
DecReg: A Framework for Preventing Double-Financing
using Blockchain Technology

Hidde Lycklama à Nijeholt, Joris Oudejans and Zekeriya Erkin
∗

Cyber Security Group, Department of Intelligent Systems, Delft University of Technology
Mekelweg 4, 2628 CD, Delft, The Netherlands

mail.hidde@gmail.com, joris.oudejans@gmail.com, z.erkin@tudelft.nl

ABSTRACT
Factoring is an important financial instrument for SMEs to
solve liquidity problems, where the invoice is cashed to avoid
late buyer payments. Unfortunately, this business model is
risky as it relies on human interaction and involved actors
(factors in particular) suffer from information asymmetry.
One of the risks involved is ’double-financing’: the event
that an SME extracts funds from multiple factors. To re-
duce this asymmetry and increase the scalability of this im-
portant instrument, we propose a framework, DecReg, based
on blockchain technology. We provide the protocols designed
for this framework and present performance analysis. This
framework will be deployed in practice as of February 2017
in the Netherlands.

Keywords
Double Financing, distributed trust, blockchain.

1. INTRODUCTION
To conquer liquidity issues in small to medium enterprises

(SMEs), a model known as factoring[22] is used. The time
between sending an invoice and getting paid for that in-
voice can be long and unpredictable. For example, in the
Netherlands in 2015, the average contractual payment time
for business-to-business transactions was 23 days while the
actual payment time was 29 days[17]. This uncertainty poses
a real threat for companies when they need the owed money
for e.g. making investments or compensating setbacks. In
factoring, the stream of money does not go directly from
the debtor, hereafter buyer, to the supplier, hereafter seller.
Instead, the factoring service provider, FSP hereafter, buys
the invoice from the seller for a portion of the original price,
e.g. 95%. This way, the FSP takes over the risk from the

∗H. Lycklama à Nijeholt and J. Oudejans conducted this
research as a part of their Bachelor Honour Programme and
partly supported by Innopay BV during their internship.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

BCC’17, April 02 2017, Abu Dhabi, United Arab Emirates
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4974-1/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3055518.3055529

seller, who has no uncertainty and immediately materializes
the invoice’s value.

Unfortunately, factoring gives rise to a serious problem:
A seller can cash an invoice at multiple FSPs to double the
amount of money received since there is no insight between
factors in whether an invoice is already financed. In a similar
scenario, a seller has a long-term agreement with a bank to
sell all his invoices and in return get a loan. If the seller
is in need of liquidity and factors an invoice, a dispute can
arise between the bank and the other FSP. Because a buyer
will most likely not be willing to pay the same invoice twice,
at least one of the FSPs will be disadvantaged. We define
this problem as Double-Financing, as briefly mentioned in
[8], because that resembles the name of its counterpart in
digital cash schemes as Double-Spending in Bitcoin[23].

A possible approach to solve the Double-Financing prob-
lem would be to create a central database with all agree-
ments between FSPs and sellers, where each FSP could
check whether a proposed invoice is still owned by the seller
or not. However, having a central database requires a fully
trusted, secure, scalable, easily accessible server with no
down-time. In practice, maintaining such a system is costly.
Moreover, since there are many FSPs with trust issues, keep-
ing a central database is challenging in practice.

Our proposal to solve Double-Financing is to use an in-
strument that meets all the fore-mentioned requirements:
A blockchain[23]. Although the technology is most widely
known for Bitcoin and therefore financial transactions, block-
chain provides a basis for solving distributed trust related
problems. In short, a blockchain is an immutable, decen-
tralized, public ledger that relies on a consensus algorithm
to decide which data is appended. The immutability means
that it is possible to store data on a blockchain such that it
is unfeasible to ever change the data or remove it, relying
on cryptography. And, equally important, every authorized
person can query this ledger from anywhere in the world,
resembling a decentralized database. Therefore, instead of
storing every agreement in a central database, our proposal
is to write them onto a blockchain. Then, in any future pay-
ment request by a seller, the FSP can check the blockchain
for a previous agreement which involves the invoice. If such
an agreement exists, the FSP knows the invoice was already
financed and denies the request.

