signing costs whereas those of
the previous schemes depend on the bit-length of the time
representation. Finally, we give implementation results, and
show that our scheme is feasible in practical settings.
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1. INTRODUCTION

1.1 Group Signatures and Revocation
Group signatures, proposed by Chaum and van Heyst [19],

provide a functionality to anonymously prove the member-
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ship of a group. After a seminal work by Boneh, Boyen,
and Shacham (BBS) [11], many pairing-based constructions
have been proposed so far, e.g., [10, 14, 34, 35, 31, 28, 25,
21, 49]. Recently, lattice-based constructions also have been
proposed, e.g., [26, 30]. Among them, providing the revoca-
tion functionality1 is regarded as one of the major research
topics of group signatures, where an authority can revoke
the membership of users. One reason of the difficulties to
provide revocation functionality in the group signature con-
text is that a verifier needs to publicly confirm whether an
anonymous signer has been revoked or not. To overcome
this difficulty, several attempts have been made so far.

In revocable group signatures, there are two checks in the
verification algorithm, the verification check and the revo-
cation check. Then, almost all currently known revocable
group signature schemes can be classified as follows.

1. Revoked signers cannot compute a signature that passes
the verification check (and therefore no revocation check
procedure is required in this type) [3, 4, 32, 33, 41, 44,
47, 46, 54].

2. Any signer can compute a signature that passes the
verification check, but a verifier can check whether the
signer has been revoked or not by the revocation check
procedure [12, 15, 18, 35, 42, 43, 53].

An example of the first type scheme is the Libert-Peters-
Yung revocable group signature scheme [33]: a ciphertext
of broadcast encryption is published such that non-revoked
signers are regarded as authorized users and they can de-
crypt the ciphertext. A non-revoked signer proves the de-
cryption ability of the ciphertext for proving that the signer
is not revoked. Since revoked signers cannot decrypt the ci-
phertext, revoked signers cannot compute a signature that
passes the verification check in the first place. In this type, a
signer not only needs to prove the membership of the group
but also proves that the signer is not revoked, and the com-
putational cost of the signing algorithm is relatively high
compared to that of the second type scheme. On the other
hand, the computational cost of the verification algorithm
is relatively low compared to that of the first type scheme.
More precisely, the verification cost is constant in terms of
the number of revoked signers.
1We clearly distinguish revocation and anonymity revoca-
tion. The former means that signing keys are expired
whereas the latter means that an authority called opener
identifies the signer.
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Table 1: Efficiency Comparison of group signature schemes with time-bound keys

Scheme Group public Signature Signing Revocation Expiration Signing Verification BU/
key size size key size list size info size cost cost UET

Chu et al. [20] O(1) O(log T ) O(log T ) O(Rpre log T ) - O(log T ) O(Rpre)
1 NO

Liu et al. [37] O(log T ) O(1) O(log T ) O(Rpre log T ) - O(log T ) O(Rpre)
1 NO

Ours O(1) O(1) O(log T ) O(Rpre) O(log T ) O(1) O(Rpre) YES

T : The maximum size of expiry time.
Rpre: The number of “prematurely” revoked signers.
BU: Backward Unlinkability
UET: Unforgeability of Expiry Time of Signing Keys

1 More precisely, this complexity is represented as O(log T +Rpre). Here, we assume that log T < Rpre.

An example of the second type scheme is the Boneh-
Shacham Verifier-Local Revocation (VLR) group signature
scheme [12]: a signer is not involved in the revocation proce-
dure. Thus, any signer can compute a signature that passes
the verification check. In order to check whether the signer
of a signature is revoked or not, the verifier runs the revoca-
tion check procedure by using a revocation list RLt that con-
tains information of revoked signers at time period t. Since
a signer just needs to prove the membership of the group,
the computational cost of the signing algorithm is relatively
low compared to that of the first type scheme. On the other
hand, the computational cost of the verification algorithm
is relatively high compared to that of the first type scheme,
due to the additional revocation check procedure. Usually,
the computational cost of the revocation check linearly de-
pends on the size of revocation lists. Thus, reducing the size
of revocation lists is highly desirable. However, information
of revoked signers is added to the revocation list at each
time, and the size of revocation list grows periodically.

1.2 Group Signatures with Time-bound Keys
Chu et al. [20] proposed group signature with time-bound

keys (GS-TBK). We can regard that GS-TBK has the prop-
erties of both revocation types simultaneously. An expiry
time τ is set to each signing key, and in addition to prove
the membership of the group, a signer needs to prove that
the expiry time has not passed, i.e., t < τ where t is the cur-
rent time. Since signers whose expiry time has passed cannot
compute a signature that passes the verification check in the
first place, this can be classified as the first type. Chu et al.
called this revocation “natural” revocation. Simultaneously,
signers can be revoked before their expiry times have passed
due to the compromise of the credential. Since a verifier runs
the revocation check procedure, this can be classified as the
second type. Chu et al. called this revocation “premature”
revocation.
A nice property of the Chu et al. proposal is that the size

of revocation lists can be reduced compared to those of VLR
group signature schemes, by assuming that natural revoca-
tion accounts for most of signer revocations in practice, and
prematurely revoked signers are only a small fraction. That
is, a revocation list RLt just needs to contain information
of revoked signers whose expiry time τ has not passed (i.e.,
t < τ). A small size revocation list leads to reduce the costs
of revocation check.

1.3 Our Target and Contribution: A New Model
and an Efficient Construction

We point out that the definition of traceability of Chu et
al. [20] (and its journal version [37] also) did not capture the
following case:

Forgery of expiry time : An adversary who has a signing
key associated to an expiry time τ may compute a valid
signature after τ has passed.

More precisely, the winning condition of the adversary of
traceability in [20, 37] is defined as follows. Let (σ∗,m∗) be
the output of the adversary and t∗ be the time that the ad-
versary outputs (σ∗,m∗). Then, it is required that (1) σ∗ is
a valid signature on the message m∗ with the revocation list
RLt∗ , (2) σ

∗ is not obtained from the signing queries with t∗

on m∗, and (3) σ∗ is NOT traced to a signer in CU \ RUt∗
or the trace is failed, where CU is the set of corrupted sign-
ers, i.e., the adversary has their signing keys, and RUt∗ is a
set of revoked signers at t∗. It seems natural to addition-
ally consider the case that (4) σ∗ is traced to a signer in
CU \ RUt∗ and τ∗ < t∗ holds where τ∗ is the expiry time of
the corresponding signing key of the traced signer. This un-
forgeability of expiry time should be considered due to the
usage of time-bound signing keys. We remark that we do
not find any particular attack against the schemes [20, 37]
in the new model. Nevertheless, it seems meaningful to pro-
vide a provably secure scheme in the new model. In addition
to unforgeability of expiry time, we also consider backward
unlinkability [42] and non-frameability under the dishonest
group manager setting that were not considered in [20, 37].

Next target is efficiency since the signing cost and the sig-
nature size of the Chu et al. scheme [20] linearly depend on
log T where T is the maximum-length of time t. They apply
the encoding technique proposed by Lin and Tzeng [36] for
proving t < τ . In the journal version [37], by using accumu-
lators [46] together with the encoding, the signature size can
be constant whereas the signing cost still linearly depends
on log T .

