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ABSTRACT

To protect smartphones from unauthorized access, the user
has the option to activate authentication mechanisms : PIN,
Password, or Pattern. Unfortunately, these mechanisms
are vulnerable to shoulder-surfing, smudge and snooping at-
tacks. Even the traditional biometric based systems such as
fingerprint or face, also could be bypassed. In order to pro-
tect smartphones data against these sort of attacks, we pro-
pose a behavioral biometric authentication framework that
leverages the user’s behavioral patterns such as touchscreen
actions, keystroke, application used and sensor data to au-
thenticate smartphone users.

To evaluate the framework, we conducted a field study in
which we instrumented the Android OS and collected data
from 52 participants during 30-day period. We present the
prototype of our framework and we are working on its com-
ponents to select the best features set that can be used to
build different modalities to authenticate users on different
contexts. To this end, we developed only one modality, a
gesture authentication modality, which authenticate smart-
phone users based on touch gesture. We evaluated this au-
thentication modality on about 3 million gesture samples
based on two schemes, classification scheme with EER, 0.004,
and anomaly detection scheme with EER 0.10.

Keywords

Smartphone; Authentication; Behavioral Biometrics

1. INTRODUCTION

Smartphones have become ubiquitous parts in our daily
life. They combine the personal computing features in ad-
dition to the mobility features. Consequently, they contain
a plethora of sensitive data and personal information. To
protect these sensitive data, user has the option to enable
an authentication mechanism. Unfortunately, 52% (out of
1,500) [1] and 34% (out of 500) [2] don’t lock their smart-
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Figure 1: The Behavioral Biometric Framework architecture.

phones. Inconvenience, lack of motivation and awareness
were the most common reasons for not-locking smartphones.
Also these mechanisms are vulnerable to different risks such
as shoulder surfing and snooping attacks.

In this poster, we propose a behavioral biometric authen-
tication framework that is going to (i) authenticate users
implicitly (i.e., without interrupting their activities), and
(ii) continually (i.e., authentication process is continuously
repeated).

2. RELATED WORK

Several researchers conducted studies to understand the
current unlocking mechanisms [4] and other researchers pro-
posed new techniques to authenticate smartphone user, some
of them based on biometric authentication [3], and others
based on implicit authentication [6]. Our work is more re-
lated to implicit authentication.

In contrast with the previous work, where the major-
ity of implicit authentication techniques were evaluated on
datasets that collected in constrained settings. Moreover,
some authentication methods have built based on very sim-
ple features, which expected to be statistically weak. In
this work, we seek to collect realistic behavioral data in un-
constrained environment and extract a discriminative set of
features.

3. BEHAVIORAL BIOMETRIC FRAMEWORK

Figure [T shows the behavioral biometric framework archi-
tecture. It has three main modules: data collection module,
feature extraction module, fusion and decision module.

Our framework authenticate smartphone users based on
authentication score, which is calculated from different au-
thentication modalities. Each modality extracts a useful set
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Figure 2: Stroke samples done by two different users from
our dataset.

of features from user-level activities. Finally our framework
leverages the decision fusion to take the final decision.

3.1 Data collection

To build a real-world unconstrained dataset (i.e., dataset
that contains real user activities without intervention), we
developed a monitoring framework and instrumented it in
the Android OS (Lollipop version on Nexus 5 device). It
recorded events related to device unlocking, touchscreen and
sensors data in a real-life settings. By deploying our mon-
itoring framework via Phonelab testbed, a programmable
smartphone testbed, developed at the University at Buffalo
and support to run experiments at the OS level on partici-
pants from University at Buffalo community [5].

The raw data corpus that we collected contains about 200
GB of smartphone user activities. The participants took
part in our study during different time periods, all between
July 06, 2016 and August 31, 2016, for at least 30 days
each. The total number of participants who successfully ac-
cepted to install our monitoring framework were 133 but we
have only included 52 participants who kept our monitoring
framework for 30-day period or more.

3.2 Behavioral Biometric Modalities

Our goal is to develop more than one modality, and yet we
have developed only one modality which is the gesture au-
thentication modality. In this section, we provide a detailed
description about this modality.

3.3 Gesture Modality

In this modality, we collected data from touch screen events,
and then analyzed these data, extracted features vector, and
then built the gesture authentication modality.

3.3.1 Gesture analysis

To interact with the touchscreen, user has to enter a ges-
ture, a hand-drawn shape on a touch screen. This gesture
can have one or more strokes, a sequence of consecutive
timed points. Each point represented by an ordered pair of
numerical coordinates (z,y), as illustrated in Figure

For each touched point, we have collected the following
raw data, timestamp, coordinates, pressure, size and
the action_code, a code that specifies the state change
such as touch_down, touch_move or touch_up.
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3.3.2  Stroke detection
As illustrated in Figure [2| we detect the stroke based on

the action_code. So, all consecutive points between touch_down

and touch_up actions represent a stroke S. Each point in S
represented by x; and y;, the coordinates of touched point,
p;, the pressure on the touched point, a;, the size area of
touched point, and t¢;, timestamp of touch action, where
it = {1,...,n}, and n is the total number of points in the
stroke.