Although financial institutions all over the world[3] are
highly interested in blockchain technology due to its po-
tential, as far as we know, no significant applications have
been put to the test in the world of invoice-financing. Our
proposal for double financing, namely DecReg, shows us a

29

blockchain application that leverages the inherent advan-
tages of the technology and that can actually be imple-
mented. Furthermore, although in China[24] a central reg-
istry is being used for invoices, a decentralized solution to
the problem of Double-Financing has not yet been brought
into practice in the factoring business. Therefore, our solu-
tion is the first of its kind with a significant impact in the
invoice-financing domain.

In this paper, we describe the DecReg protocol that pre-
vents Double-Financing of invoices in factoring. Our pro-
posal relies on blockchain technology and prescribes accepted
mutations on its data, thus does not need any trusted entity
to handle this data. Since all involved parties have a copy
of all the transactions, the verification procedure is fast and
reliable. Furthermore, we provide an implementation of De-
cReg on a private blockchain run by FSPs. The consensus
algorithm relies on the Tendermint[18] BFT protocol[19],
which has demonstrated to have the sufficient performance
needed for the factoring environment in the Netherlands.
Furthermore, our protocol is planned to be deployed by in-
dustry in the Netherlands starting as of February 2017.

2. BACKGROUND

2.1 Blockchain
A blockchain is a distributed database where new data

can only be appended to previous data. It consists of blocks
where each block contains a list of transactions and a hash
pointer to the previous block, forming a chain. Hence, it is
only possible to add a block to the end of the chain. The
content of a new block that will be appended is decided via a
consensus protocol. The combination of the blockchain data
structure and a networking protocol as a means to reach con-
sensus in a distributed network was first introduced in Bit-
coin by Nakamoto[23]. In Bitcoin, a Proof-of-Work[6] algo-
rithm is used to reach consensus, relying on the assumption
that computational power for hashing is a scarce resource.
Nodes in the network communicate via a peer-to-peer proto-
col, mainly by transferring transactions and blocks between
each other.

A blockchain can be defined in a more abstract way. A
blockchain is a distributed application with a current state,
like a state machine. The state is defined by the transac-
tions that exist. The state is propagated to the nodes in the
network via a consensus protocol. We will now go into both
components.

2.2 Transactions
Transactions are used to mutate the state of a blockchain.

The kinds of transactions that are valid in a given block-
chain, along with their rules, define how the state can be
changed and what meaning can be derived from the state.
Therefore, the transactions can be seen as the application
business logic of a blockchain application. Furthermore,
transactions can be designed in such a way that consider-
ably complex applications can be designed for a blockchain.
Such complex applications are often referred to as smart
contracts. In the Ethereum blockchain, smart contracts are
defined in a Turing-complete virtual machine language, pro-
viding the possibility to create complex, distributed applica-
tions[15]. As data can only be appended, these transactions
are the only way to change this state.

2.3 Consensus algorithm
A consensus algorithm is a protocol to replicate the state

of a blockchain over multiple nodes in a network. A key
property of any blockchain’s consensus algorithm is that it
must be Byzantine fault tolerant[21]. That is, an application
remains operable even when some subset of the network con-
sists of faulty, or Byzantine, nodes. Therefore, it must not
rely on other nodes, such as on their uptime or functioning.
Due to the data structure of a blockchain and its correspond-
ing consensus algorithm, a blockchain can be Byzantine fault
tolerant. The first and most prevalent consensus algorithm
in current blockchains is a Proof-of-Work-based algorithm,
first introduced by Back[6]. For instance in Bitcoin, the
Proof-of-Work algorithm is used to accept the next block
in the chain. In the Bitcoin network, miner nodes search
for an acceptable block hash. The block is mined when the
resulting hash is below a certain threshold, i.e. it has a cer-
tain number of leading zeros. As the probability of finding a
nonce grows linearly with the amount of computing power,
the state of the blockchain is decided not by the majority of
nodes, but by the majority of computational capacity. The
Proof-of-work algorithm is a reliable consensus algorithm, as
it is easier for an adversary to get the majority of nodes, but
not the majority of computing power. However, the algo-
rithm is often criticized, as it requires significant resources.
For instance, the Bitcoin network takes up 350 Mega Watt
as of March 2016[11].