Our Contribution: In this paper, we define a new model
of GS-TBK that captures unforgeability of expiry time of
signing keys, and propose a scheme secure in this model.
Moreover, in our scheme, the cost of the signing algorithm
is constant whereas those of the previous schemes [20, 37]
depend on the bit-length of the time representation. In ad-
dition to this, we further reduce the size of the revocation
list compared to those of the previous ones. We give the
efficiency comparison in Table 1.
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For proving that the expiry time has not passed, we em-
ploy the Ohara et al. methodology [47] which efficiently im-
plements the Libert-Peters-Yung revocable group signature
scheme [33] in the random oracle model. Ohara et al. em-
ployed the Complete Subtree (CS) method [45] for revoca-
tion, as in the Libert-Peters-Yung (CS-based) construction,
where each signer is assigned to a leaf node of a tree struc-
ture. The Libert-Peters-Yung scheme uses an identity-based
encryption (IBE) scheme for instantiating the CS method in
the public key setting [23]. Ohara et al. used a signature
scheme instead of using an IBE scheme. A revocation list
contains signatures of nodes which are determined by the
CS method. In other words, signatures for revoked sign-
ers are not contained in the list. Non-revoked signers can
prove that a signature related to the signers is contained
in the list. We employ the Ohara et al. methodology such
that a time t and an expiry time τ are assigned to leaves in
a sequential order, and at the time t, leaves associated to
1, 2, . . . , t − 1 are revoked. For the natural revocation, the
group manager broadcasts expiry information eit. If t < τ ,
then a signer whose signing key is not expired can prove
that τ is not revoked by using eit. This eit helps signers
to efficiently prove that an expiry time τ has not passed
against the current time t where t < τ without showing τ .
One drawback of our construction is that signers need to
download expiration information eit at each time t though
neither encryption for sending eit nor updating secret key is
required. In the meantime, no additional expiry time-related
value for signing is required in the previous schemes [20, 37].
At the expense of this drawback, we can achieve O(1) sign-
ing cost and O(Rpre)-size revocation list whereas those of
the previous schemes are O(log T ) and O(Rpre log T ) respec-
tively, where T is the maximum size of expiry time and Rpre

is the number of “prematurely” revoked signers. Remark
that in our scheme still signers are not required to obtain
signer revocation-related information, i.e., revocation lists,
for generating signatures. Moreover, eit is independent to
the premature revocation, and its size does not depend on
the number of revoked signers.
Finally, we implement our scheme and show that our scheme

provides enough efficiency in practice. In our implementa-
tion we employ (type 3) Barreto-Naehrig (BN) curves [7]
with 254-bit prime order, and use the RELIC library [2].

1.4 Related Work
Malina et al. [38, 39] also proposed group signatures with

time-bound membership. However, different from ours and
Chu et al. [20, 37], they do not consider premature revoca-
tion. Moreover, some information of expiry time (index k
in [38, 39]) has to be contained in a signature. As mentioned
in [20, 37], signers may not wish to leak such information
(even partially) because it may be used to infer signers’ iden-
tity. Hence, as in [20, 37], a signer is allowed to completely
(i.e., in the sense of zero-knowledge proofs) hide his/her ex-
piry time in our scheme.
The first VLR group signature scheme was proposed by

Boneh and Shacham [12], and Nakanishi and Funabiki [42]
considered the notion called backward unlinkability. A sig-
nature contains a target group (i.e., GT ) element in their
scheme. Later, they proposed a more efficient VLR group
signature scheme [43] whose signature contains base group
(or Zp) elements only. Hence, we employ the Nakanishi-
Funabiki scheme proposed in [43] with a slight modification

due to the curve selection since they employed (type 2) MNT
curves [40] whereas we employ (type 3) BN curves.

2. PRELIMINARIES
In this section, we define the Complete Subtree algorithm

for time-bound keys (CS-TBK), complexity assumptions, and
the BBS+ signature scheme [6]. First, we give the definition
of the CS-TBK algorithm which implements (a special case
of) the CS method [45]. Let BT be a binary tree that has
T leaf nodes where T is the maximum size of time. The
algorithm finds subtrees that cover all non-revoked nodes.
Note that, in the Ohara et al. revocable group signature
scheme, each user is assigned to a leaf whereas each time is
sequentially assigned to a leaf node in the algorithm.

Definition 2.1 (The CS-TBK Algorithm). This algo-
rithm takes as input a binary tree BT and the current time t,
and outputs a set of nodes. If η is a non-leaf node, then ηleft
and ηright denote the left and right child of η, respectively.
Each time is sequentially assigned to a leaf node. Path(η)
denotes the set of nodes on the path from η to the root node.
The description of the algorithm is given below.

CS-TBK(BT, t) :

X, Y← ∅;

∀1 ≤ i < t

Add Path(η) to X where i is assigned to η

∀x ∈ X

If xleft 6∈ X then add xleft to Y

If xright 6∈ X then add xright to Y

If Y = ∅ then add root to Y

Return Y

In our GS-TBK scheme, each time t is assigned to a leaf
node, and an expiry time τ is also assigned to a leaf node.
That is, one leaf node is shared by multi signers if their
expiry times are the same. If τ is assigned to a leaf node η,
the group manager generates signatures of nodes contained
in Path(η), and then these signatures are issued to signers
whose expiry time is τ . Remark that randomnesses of these
signatures are different for signers even they share the same
leaf node. At the current time t, all leaf nodes of past time,
i.e., all left-side leaves of the leaf node assigned to t are
revoked.2 Next, the group manager generates signatures of
nodes generated by the CS-TBK algorithm, and publishes
signatures as expiration information eit at time t. If t < τ ,
then the corresponding signers have a signature of a node
such that eit contains a signature of the same node.

We give an example in the case of T = 8 as follows. We
show a case that τ has not passed in Fig 1, and also show a
case that τ has passed in Fig 2. Let τ be assigned to the node
11. Then, signers whose expiry time is τ have signatures of
nodes 1, 2, 5, and 11. In Fig 1, nodes 8 and 9 are revoked.
Then, nodes 3 and 5 are selected as roots of subtrees. Thus,

2In the usual CS method, a user is associated to a leaf node,
and who will be revoked is not predictable. So, the size of
Y is O(r log(N/r)) where N is the number of users (leaves),
and r is the number of revoked signers. On the other hand,
in our usage, though a time is associated to a leaf node as
usual, leaves are “sequentially” revoked. So, the size of Y is
at most log T . This is essentially the same as the encoding
for attribute-based encryption with range membership [5].
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Time has 
passed

Figure 1: τ has not passed

Time has 
passed

Figure 2: τ has passed

eit contains signatures of nodes 3 and 5. Then, the signers
can prove that they have a signature of the node 5 (without
revealing the node itself). In Fig 2, eit contains a signature
of the node 3 only. Since τ has passed, signatures of 1, 2, 5,
and 11 are not contained in eit.
Next, we define complexity assumptions. Let p be a λ-bit

prime, G1,G2 and GT are groups of order p, e : G1 ×G2 →
GT is a bilinear map, and g, ĝ are generators of G1 and G2,
respectively. We use the asymmetric setting (type 3 curves),
i.e., G1 6= G2, and no efficient isomorphism between G1 and
G2 is known.
Next, we define decision Diffie-Hellman assumption on G1

(DDH1) as follows.

Definition 2.2 (DDH1 Assumption). Let D := (G1,

G2,GT , e, g, ĝ), a, b
$
← Z

∗
p and Z

$
← G1 \ {g

ab}. We say that
the DDH1 assumption holds if for any probabilistic polyno-
mial time (PPT) adversary A, the advantage AdvDDH1(λ) :=
|Pr[A(D, ga, gb, gab) → true] − Pr[A(D, ga, gb, Z) → true]|
is negligible.

Next, we define the decision linear (DLIN) assumption. Here,
we use an asymmetric variant [27].