3.3.3 Feature Extraction

For extracting useful features we analyzed the stroke from

two directions, the geometry of the stroke, and its motion
dynamics.
Geometric analysis, we extracted six features from the ge-
ometric analysis on the stroke, four of them represent touch
down and touch up coordinates, Tdaown, Ydown s Tup, Yup, and
the other two features are stroke length Siengen, and stroke
curvature Scurvature. Where Siengtn represents the length of
specific path traveled from touch_down to touch_up points
and is calculated based on the sum of line segment lengths
as follows:

Slength = Z \/(xz —2i—1)? 4+ (yi — yi—1)? (1)
i—2

where n is the number of points in the stroke S. Stroke cur-
vature Scurvature represents the amount of deviation from
being a straight line (see Figure , and is calculated based
on the following formula:

K B ‘lell _ YIXII|

(X’2 + Y/Q)% (2)

where X and Y are row vectors of points in the stroke. X',
Y’ X", and Y” represent the first and second derivatives,
and K represents the row vector of curvatures for each point
in the stroke. Then we calculate the mean of K to represent
Scurvature as follow:

1

Scurvature - N ;Kz (3)
Dynamic analysis, we extracted four features from the dy-
namic analysis on the stroke. Given that, stroke contains a
set of consecutive points. These points detected according to
the motion of object (i.e., finger) on the touch screen. As a
matter of fact, finger moves in curvilinear direction more of-
ten than in linear direction. Based on this fact, we calculated
the displacement Sq;spiacement, the length of the straight line
between touch_down and touch_up, see Figure for more
clarification.

To understand how fast or slow the finger moves on the
screen, we calculate the velocity at each point in the stroke

as follows:
V=v((X)?2+(Y")?) (4)

where X’ and Y’ are the first derivative of row vectors of
points in the stroke, and V' is the row vector of velocities
at each point. We extracted two features from this vec-
tor, mean velocity Spean(v) and maximum velocity Spaz(v)-
Also, we calculate the acceleration at each point in the stroke
based on the following formula:
d?s ds\?
A= T+k ( dt) N

dt? ®)



where s is the travelled distance and T is the unit tan-
gent vector and N is the unit normal vector. Then we ex-
tracted the mean acceleration for the vector A as a feature

Smean(acc)-

In addition to the extracted features from geometric and
dynamic analysis, we extracted twelve features related to
time, pressure and size which are described below.
Temporal Features: we extracted two temporal features
Sduration, represents the total time taken to perform a stroke,
and inter-stroke duration Sinterduration, represents the time
spent between the current and the previous stroke.
Pressure and Size features, as we mentioned before, we
recorded the pressure and the size at each touched point in
the stroke. We extracted five features for the pressure, two
of them for touch_down Sppown and touch_up Spup, and the
other three features are extracted from the descriptive statis-
tics of the pressure which are average, maximum and mini-
mum, SpAverage; SpMin, SpMaz. Similarly for the touch size
where we extracted SsDown, SsUp, SsA'ueragE7 Ss]bfi'ru SsMa:L‘~

3.3.4 Modeling and evaluation

We used two models to authenticate the user, classifica-
tion model, which are trained on data from both legitimate
user and imposters, and anomaly detection model, which are
trained on data from legitimate user only.

Classification model, for each user u;, the classifier calcu-
lates an authentication score p(u;) that represents the prob-
ability of u; being a legitimate user. We used k-nearest
neighbors classifier based on one-vs-all scheme, where we
used data from other users as imposters.

Anomaly detection model, we trained the anomaly de-
tection learning algorithm (Isanomaly [7]) with legitimate
user samples and then tested for new sample based on nov-
elty detection scheme.

Validation method, To evaluate the accuracy of the clas-
sifiers, dataset is separated into training set and testing set.
Then we performed 10-fold cross-validation.

Performance metric, in order to evaluate the performance
of both models, we used ROC curve as an evaluation met-
ric, which depicts the trade-off between TPR and FPR in a
single curve at various threshold values. The top left corner
of the plot represents the ideal point, where TPR equal one
and FPR equal zero.

Results, Knn classifier achieved EER 0.004 with AUC 0.99
as shown in Figure On the other hand, the anomaly de-
tection achieved EER 0.10 with AUC 0.91. As we can see,
the classification results are better than anomaly detection
because the classifier has enough training set to model both
legitimate and imposters behavior but anomaly detection
not. Although the classification is more powerful in terms
of error cost (FP/FN) than anomaly detection. Using it
could be impossible in practice, in case of the huge attack
space or few training examples. So using anomaly detection
is a good fit to work here.

3.4 Decision fusion

Even we have developed only one modality, but we would
like to share our idea on how decision fusion will be. Our
goal is to leverage different data sources to develop more
than one authentication modality to authenticate the user in
different contexts. Each modality is going to have a decision
performance. One modality can have a strength in specific
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Figure 3: ROC analysis for classification model in (a) and
anomaly detection model in (b) according to our dataset.
AUC represents the Area under curve and summarize the
performance of the models. The more the AUC is the better
the system is.

context where others not. We are going to apply some fusion
scenarios on how to use theses different modalities based on
different contexts and also use them as a complimentary to
each other.

4. CONCLUSIONS AND FUTURE WORK

We conducted a field study on Android phone users. We
collected data related to user behavioral activities and we
are developing a multimodal behavioral biometric authenti-
cation framework to authenticate smartphone users based on
different contexts. Yet we are done with only one modality,
gesture authentication modality (see section . Our fu-
ture work is going to concentrate on developing other modal-
ities based on keystroke and behavioral profiling biometric
traits.
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