2.4 Double-Spending
An inherent property of blockchain is that it prevents the

double spending of entities in an individual chain. For a
cryptocurrency without centralized clearing of transactions,
this is an important property. However, we shall later see
that this property is useful for other applications, such as
registering real-world entities. In Bitcoin, transactions indi-
cate the transfer of BTC between Bitcoin addresses, deriva-
tions between respective public keys[2]. The new transaction
references a previous transaction to the address, proving the
possession of the amount of cryptocurrency. Due to the con-
sensus protocol of Bitcoin, the transaction is picked up by
a miner and eventually stored in a block. The state of the
Bitcoin network, the amount of BTC every Bitcoin address
holds, is mutated after the transaction is processed. Be-
cause miners validate the incoming transactions, it is statis-
tically unlikely that a block containing an invalid transaction
is appended, because the miners do not include an invalid
transaction in a block. If a miner would include an invalid
transaction and broadcasts the block with the solved hash,
other nodes would not accept this block into the new state
and the miner would thus not receive its reward.

2.5 Tendermint
Tendermint[9] is a consensus algorithm based on the algo-

rithm proposed by Dwork et al. [13], solving the Byzantine
Generals Problem[21]. The Tendermint consensus algorithm
relies on chosen validator nodes voting on valid blocks[19].
Depending on the configuration, validator nodes can be ex-
pected to have put in some form of collateral for their posi-
tion, to incentivize non-Byzantine behavior. This stake can
be some form of cryptocurrency in the network, but can also
be a physical asset. Blockchain implementations like Bit-
coin[23] and Ethereum[15] have monolithic designs, where
the state machine and consensus layers are contained in a

30

single application. However, Tendermint decouples the two,
and only implements the consensus protocol. Therefore, the
state transition machine and the content of the transactions
can be arbitrary.

The consensus protocol makes use of one or more rounds
that get repeated when an invalid action happens or when a
timeout occurs. Each round has three steps, Propose, Pre-
vote and Precommit, along with two special steps NewHeight
and Commit. In an ideal situation, the consensus process
starts at the NewHeight step and ends up in the Commit
step after undergoing one round. Sometimes more rounds
are required in order to successfully commit a block. This
can be due to several reasons, such as the unavailability of
certain nodes that the protocol relies on in that round. For
example, the protocol requires a designated proposer node to
propose a block in that round. Some problems are resolved
by moving to the next round and proposer node, while oth-
ers are resolved by increasing certain protocol timeouts. A
more detailed explanation of protocol can be found at the
Tendermint Wiki[19]. Tendermint nodes communicate with
each other using an authenticated encryption scheme[20],
preventing the eavesdropping of other parties. We shall see
that this property, combined with the protocols public key
infrastructure, prevents a man-in-the-middle attack[16].

The protocol ensures that at least 2/3 of the set of valida-
tor nodes decides on the validity of a block to be appended
to the chain. The protocol is Byzantine fault tolerant in that
it is able to do reliable state replication when up to 1/3 of
the validator nodes is byzantine.

3. DecReg: A DOUBLE-FINANCE PREVEN-
TION FRAMEWORK

DecReg, short for Decentralized Registry, is a framework
composed of a dedicated blockchain, a certified network of
nodes and three protocols to be executed on the blockchain.
The consensus engine is Tendermint[18]. On top of that the
protocols are executed on the specified transaction structure.

When an FSP receives an invoice finance request in the
form of an invoice, it has to verify the absence of a previous
agreement. To accomplish this, it hashes the specified data
fields of the invoice and queries the blockchain. If the hash
is present, a double finance attempt is detected and the FSP
aborts the deal. If not, the FSP notarizes his agreement so
other FSPs can detect future double finance attempts.