Definition 2.3 (DLIN Assumption). Let D := (G1,

G2,GT , e, g̃, ĝ), a, b, c, d
$
← Z

∗
p, g

′ := g̃c, ĝ′ := ĝc, h := g̃d,

ĥ := ĝd, and Z
$
← G1 \ {h

a+b}. We say that the DLIN
assumption holds if for any PPT adversary A, the advantage

AdvDLIN(λ) := |Pr[A(D, g
′, ĝ′, h, ĥ, g̃a, g′

b
, ha+b) → true] −

Pr[A(D, g′, ĝ′, h, ĥ, g̃a, g′
b
, Z)→ true]| is negligible.

Next, we define the q-Strong Diffie-Hellman (q-SDH) as-
sumption as follows. Here, we use an asymmetric vari-
ant [16].

Definition 2.4 (q-SDH Assumption). Let D := (G1,

G2,GT , e, g, ĝ) and x
$
← Z

∗
p. We say that the q-SDH as-

sumption holds if for any PPT adversary A, the advantage

Advq-SDH(λ) := Pr[A(D, gx, gx
2

, . . . , gx
q

, ĝx)→ (c, g1/(x+c))
∈ Zp \ {−x} ×G1] is negligible.

Next, we define the discrete logarithm (DL) assumption (on
G1) as follows.

Definition 2.5 (DL Assumption). Let D := (G1,G2,

GT , e, g, ĝ) and x
$
← Z

∗
p. We say that the DL assumption

holds if for any PPT adversary A, the advantage AdvDL(λ) :=
Pr[A(D, gx)→ x] is negligible.

Next, we introduce the BBS+ signature scheme [6], espe-
cially, the BBS+ signature scheme over a type 3 curve [16].
This scheme allows to sign L messages, and is existential
unforgeable against chosen message attack under the q-SDH
assumption. Let g, h0, h1, . . . , gL be generators of G1, ĝ be
a generator of G2, and e : G1×G2 → GT be a bilinear map.

The BBS+ signature scheme [6]

Key Generation: Choose γ
$
← Z

∗
p, and let w = ĝγ . The

verification key is vk = w, and the secret key is sk = γ.

Sign: For the messages (m1, . . . ,mL) ∈ Z
L
p , choose ξ, ζ

$
←

Zp and compute A = (ghζ0h
m1

1 · · ·hmL
L )

1
ξ+γ . Output

the signature σ = (A, ξ, ζ).

Verify: For a signature σ = (A, ξ, ζ) and messages (m1, . . . ,

mL), if e(A, ĝ
ξvk) = e(ghζ0h

m1

1 · · ·hmL
L , ĝ) holds, then

output 1, and otherwise output 0.

3. DEFINITION OF GROUP SIGNATURES

WITH TIME-BOUND KEYS
In this section, we give the definition of GS-TBK. We

mainly follow the definition of Chu et al. [20, 37]. We ad-
ditionally introduce unforgeability of expiry time of signing
keys, backward unlinkability, and non-frameability against
malicious group manager. Moreover, our model introduces
expiration information eit.

In contrast to the model of group signatures [8, 9, 13,
52], a revocation token grti is generated when a signer i
joins the group. Revocation tokens are modified according
to the current time period t. We denote it grti,t, and grti,t is
contained in the revocation list RLt if the signer i is revoked
at t, and is used for the revocation check. We emphasize
that if τi < t, then grti,t does not have to be contained in
RLt since expiry time has passed. On the other hand, in the
case of VLR group signatures, all grti,t, . . . , grti,T need to
be contained in RLt. So, the size of revocation list can be
reduced due to time-bound keys. Moreover, in the model,
a signing key gski is associated with an expiry time τi, and
the signing algorithm takes as input the current time t.

A GS-TBK scheme GS-T BK consists of six algorithms:
(GKeyGen, Join/Issue, Revoke, Sign, Verify, Open) which are
defined as follows.

Definition 3.1 (Syntax of GS-TBK).

GKeyGen: The group key generation algorithm takes as input
a security parameter λ ∈ N, and outputs a group public
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key gpk and a master secret keymsk. Set a registration
table reg := ∅. We assume that the maximum size of
expiry time T also contained in gpk.

Join/Issue: This is the pair of interactive algorithms which
implement the joining protocol run by a user i and the
group manager. The joining algorithm Join takes as
input gpk, whereas the issuing algorithm Issue takes as
input msk, reg, and an expiry time τi. Upon successful
completion of the protocol, the Join algorithm outputs
a signing key gski, τi, and a user secret key uski, and
the Issue algorithm outputs reg where reg[i] stores a
revocation token grti and τi.

Revoke: The revocation algorithm takes as input gpk, msk,
t, reg, and a set of signers to be revoked at t RUt. Let a
set of their revocation tokens grti and its expiry time τi
be {reg[i] := (grti, τi)} which are contained in reg. Set
RLt := ∅. For each i, the algorithm computes grti,t if
τi has not passed, i.e., t < τi, and stores grti,t to RLt.
Moreover, the algorithm computes expiration informa-
tion eit. Finally, the algorithm outputs (eit,RLt).

Sign: The signing algorithm takes as input gpk, gski, uski,
a message to be signed m, the current time t, and eit,
and outputs a signature σ.

Verify: The verification algorithm takes as input gpk, t, σ,
m, and RLt, and outputs either valid or invalid.

Open: The opening algorithm takes as input gpk, msk, t,
reg, σ, m, and RLt, and outputs the identity of the
signer i or ⊥.

The correctness is defined as follows. This guarantees that
a group signature generated by a signing key with τi at time
t∗, where t∗ < τi and the signer i is not revoked at time t∗,
is valid, and the opening result correctly indicates i.

Definition 3.2 (Correctness). For any PPT adver-
sary A and the security parameter λ ∈ N, we define the
experiment Expcorr

GS-TBK,A(λ) as follows.

Expcorr
GS-TBK,A(λ) :

(gpk,msk, reg)← GKeyGen(λ); HU := ∅

(i,m, t∗)← AAddU,RReg,Revoke(gpk); i ∈ HU \ RUt∗ ; t
∗ < τi

σ ← Sign(gpk, gski, uski,m, t
∗, eit∗)

j ← Open(gpk,msk, t∗, reg, σ,m,RLt)

Return 1 if the following holds :

Verify(gpk, t∗, σ,m,RLt∗) = invalid ∨ i 6= j

Otherwise return 0

• AddU: The add user oracle allows an adversary A to
add honest users to the group. On input an identity
i and τi, this oracle computes (gski, τi) by running
Join/Issue. i is added to HU.

• RReg: On input i, the read-registration-table oracle re-
veals the content of the registration table reg[i].

• Revoke: Let t− 1 be the time that the oracle is called.
The revocation oracle allows A to revoke honest users.
On input identities RUt, this oracle runs RLt ← Revoke

(gpk,msk, t, reg,RUt), and outputs (eit,RLt).

We say that GS-T BK is correct if the advantage

Advcorr
GS,A(λ) := Pr[Expcorr

GS-TBK,A(λ) = 1]

is negligible for any PPT adversary A.

The anonymity with backward unlinkability (BU-anonymity)
is defined as follows. This guarantees that no signer identity
is revealed from signatures even the corresponding signer
has been revoked. We follow selfless CPA anonymity [20,
37] where an adversary is allowed to obtain signing keys ex-
cept the challenge users’ keys,3 and is not allowed to access
the open oracle.

Definition 3.3 (BU-Anonymity). For any PPT ad-
versary A and a security parameter λ ∈ N, we define the
experiment Expbu-anon

GS-TBK,A(λ) as follows.

Expbu-anon
GS-TBK,A(λ) :

b
$
← {0, 1}

(gpk,msk, reg)← GKeyGen(λ)

HU := ∅; CU := ∅; RU := ∅

b′ ← AAddU,WReg,USK,Revoke,GSign,Chb(gpk)

Return 1 if b′ = b, and 0 otherwise

• AddU: The add user oracle allows an adversary A to
add honest users to the group. On input an identity
i and τi, this oracle computes (gski, τi) by running
Join/Issue. i is added to HU.