3.1 Transactions
The DecReg blockchain contains transactions that repre-

sent agreements between finance service providers and sell-
ers. Moreover, the blockchain contains transactions that
are used to manage the network, such as transactions to
indicate the addition or removal of participants in the net-
work. Agreement transactions can be of two types, namely
(1) a single-invoice agreement or (2) a long-term agreement.
Distinguishing between these two is important in order to
understand the described protocols. Furthermore, both of
these transaction types can have a Revoke-flag, indicating
cancellation of an agreement or a single-invoice exemption
from a long-term agreement. Naturally, a revoke transaction
can only be done by the same node that did the initial nota-
rize transaction. This implies an ownership of the notarized
agreement by the registering node.

3.2 Network

Table 1: Protocols and their arguments

Single-invoice Long-term

Verify (ids, idinv, tsinv) (idinv, tsstart)

Notarize (ids, idinv) (ids, tsstart, tsend)

Revoke (ids, idinv) (ids)

The blockchain is maintained by a network consisting of
certified nodes with each node representing a separate fi-
nance service providing party. The network is governed by
a Central Authority (CA), which certifies nodes to partici-
pate in the network. Only nodes that are certified by the
CA are able to communicate with other nodes. Therefore,
the network is only available to the participating parties.
The CA role can be placed with an existing institution or
an institution can be specifically created for this purpose.
Only with a certificate issued by the CA will the transac-
tions broadcasted by a node be accepted by the other nodes.
The certification of nodes also has the advantage of greatly
reducing the chance of a successful Sybil attack[12], on which
we will elaborate in Section 3.4.

3.3 Protocols
DecReg is composed of three protocols: Verifying, nota-

rizing and revoking. The protocol for verifying is executed
by nodes upon receiving a finance request by a seller to de-
tect a possible Double-Finance attempt. Notarizing is the
phase in which nodes notify all other nodes of a new agree-
ment with a seller. Finally, a node notifies all other nodes
by revoking after aborting an agreement or giving a single
invoice exemption from a long-term agreement. We define
the FSP as f with secret key skf , the seller as s with id ids,
the invoice as inv with id idinv and timestamp tsinv, the
timestamp of the start of a long-term agreement as tsstart
and the end of it as tsend as summarized in Table 1.

Verify On receiving a finance request from a client seller
an FSP queries the blockchain to verify the absence of a pre-
vious agreement. As there are two different types of agree-
ments, we provide two different queries, one for each type.
The verification algorithm for long-term agreements is given
in Algorithm 1 and the one for single-invoice agreements is
given in Algorithm 2.

Let us first consider the algorithm for verifying the ab-
sence of long-term agreements as it is referenced in the algo-
rithm for verifying single-invoice agreements. The algorithm
queries the blockchain for a long-term agreement transaction
matching idinv and where tsend is greater than the specified
start date. If such a transaction is found, the algorithm
checks if the Revoke flag is set to true. If it is revoked, a
long-term agreement has apparently been canceled and the
algorithm accepts. If not, a possible fraud is detected and
the algorithm rejects. If no transaction is found, there have
not been overlapping agreements concerning the same seller
and the algorithm accepts.

Algorithm 2 is similar to Algorithm 1. First, the algorithm
queries the blockchain for a previous agreement matching
ids and idinv. If there is such a transaction, the algorithm
checks whether the Revoke flag is set to true. If it is, the
found agreement is either a revoked single invoice or an ex-
emption from a long-term agreement. In both cases, the

31

Algorithm 1 Verify long-term

procedure Verify(ids, tsbegin)
r ← query(ids, tsbegin) . Query blockchain for a

previous agreement a where a.tsend > tsbegin
if r 6= undefined then

if r.revoked = true then
output(’Revoked long-term agreement’)
accept

else
output(’Long-term agreement already exists’)
reject

end if
else

output(’No previous long-term agreement’)
accept

end if
end procedure

Algorithm 2 Verify single-invoice

procedure Verify(ids, idinv, tsinvoice)
r ← query(ids, idinv)
if r 6= undefined then

if r.revoked = true then
output(’Revoked or exempted invoice agree-

ment’)
accept

else
output(’Single-invoice agreement already ex-

ists’)
reject

end if
else

if Verify(ids, tsinvoice) then
output(’No previous agreements’)
accept

else
reject

end if
end if

end procedure

algorithm accepts. If it is not revoked, the invoice took part
in a previously made agreement and thus cannot be part
of a new one, so the algorithm rejects. If no transaction is
found, the invoice can still be part of a long-term agreement,
so Algorithm 2 calls Algorithm 1 with ids and tsinvoice. It
accepts if there is no long-term agreement overlapping with
the invoice date, otherwise it rejects.

Notarize After verifying the absence of any previous agree-
ment, an FSP notarizes his agreement with a seller on the
blockchain. It does so by creating a transaction using either
(ids, idinv) for a single invoice or (ids, tsstart, tsend) for a
long-term agreement. It signs the transaction with skf and
broadcasts it to the network.

Revoke For a blockchain can only be appended to, can-
celing an agreement must be done by making a new trans-
action. In the simple cases of revoking previously made
single-invoice- or long-term-agreements, one creates a trans-
actions using respectively (ids, idinv) and (ids) with the Re-
voke flag set. This will make previous agreements notarized
by the same FSP invalid. There is also the special case

where an FSP has a long-term agreement with a seller but
wants to make an exemption for an invoice that does not
meet the contractual requirements of the long-term agree-
ment. In that case, the FSP broadcasts a transactions using
(ids, idinv) and with the Revoke flag set to true, where ids
is a seller the FSP has a long-term agreement with.

3.4 Consensus algorithm
Whenever a new transaction is broadcasted to the net-

work consensus must be reached on the new state of the
blockchain. As explained in Chapter 2.3, the first blockchain
implementations like Bitcoin used Proof-of-Work to achieve
consensus. But in our case participating nodes need to be
certified, so a Sybil attack[12] becomes a minimal threat.
We can rely on voting per cryptographic identity as they
are only valid when the identity is approved by the CA.
Our consensus algorithm can therefore depend on a One-
certificate-one-vote decision scheme to reach consensus after
each new transaction. To implement this functionality, a
version of the Tendermint protocol is used. The network is
configured such that each factoring node will become a val-
idator with an equal vote. The collateral of each validator
node is an intangible asset: If factors choose to misbehave,
they can easily be excluded in the network.

3.5 Propagation time
As with most decentralized consensus protocols, it takes

time for a transaction to propagate through the network
and be irreversible. Only when the transaction is part of a
block that is committed to the chain, the transaction is final.
Therefore, an FSP can not be certain his notarization has
succeeded upon broadcasting a transaction. In the default
configuration, the Tendermint consensus protocol commits
a new block to the chain one second after the previous block.
Depending on several factors, such as the network latency
and amount of faulty nodes, the block time has a variable
length. However, in the network set-up that we described,
the block time would typically not exceed several seconds.
For the factoring entities, this notarization time is accept-
able. Moreover, note that this regards an invoice notariza-
tion and not an invoice lookup. Reading the blockchain data
for an invoice is fast, because it only queries data that the
node has stored in local storage.

4. IMPLEMENTATION
The implementation is written as a Go[1] application. The

application interacts with a configured Tendermint node via
the Tendermint Socket Protocol [5]. In this section we ex-
plain the characteristics and specifications of this implemen-
tation.

4.1 Network
To bootstrap the network, the Certificate Authority is cre-

ated by generating a key-pair and certificate. Upon entry,
each node generates an Ed25519[7] key-pair skf and pkf to
use as their persistent identity in the network. Ed25519 is
a public-key signature system that is designed to have fast
signing, verification and key generation, while not sacrific-
ing security. Furthermore, the keys and signatures can be
compressed to be only 32 and 64 bytes, respectively. This
makes it an efficient system to use.

The Tendermint consensus protocol also generates a key-
pair for secure peer-to-peer communication, so this key-pair

32

can be shared [20]. Next, if the corresponding FSP has met
the CA’s requirements, the nodes identity is certified by the
CA. Each node is configured with the CA’s identity and
an initial list of other peers. This list, called the genesis
certified node set, contains a list of certified nodes with their
certificate and, optionally, the nodes’ Internet address.