• WReg: On input i and M , the write-registration-table
oracle updates reg[i] to M .

• USK: On input i, the user-secret-keys oracle reveals
(gski, uski) and adds i to CU.

• Revoke: Let t− 1 be the time that the oracle is called.
The revocation oracle allows A to revoke honest users.
On input identities RUt, this oracle runs RLt ← Revoke

(gpk,msk, t, reg,RUt), outputs (eit,RLt), adds RUt to
RU. Remark that i0 and i1 can be revoked if t∗ < t.

• GSign: On input i and m where i ∈ HU, the signing or-
acle computes σ ← Sign(gpk, gski, uski,m, t, eit) and
returns σ. Here, t is the current time that the oracle
called.

• Chb: On input i0, i1, where i0, i1 ∈ HU, and m∗,
the challenge oracle computes σ∗ ← Sign(gpk, gskib ,
uskib ,m

∗, t∗, eit∗) and returns σ∗. Here, i0, i1 6∈ CU,
i0, i1 6∈ RU, t∗ < τi0 , and t

∗ < τi1 must hold.

We say that GS-T BK is BU-anonymous if the advantage

Advbu-anon
GS-TDL,A(λ) := |Pr[Expbu-anon

GS-TBK,A(λ) = 1]− 1/2|

is negligible for any PPT adversary A.

3We call anonymity full anonymity if the adversary is al-
lowed to obtain all signing keys. As a theoretical result,
selfless anonymity is weaker than full anonymity since the
former can be constructed from one-way functions and NIZK
arguments [17] whereas the latter implies pubic key encryp-
tion [1, 24, 48]. We employ the selfless anonymity in this
paper, as in the previous works [20, 37] and VLR group sig-
nature schemes since a revocation token can be computed
by a signing key.
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The traceability is defined as follows. We mainly follow the
definition of [20, 37] except that we additionally consider
unforgeability of expiry time of signing keys (the winning
condition (4) in the experiment). Traceability guarantees
that no adversary who does not have a signing key can com-
pute a valid signature. Moreover, it guarantees that a valid
signature can be traced, and no adversary can produce a
valid signature using a secret key after the expiry time of
the signing key has passed.

Definition 3.4 (Traceability). For any PPT adver-
sary A and a security parameter λ ∈ N, we define the exper-
iment Exptrace

GS-TBK,A(λ) as follows.

Exptrace
GS-TBK,A(λ) :

(gpk,msk, reg)← GKeyGen(λ); CU := ∅; SSet := ∅

(σ∗,m∗, t∗)← ASndToI,RReg,Revoke,GSign(gpk)

Return 1 if (1) ∧ (2) ∧ ((3) ∨ (4)) holds :

(1) Verify(gpk, t∗, σ∗,m∗,RLt∗) = valid

(2) (t∗, σ∗,m∗) 6∈ SSet

(3) i← Open(gpk,msk, t∗, reg, σ∗,m∗,RLt∗)

∧ (i 6∈ CU \ RUt∗ ∨ i = ⊥)

(4) i← Open(gpk,msk, t∗, reg, σ∗,m∗,RLt∗)

∧ i ∈ CU \ RUt∗ ∧ τi < t∗

Otherwise return 0

• SndToI: The send-to-issuer oracle allows A to engage
the joining protocol on behalf of the corrupted user i.
Finally, gski, τi, and uski are given to A, and i is
added to CU.

• RReg: On input i, the read-registration-table oracle re-
veals the content of the registration table reg[i].

• Revoke: Let t− 1 be the time that the oracle is called.
The revocation oracle allows A to revoke honest users.
On input identities RUt, this oracle runs RLt ← Revoke

(gpk,msk, t, reg,RUt), and outputs (eit,RLt).

• GSign: On input i and m, the signing oracle com-
putes σ ← Sign(gpk, gski, uski,m, t, eit), returns σ,
and adds (t, σ,m) to SSet . Here, t is the current time
that the oracle called.

We say that GS-T BK is traceable if the advantage

Advtrace
GS-TBK,A(λ) := Pr[Exptrace

GS-TBK,A(λ) = 1]

is negligible for any PPT adversary A.

The non-frameability is defined as follows. This guarantees
that no adversary can produce a valid signature which is
traced to an honest signer. Our definition allows that the
group manager is corrupted, i.e., an adversary is given msk
and is allowed to read reg. Here, honest means that the
signer (i∗ in the experiment) is added to the group via the
SndToU oracle, and the USK oracle for i∗ is not called. That
is, the adversary does not know uski∗ .

Definition 3.5 (Non-frameability). For any PPT ad-
versary A and a security parameter λ ∈ N, we define the
experiment Expnf

GS-TBK,A(λ) as follows.

Expnf

GS-TBK,A(λ) :

(gpk,msk, reg)← GKeyGen(λ)

HU := ∅; CU := ∅; SSet := ∅

(σ∗,m∗, t∗, i∗)← ASndToU,RReg,USK,GSign(gpk,msk)

Return 1 if the following holds :

(1) Verify(gpk, t∗, σ∗,m∗,RLt∗) = valid

(2) i∗ ← Open(gpk,msk, t∗, reg, σ∗,m∗,RLt∗)

(3) i∗ ∈ HU ∧ i∗ 6∈ CU ∧ (t∗, σ∗,m∗) 6∈ SSet

Otherwise return 0

• SndToU: The send-to-user oracle allows A to engage
a joining protocol of the user i on the behalf of the
corrupted group manager. i is added to HU.

• RReg: On input i, the read-registration-table oracle re-
veals the content of the registration table reg[i].

• USK: On input i, the user-secret-keys oracle reveals
(gski, uski) and adds i to CU.

• GSign: On input i and m, the signing oracle com-
putes σ ← Sign(gpk, gski, uski,m, t, eit), returns σ,
and adds (t, σ,m) to SSet . Here, t is the current time
that the oracle called.

We say that GS-T BK is non-frameable if the advantage

Advnf

GS-TBK,A(λ) := Pr[Expnf

GS-TBK,A(λ) = 1]

is negligible for any PPT adversary A.

4. THE PROPOSED GS-TBK SCHEME
In this section, we give the proposed GS-TBK scheme. For

the natural revocation, we employ the Ohara et al. revocable
group signature scheme [47], and for the premature revoca-
tion, we employ the Nakanishi-Funabiki VLR group signa-
ture scheme [43]. We slightly modify the Nakanishi-Funabiki
scheme since our scheme is constructed over a type 3 curve
whereas the Nakanishi-Funabiki scheme is constructed over
a type 2 curve. As mentioned in [42, 43], revocation to-
kens can be implicitly used for tracing signers. That is, the
group manager computes grti,t for all grti, and checks the
revocation check equation. If the equation holds with grti,t,
then the signature is generated by the user i at time T . This
methodology is essentially the same as Bichsel et al. [10] and
its follow up works [22, 49]. Even though the opportunity
of opening is not frequent, this methodology requires O(N)-
times revocation check procedures for opening where N is
the number of total users. Hence, we simply employ the
ElGamal encryption that is employed to encrypt a user cer-
tificate (A in the scheme). Then, the opening cost is O(1).
For employing the ElGamal encryption scheme, we assume
that the DDH problem is hard on G1 (which naturally holds
since we employ type 3 curves).

High Level Description of Our Revocation Meth-
ods: Before giving our scheme, we give a high level de-
scription of the natural revocation and premature revoca-
tion respectively. First, we give a high level description
of the natural revocation as follows. The group manager
has two signing keys of the BBS+ signature scheme, γA
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and γB . Time information is managed by a binary tree
BT with T leaf nodes where T is the maximum size of time.
Let an expiry time τ be associated to a leaf node η. Let
Path(η) := (u1, u2, . . . , uℓ), where u1 is the root node, uℓ =
η, and ℓ = log T . Assume that each ui is encoded in a
Zp element. Then, a signer whose expiry time τ has a
certificate {(Aj , ξj , ζj)}j∈[1,ℓ] as a signing key gsk where

Aj = (gh
ζj
0 h

uj

1 X)
1

ξj+γA . Here, X = hx2 , and x = usk
is known by the signer only (an output of the Join algo-
rithm). ζj and ξj are random values, and g, h0, and h1 are
public values. Each Aj is a BBS+ signature of two mes-
sages, the node uj ∈ Path(η) and x. At the time t, the
group manager runs the CS-TBK(BT, t) algorithm, and let
Y := (v1, v2, . . . , vnum) be the output of the algorithm. Expi-
ration information eit contains {(Bi,t, ξ

′
i, ζ

′
i)}i∈[1,num] where

Bi,t = (gh
ζ′i
0 h

vi
1 h

t
2)

1

ξ′
i
+γB . Each Bi,t is a BBS+ signature of

two messages vi ∈ Y and the current time t. Due to the CS
method, if τ < t, then there exists a node u ∈ Path(η) ∩ Y .
So, a non-revoked signer can prove that there exist two sig-
natures of the same node u contained in own gsk and eit
respectively by using zero-knowledge proofs. Remark that
if a signer whose expiry time τ > t tries to compute a valid
group signature, then the signer needs to prepare the corre-
sponding BBS+ signature B. This contradicts unforgeabil-
ity of the BBS+ signature scheme, and thus unforgeability
of expiry time of signing keys is guaranteed.
Second, we give a high level description of the premature

revocation as follows. In the Join/Issue phase, the group

manager stores a revocation token grti = X̃i where X̃i =
g̃xi ∈ G1 and xi = uski. At the time t, the group manager

chooses yt
$
← Z

∗
p, and sets h̃t = g̃yt and ĥt := ĝyt ∈ G2.

Then, e(h̃t, ĝ) = e(g̃yt , ĝ) = e(g̃, ĝyt) = e(g̃, ĥt) hold. A

group signature σ contains h̃βt , g̃
d(xi+β), g̃d and ĝd where

β and d are randomness chosen by the signer. If a signer i
is prematurely revoked, then the group manager computes

grti,t := grtyti = h̃xit , and stores grti,t to RLt. Then, grti,t

satisfies e(grti,th̃
β
t , ĝ

d) = e(h̃xi+βt , ĝd) = e(g̃yt(xi+β), ĝd) =

e(g̃d(xi+β), ĝyt) = e(g̃d(xi+β), ĥt). By checking whether the
equation holds for each grti,t one by one, the verifier can
check whether the signer is prematurely revoked or not. The
randomness d, chosen in each signing, prevents to link two
signatures generated by the same signer at the same time
period.
Next, we give our scheme as follows.

Proposed GS-TBK scheme

GKeyGen(λ): Choose (G1,G2,GT , e, g, ĝ) where g and ĝ are
generators ofG1 andG2 respectively. Choose f, g̃, g2, h0,

h1, h2
$
← G1, γA, γB , γO

$
← Zp, and a hash function

H : {0, 1}∗ → Zp and H ′ : {0, 1}∗ → Zp (which are
modeled as random oracles in the security proof). Set
vkA = ĝγA , vkB = ĝγB , g1 = fγO , and reg = ∅. Out-
put gpk = ((G1,G2,GT , e, g, ĝ), f, g̃, g1, g2, h0, h1, h2,
vkA, vkB , H,H

′) and msk = (γA, γB , γO).

Join(gpk)/Issue(msk, reg, τi):

• A signer i chooses xi
$
← Zp, sets uski = xi, com-

putes Xi = hxi2 and X̃i = g̃xi , and sends (Xi, X̃i)
to the group manager. Moreover, the signer i

proves the knowledge of xi to the group manager
as follows.

– The signer chooses rx
$
← Zp, computes R =

hrx2 , R̃ = g̃rx , cx ← H ′(Xi, X̃i, R, R̃), and
sx = rx+cxxi, and sends (sx, cx) to the group
manager.

– The group manager checks whether cx = H ′(Xi,

X̃i, h
sx
2 /Xcx

i , g̃sx/X̃cx
i ).

• The group manager assigns a leaf node η to τi.
Remark that if the same time has been assigned to
another signer before, then the same leaf node is
selected. For all uj ∈ Path(η) := (u1, u2, . . . , uℓ),
the group manager computes BBS+ signatures

{(Aj , ξj , ζj)}j∈[1,ℓ] whereAj = (gh
ζj
0 h

uj

1 Xi)
1

ξj+γA ,
and sends gski = ({(Aj , ξj , ζj), ui}j∈[1,ℓ]) and τi
to the signer i.

• The group manager sets grti = X̃i and stores
(τi, grti, {Aj}j∈[1,ℓ]) to reg[i].

Revoke(gpk,msk, t, reg,RUt) : Choose yt
$
← Z

∗
p, and com-

pute h̃t = g̃yt and ĥt = ĝyt .

Generating Expiration Information: For the cur-
rent time t, obtain Y := (v1, v2, . . . , vnum) ←
CS-TBK(BT, t). Compute BBS+ signatures {(Bi,t,

ξ′i, ζ
′
i)}i∈[1,num] where Bi,t = (gh

ζ′i
0 h

vi
1 h

t
2)

1

ξ′
i
+γB .

Set eit = (h̃t, {(Bi,t, ξ
′
i, ζ

′
i), vi}i∈[1,num]).

Generating Revocation List: For all i ∈ RUt, com-

pute grti,t = grtyti and set RLt = (h̃t, ĥt, {grti,t}i∈RUt).

Output (eit,RLt).

Sign(gpk, gski, uski,m, t, eit): Assume that t < τi. Then,
there exists a node u such that ((A, ξ, ζ), u) is con-

tained in gski, whereA = (ghζ0h
u
1Xi)

1
ξ+γA , and ((Bt, ξ

′,

ζ′), u) is contained in eit, whereBt = (ghζ
′

0 h
u
1h

t
2)

1

ξ′+γB .

Choose α
$
← Z

∗
p and compute

ψ1 = fα, ψ2 = Agα1 , and ψ3 = Btg
α
2

Here, (ψ1, ψ2, ψ3) is an ElGamal ciphertext with Kuro-

sawa’s randomness reuse technique [29]. Choose β, d
$
←

Z
∗
p and compute

ψ4 = h̃βt , ψ5 = g̃d(xi+β), ψ6 = g̃d, and ψ7 = ĝd

Here, (ψ4, ψ5, ψ6, ψ7) is for the premature revocation
check. Set δ = αξ and δ′ = αξ′, and compute a signa-
ture of proof of knowledge (SPK) V where

V = SPK{(α, β, ζ, ξ, ζ′, ξ′, u, xi, δ, δ
′) :

e(ψ2,vkA)
e(g,ĝ)

= e(h0,ĝ)
ζe(h1,ĝ)

ue(h2,ĝ)
xie(g1,vkA)αe(g1,ĝ)

δ

e(ψ2,ĝ)ξ

∧ e(ψ3,vkB)
e(g,ĝ)e(h2,ĝ)t

= e(h0,ĝ)
ζ′e(h1,ĝ)

ue(g2,vkB)αe(g2,ĝ)
δ′

e(ψ3,ĝ)ξ
′

∧ψ1 = fα ∧ ψξ1f
−δ = 1 ∧ ψξ

′

1 f
−δ′ = 1 ∧ ψ4 = h̃βt

∧ψ5 = ψxi+β6 }(m)
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as follows. Remark that the current time t is not hid-
den and is not a witness. Moreover, ψ7 is not explicitly
included in the statement of V since the validity of ψ7

can be verified by checking e(ψ6, ĝ) = e(g̃, ψ7) holds.

• Choose rα, rβ , rζ , rξ, rζ′ , rξ′ , ru, rx, rδ, rδ′
$
← Z

∗
p.

• Compute

R1 = e(h0, ĝ)
rζe(h1, ĝ)

rue(h2, ĝ)
rx

× e(g1, vkA)
rαe(g1, ĝ)

rδe(ψ2, ĝ)
−rξ

R2 = e(h0, ĝ)
rζ′ e(h1, ĝ)

rue(g2, vkB)
rα

× e(g2, ĝ)
rδ′ e(ψ3, ĝ)

−rξ′

R3 = ψ
rξ
1 f

−rδ , R4 = ψ
rξ′

1 f−rδ′

R5 = h̃
rβ
t , R6 = ψ

rx+rβ
6

• Compute c← H(ψ1, . . . , ψ7, R1, . . . , R6,m).

• Compute sα = rα+cα, sβ = rβ+cβ, sζ = rζ+cζ,
sξ = rξ + cξ, sζ′ = rζ′ + cζ′, sξ′ = rξ′ + cξ′,
su = ru + cu, sx = rx + cxi, sδ = rδ + cδ, and
sδ′ = rδ′ + cδ′.

Output σ = (ψ1, . . . , ψ7, c, sα, sβ , sζ , sξ, sζ′ , sξ′ , su, sx,
sδ, sδ′).

Verify(gpk, t, σ,m,RLt): Parse RLt = (h̃t, ĥt, {grti,t}i∈RUt).

Verification Check: If e(ψ6, ĝ) 6= e(g̃, ψ7), then out-
put invalid. Otherwise, compute

R′
1 = e(h0, ĝ)

sζe(h1, ĝ)
sue(h2, ĝ)

sxe(g1, vkA)
sα

× e(g1, ĝ)
sδe(ψ2, ĝ)

−sξ (
e(ψ2, vkA)

e(g, ĝ)
)−c

R′
2 = e(h0, ĝ)

sζ′ e(h1, ĝ)
sue(g2, vkB)

sαe(g2, ĝ)
sδ′

× e(ψ3, ĝ)
−sξ′ (

e(ψ3, vkB)

e(g, ĝ)e(h2, ĝ)t
)−c

R′
3 = ψ

sξ
1 f

−sδ , R′
4 = ψ

sξ′

1 f−sδ′

R′
5 = h̃

sβ
t ψ

−c
4 , R′

6 = ψ
sx+sβ
6 ψ−c

5

If c 6= H(ψ1, . . . , ψ7, R
′
1, . . . , R

′
6,m), then output

invalid.

Revocation Check: If there exists grti,t such that

e(grti,tψ4, ψ7) = e(ψ5, ĥt) holds, then output invalid.

Otherwise, output valid.

Open(gpk,msk, t, reg, σ,m,RLt): If invalid← Verify(gpk, t, σ,
m,RLt), then output⊥. Otherwise, parse σ = (ψ1, . . . ,
ψ7, c, sα, sβ , sζ , sξ, sζ′ , sξ′ , su, sx, sδ, sδ′) andmsk = (γA,
γB , γO). Compute A = ψ2/ψ

γO
1 , search i such that

reg[i] contains A, and output i. If no such an entry
exists, then output ⊥.

Security Analysis. Here, we show that the proposed scheme
is BU-anonymous, traceable, and non-frameable.

Theorem 4.1. The proposed GS-TBK scheme satisfies
BU-anonymity if the DDH1 assumption and the DLIN as-
sumption hold in the random oracle model.

We define the following games.

Game 0: This is the same as the definition of BU-anonymity.

Game 1: This game is the same as Game 0 except for the
challenge signature is computed by programming of
the random oracle H.

Game 2: This game is the same as Game 0 except for the
challenge signature σ∗ = (ψ∗

1 , ψ
∗
2 , ψ

∗
3 , ψ

∗
4 , ψ

∗
5 , ψ

∗
6 , ψ

∗
7 , c

∗,

s∗α, s
∗
β , s

∗
ζ , s

∗
ξ , s

∗
ζ′ , s

∗
ξ′ , s

∗
u, s

∗
x, s

∗
δ , s

∗
δ′), ψ

∗
2 , ψ

∗
3

$
← G1.

Game 3: This game is the same as Game 1 except for the
challenge signature σ∗ = (ψ∗

1 , ψ
∗
2 , ψ

∗
3 , ψ

∗
4 , ψ

∗
5 , ψ

∗
6 , ψ

∗
7 , c

∗,

s∗α, s
∗
β , s

∗
ζ , s

∗
ξ , s

∗
ζ′ , s

∗
ξ′ , s

∗
u, s

∗
x, s

∗
δ , s

∗
δ′), ψ

∗
5

$
← G1.

Let Si be the event that A successfully guesses b in Game i.

Lemma 4.1. |Pr[S0]−Pr[S1]| ≤ (1− qh/p) where qh the
number of hash queries.

Proof. In Game 1, for computing the challenge signature,
first compute ψ∗

1 , . . . , ψ
∗
7 as in the scheme. Next, randomly

choose c, sα, sβ , sζ , sξ, sζ′ , sξ′ , su, sx, sδ, sδ′
$
← Zp, and com-

puteR′
1 = e(h0, ĝ)

sζe(h1, ĝ)
sue(h2, ĝ)

sxe(g1, vkA)
sαe(g1, ĝ)

sδ

e(ψ2, ĝ)
−sξ ( e(ψ2,vkA)

e(g,ĝ)
)−c, R′

2 = e(h0, ĝ)
sζ′ e(h1, ĝ)

sue(g2, vkB)
sα

e(g2, ĝ)
sδ′ e(ψ3, ĝ)

−sξ′ ( e(ψ3,vkB)
e(g,ĝ)e(h2,ĝ)t

)−c, R′
3 = ψ

sξ
1 f

−sδ , R′
4 =

ψ
sξ′

1 f−sδ′ , R′
5 = h̃

sβ
t ψ

−c
4 , and R′

6 = ψ
sx+sβ
6 ψ−c

5 . Next, pro-
gramming the random oracleH such that c := H(ψ1, . . . , ψ7,
R′

1, . . . , R
′
6,m), and send σ = (ψ1, . . . , ψ7, c, sα, sβ , sζ , sξ, sζ′ ,

sξ′ , su, sx, sδ, sδ′) to A. If programming is failure (i.e., c col-
ludes with a value returned by H), output a random bit and
aborts. If programming is not failure, Pr[S0] = Pr[S1] holds.
Since c is randomly chosen from Zp, the failed probability is
at most qh/p.

Lemma 4.2. |Pr[S1] − Pr[S2]| ≤ AdvDDH1(λ) where qh
the number of hash queries.

Proof. Let ((G1,G2,GT , e, f, f̂), f
a, fb, Z) be a DDH1 in-

stance. We construct an algorithm B that distinguishes
Z = fab or not. B implicitly sets α := a and γO := b (thus,

g1 = fγO = fb). B chooses r
$
← Zp, and sets g2 := fr.

B chooses all values, except f , g1, and g2. Since B has all
secret values, B can respond all queries issued by A. In the
challenge phase, B selects (A,Bt∗) according to the scheme.
B sets ψ∗

1 := fa, ψ∗
2 := AZ, and ψ∗

3 := Bt∗Z
r. B computes

other components, except s∗α is computed by programming
of the random oracle H. If Z = fab, then B correctly simu-
lates Game 1, and if Z is a random value, then B correctly
simulates Game 2.

Lemma 4.3. |Pr[S1] − Pr[S2]| ≤ AdvDLIN(λ)(1/qAqR −
qsqh/p) where qA, qR, qs, and qh are the number of AddU,
Revoke, GSign, and hash queries respectively.

Proof. Let ((G1,G2,GT , e, g̃, ĝ), g
′, ĝ′, h, ĥ, g̃a, g′

b
, Z) be a

DLIN instance. We construct an algorithm B that distin-
guishes Z = ha+b or not. B guesses when the challenge user,
say i∗, is added in the group with the probability 1/qA, and
guesses the challenge time t∗ with the probability 1/qR. We

assume that the guesses are correct. B chooses y′t∗
$
← Zp,

and implicitly sets xi∗ := a, β∗ := b, and yt∗ := y′t∗c where
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g′ := g̃c and ĝ′ := ĝc for some c ∈ Zp. B chooses yt
$
← Zp

for t 6= t∗. Then, B can compute (h̃t, ĥt) as follows.

(h̃t, ĥt) =

{
(g̃yt , ĝyt) (t 6= t∗)

((g′)y
′

t∗ , (ĝ′)y
′

t∗ ) (t = t∗)

Since B has all secret keys of signers, except i∗’s one, B
can respond all queries issued by A if these are not re-
lated to i∗. Hence, we show the simulation of revocation
queries Revoke(RUt) where i∗ ∈ RUt, and signing queries
GSign(i∗,m).
For revocation queries, B can revoke i∗ by computing

grti∗,t = (g̃a)yt when t 6= t∗. Remark that B is not required
to compute grti∗,t∗ since i∗ is not revoked at the challenge
time t∗. This leads to backward unlinkability.
For signing queries at t = t∗, B randomly chooses ψ1, . . . , ψ3

$
← G1 and β, d

$
← Zp, and computes ψ4 = h̃βt∗ . Then

ψ
1/yt∗
4 = ((g̃y

′

t∗
c)β)1/y

′

t∗
c = g̃β hold. B computes ψ5 =

(g̃ag̃β)d, ψ6 = g̃d, and ψ7 = ĝd. Now, the revocation check

relation e(ψ5, ĥt∗) = e((g̃ag̃β)d, ĝy
′

t∗
c) = e((g̃aψ

1/yt∗
4 )d, ĝy

′

t∗
c)

= e((g̃y
′

t∗
c)xi∗ψ4, ĝ

d) = e(grti∗,t∗ψ4, ψ7) holds. Other com-
ponents are computed by programming of the random oracle
H.
For signing queries at t 6= t∗, B randomly chooses ψ1, . . . ,

ψ4
$
← G1 and d

$
← Zp, and computes ψ5 := (g̃a · ψ1/yt

4 )d,
ψ6 = g̃d, and ψ7 = ĝd. Then, the revocation check re-

lation e(ψ5, ĥt) = e((g̃a · ψ1/yt
4 )d, ĝyt) = e((g̃a)ytψ4, ĝ

d) =
e(grti∗,tψ4, ψ7) holds. Other components are computed by
programming of the random oracle H.
For computing the challenge signature, B chooses ψ∗

1 , ψ
∗
2 ,

ψ∗
3

$
← G1, computes ψ∗

4 = (g′
b
)y

′

t∗ = (g̃cb)y
′

t∗ = (g̃y
′

t∗
c)b =

h̃β
∗

t∗ , and sets ψ∗
5 = Z, ψ∗

6 = h, and ψ∗
7 = ĥ. Other compo-

nents are computed by programming of the random oracle
H. If Z = ha+b, then B correctly simulates Game 2, and
if Z is a random value, then B correctly simulates Game 3.

Since now the challenge signature does not depend on the
challenge bit, Pr[S3] = 1/2. This concludes the proof.

Theorem 4.2. The proposed GS-TBK scheme satisfies
traceability in the random oracle model under the q-SDH as-
sumption and the knowledge of secret key (KOSK) assump-
tion.

As in the Ohara et al. scheme, we introduce the KOSK
assumption [51] where the adversary is required to reveal
the secret key of the honest users. The reason why we need
to introduce the assumption is explained as follows. In the

Join algorithm, a user sends Xi = hxi2 (and X̃i = g̃xi also).
The group manager signs xi by using the signing key of the

BBS+ signature scheme such that Aj = (gh
ζj
0 h

uj

1 Xi)
1

ξj+γA .
Due to the form of the BBS+ signature scheme, the group
manager can sign xi without knowing xi. On the other hand,
in the security proof, the simulator needs to send a signed
message xi in order to send a signing query to the signing
oracle of the underlying BBS+ signature scheme. So, we use
the KOSK assumption.
We can construct an algorithm that extracts a BBS+ sig-

nature by applying the Forking lemma [50]. More precisely,
from the winning condition i 6∈ CU \ RUt∗ , an adversary
needs to produce a forged group certificate A that is not

issued via the SndToI oracle, or needs to produce a forged
certificate of non-revoked signers B that is not generated
when the Revoke oracle is called. Since the signature output
by the adversary is valid, forged BBS+ signatures are ex-
tracted from the signature. Unforgeability of expiry time of
signing keys is also reduced to unforgeability of the BBS+
signature scheme. That is, if an adversary can produce a
valid signature though an expiry time τi has passed, i.e.,
τi < t∗, then there exists a BBS+ signature B which is valid
and is not contained in RLt∗ . So, we can construct an algo-
rithm that extracts such B by applying the Forking lemma.
Thus, if the extraction works well, then Theorem 4.2 holds.
We prove that the following lemma for these extractions.

Lemma 4.4. The SPK V proves the knowledge α, β, ζ, ξ, ζ′,

ξ′, u, xi, δ, δ
′ such that ψ1 = fα, ψ2 = (ghζ0h

u
1h

xi
2 g

γAα+δ
1 )

1
ξ+γA ,

ψ3 = (ghζ
′

0 h
u
1h

t
2g
γBα+δ

′

2 )
1

ξ′+γB , ψ4 = h̃βt , and ψ5 = ψxi+β6 .

Proof. By the knowledge extractor for V , we can obtain
α, β, ζ, ξ, ζ′, ξ′, u, xi, δ, δ

′ such that

e(ψ2,vkA)
e(g,ĝ)

= e(h0,ĝ)
ζe(h1,ĝ)

ue(h2,ĝ)
xie(g1,vkA)αe(g1,ĝ)

δ

e(ψ2,ĝ)ξ
(1)

e(ψ3,vkB)
e(g,ĝ)e(h2,ĝ)t

= e(h0,ĝ)
ζ′e(h1,ĝ)

ue(g2,vkB)αe(g2,ĝ)
δ′

e(ψ3,ĝ)ξ
′ (2)

ψ1 = fα (3)

ψξ1f
−δ = 1 (4)

ψξ
′

1 f
−δ′ = 1 (5)

ψ4 = h̃βt (6)

ψ5 = ψxi+β6 (7)

From (1), the equation

e(ψ2, vkAĝ
ξ) = e(hζ0h

u
1h

xi
2 , ĝ)e(g1, vk

α
Aĝ

δ)e(g, ĝ)

holds. Set ψ2 = gθ, h0 = gθ01 , h1 = gθ11 , h2 = gθ21 , and
g1 = gµ for some θ, θ1, θ2, µ ∈ Zp. Since vkA = ĝγA ,
e(g, ĝ)θ(ξ+γA) = e(g, ĝ)µ(θ0ζ+θ1u+θ2xi+γAα+δ)+1, and thus
θ(ξ+ γA) = µ(θ0ζ + θ1u+ θ2xi + γAα+ δ) + 1 mod p holds.

This means ψ2 = gθ = (gµ(θ0ζ+θ1u+θ2xi+γAα+δ)+1)
1

ξ+γA =

(ghζ0h
u
1h

xi
2 g

γAα+δ
1 )

1
ξ+γA holds. Similarly, from (2), ψ3 =

(ghζ
′

0 h
u
1h

t
2g
γBα+δ

′

2 )
1

ξ′+γB holds. From (3), the extracted α
satisfies ψ1 = fα. Then, from (4) and (5), δ = αξ and
δ′ = αξ′ holds. Finally, from (6) and (7), the extracted xi
and β satisfy ψ4 = h̃βt and ψ5 = ψxi+β6 .

Theorem 4.3. The proposed GS-TBK scheme satisfies
non-frameability in the random oracle model under the DL
assumption.

Proof. Let (G1,G2,GT , e, g̃, ĝ, g̃
x) be a DL instance. We

construct an algorithm B that breaks the DL problem as
follows. Let qA be the number of SndToU queries. B guesses
the user i∗ ∈ [1, qA] that A outputs in the final phase. We
assume the guess is correct with the probability 1/qA. B

chooses θ2
$
← Zp and sets h2 = g̃θ2 , uski∗ := x, and

Xi∗ := (g̃x)θ2 = hx2 , and X̃i∗ := g̃x. B chooses other all
values as in the scheme. When i∗ is added to the group

via the SndToU query, B chooses sx, cx
$
← Zp, sets cx :=

H ′(Xi, X̃i∗ , h
sx
2 /Xcx

i∗ , g̃
sx/X̃cx

i∗ ), and sends (sx, cx) toA. For
a signing query (·, i∗), B programs the random oracle H and
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computes a signature. Finally, A outputs a signature. B
rewinds A and extracts x∗ from the signatures output by A
by applying the Forking lemma [50]. Since the signatures

are traced to i∗, the extracted x∗ satisfies Xi∗ = hx
∗

2 . So, B
outputs x∗ if the extraction works well.

5. IMPLEMENTATION
In this section, we give our implementation results. Our

implementation environment is as follows: CPU: Xeon E5-
2660 v3 @ 2.60GHz, and gcc 4.9.2. We set the maximum
size of time T is 2,048, and each day is assigned to a leaf
node (thus log2 T = 11). This setting is the same as that of
Liu et al. [37]. Our implementations use the RELIC library
(ver.0.4.1) [2] for elliptic curve operations and the pairing
operation. We note that we employ asymmetric pairing set-
tings ((type 3) Barreto-Naehrig (BN) curves [7]) with 254-
bit order. In this setting, the sizes of a scalar value in Zp,
an element in G1, an element in G2, and an element in GT

are 32 bytes, 33 bytes, 65 bytes, and 256 bytes, respectively.
Then, the signature size is 615 bytes, and the size of expira-
tion information is 98 + 105 log2 T bytes (1,253 bytes when
log2 T = 11).
Next we show benchmarks of algorithms, except Verify,

in Table 2. Here, we assume that the pre-computable val-
ues, e.g., e(h0, ĝ), are computed in the GKeyGen algorithm.
Moreover, we prepare tables for fixed point scalar multipli-
cations in the GKeyGen algorithm. Note that the Revoke

algorithm consists of two sub procedures, generating expira-
tion information eit and generating revocation list RLt. The
former cost depends on log2 T , and the latter cost linearly
depends on the number of prematurely revoked signers Rpre.
In the worst case (only the most left leaf is revoked), eit
consists of log2 T BBS+ signatures.

Table 2: Benchmarks (milliseconds)

Algorithms Benchmarks

GKeyGen 11.395 (incl. 7.704 as pre-computations)
Join 0.287
Issue 3.863
Sign 3.695
Revoke 3.590 (eit)

†/0.150 (RLt)
‡

†: The worst case when we set T = 2, 048.
‡: For prematurely revoking one signer.

It is particularly worth noting that the computational cost
of our Sign algorithm is constant in terms of both the time
representation and the number of revoked signers. Moreover,
the running time of our Sign algorithm is less than 4 msec.
Next, we show the Verify algorithm. Remark that in the

usual VLR group signature schemes, the cost of the verifica-
tion algorithm (more precisely the revocation check) linearly
depends on the number of total revoked signers whereas in
GS-TBK it just linearly depends on the number of prema-
turely revoked signers due to time-bound keys. Thus, we
show the running time of the Verify algorithm for several
numbers of prematurely revoked signers Rpre. Recall that
the Verify algorithm consists of two sub procedures, the ver-
ification check and the revocation check. The former is in-
dependent of Rpre whereas the latter depends on Rpre. Let

Rall := Rpre +Rnatural

be the total number of revoked signers, where Rnatural be the
number of naturally revoked signers, and we set

Rate := Rpre/Rall

For example, when Rall = 1, 000, 000 and Rate = 0.2, then
Rpre = 200, 000 and Rnatural = 800, 000.

First, we show the running time of the verification check
i.e., the running time of the Verify algorithm with Rate =
0 in Fig 3. The running time is approximately 11.5 msec
regardless of Rall.
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Figure 3: The Running Time of the Verification Check

Next, we show the Verify algorithm for each Rate. We set
Rall = 5, 000, 000 and show the running time of the Verify

algorithm in Fig 4.
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Figure 4: The Running Time of the Verify Algorithm

(Rall = 5, 000, 000)

Since the revocation check requires O(Rpre)-times pairing
computations4, the running time of the Verify algorithm
linearly depends on Rpre. Nevertheless, as a reasonable as-
sumption, the natural revocation accounts for most of signer
revocations in practice and prematurely revoked signers are
only a small fraction. Thus, for a relatively small Rate, our
scheme is still efficient in practice.

4In the previous schemes [20, 37], no pairing computation
is required for the revocation check (just O(Rpre)-times ex-
ponentiations are required). Thus, our revocation check is
inefficient than those of the previous schemes due to the
pairing computations. However, at the expense of this inef-
ficiency, our scheme provides backward unlinkability.

786



As a reference, we show the running time of the Verify

algorithm for each Rate and Rall in Fig 5.
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Figure 5: The Running Time of the Verify Algorithm

(Rate = 0.2, 0.4, 0.6, 0.8)

6. CONCLUSION
In this paper, we revisit the definition of GS-TBK given

in [20, 37], and give a new security model that considers
unforgeability of expiry time of signing keys. Moreover,
the computational cost of our signing algorithm is constant
whereas those of the previous schemes depend on the bit-
length of the time representation. We also give implemen-
tations.
Our GS-TBK scheme and previous schemes are secure in

the random oracle model. Since we employ the Ohara et
al. revocable group signature scheme which implements the
Libert-Peters-Yung revocable group signature scheme [33]
in the random oracle model, we might be able to employ
the Libert-Peters-Yung revocable group signature scheme
for implementing time-bound keys. Moreover, as mentioned
by Libert and Vergnaud [35], the Nakanishi-Funabiki revoca-
tion technique [42] itself does not depend on random oracles.
Thus, a GS-TBK scheme in the standard model might be
constructed by employing the Libert-Peters-Yung and the
Nakanishi-Funabiki schemes. Though it is theoretically in-
terest, on the other hand, there is room for argument on
the efficiency of the scheme. Since a signature of the Libert-
Peters-Yung scheme contains about 100 group elements, it
seems difficult to achieve a practical efficiency. Hence, we
pursue a practical efficiency in this paper, and leave the
standard model construction as a future work.
In addition to the standard model construction, remov-

ing pairing computations from the revocation check, e.g.,
employing [15], is an interesting future work of this paper.
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