Each transaction in the network contains a signature from
a node that is in the set of certified nodes. However, the set
of certified nodes is subject to change as FSPs may enter or
leave the network. The changes to this set are recorded in
the blockchain via a Validator set transaction. Therefore,
the set of certified nodes is the genesis certified node set,
with mutations from the Validator set transactions in the
blockchain.

4.2 Transactions
The different functions of transactions define the business

logic of DecReg. A transaction can be of three different
types, each with a different type of payload data. The ver-
sion field is used to indicate for which protocol version the
transaction message is formatted so nodes can respond ap-
propriately. The version field helps with backwards compat-
ibility when updates are made to the protocol in a network
that is already operating. The signature field contains the
signature of the node creating the transaction. The signa-
ture is constructed from all the transaction fields concate-
nated in the same ordering of the fields in the transaction,
with the exception of the signature field itself. The signa-
ture identifies the creator of the transaction, which improves
the accountability of the nodes in the network. The payload
length field is used to indicate the length in bytes of the pay-
load field, which can be a maximum of 216 − 1 bytes. The
payload can contain arbitrary data, depending on the type
of the transaction. The type field specifies the type of the
transaction. For some types, the first byte of the payload
is used to store transaction flags. At this time, only the
Revoke flag exists that is used to indicate the reversal of a
notarization. As of now, a transaction can have one of the
following three types:

1. Validator set Indicates a change in the current val-
idator set. This transaction is used to change the set
of certified nodes in the network. The payload of this
transaction contains the public keys of the changing
validators. Per public key, the transaction has either
a valid certificate or a revocation of the public key,
depending on the validator entering or exiting the net-
work. The transactions are used to determine the va-
lidity of a peer. The total payload size is dependent
on the size of the changing validator set.

2. Single invoice Represents the registration of a single-
invoice in the network. The payload contains the flag
byte, the timestamp of 8 bytes of the current time,
and a reference to when the invoice was notarized.
Next, it contains the SHA-256 hash of the seller and
invoice identifiers, ids and idinv, respectively as such:
hash(ids||idinv). The total payload length is 73 bytes.

3. Long-term agreement Signifies the existence of a
long-term agreement. The payload consists of the flag
byte, the seller identifier ids, as well as two times-
tamps, tsbegin and tsend. The total payload is at least
17 bytes, depending on the size of the seller identifier.

4.3 Protocols
The ability to uniquely identify sellers and their invoices is

essential in DecReg, as otherwise unjust collisions can occur.
For ids we use a combination of a ISO [14] country code and
the Chamber of Commerce number. For idinv we use the
invoice reference as defined by the seller, as these have to be
unique by law[25] in the Netherlands. Combined, ids and
idinv are thus always unique.

Verify As our transaction data is hashed, Algorithm 1
and 2 needs to be executed precisely. The timestamps are
not part of the hash, so whenever a timestamp comparison
is needed, a node queries the hash first. If a transaction is
found, the timestamps can be compared. If the comparison
evaluates to false, we proceed querying for the hash.

Notarize Our implementation follows the protocol as de-
scribed in the previous section, in which the node broadcasts
the transaction to all of the nodes known to him.

Revoke We use a separate type for each transaction, e.g.
a different type for the single-invoice notarize transaction
and revoke transaction. The data fields follow the protocol
description as described in the previous section.

Test set-up Our implementation of DecReg is deployed
in association with a group of FSPs, as well as a governing
authority. Each FSP runs a node with the application imple-
mentation. This node is certified by the governing authority,
which acts as the network’s certificate authority. Each node
communicates with its peers and broadcasts all factoring
agreements to the network. Furthermore, the FSPs use the
network to verify that a single-invoice or long-term agree-
ment does not yet exist for their invoice or customer. There
are around 30 FSPs in the Netherlands, almost all partici-
pate, so there are 30 nodes (validators). In the Netherlands,
according to Tim Zoete, Voldaan factoring, about one thou-
sand single invoice agreements are made per day, each repre-
sented in the network with one transaction. Of the long-term
agreements about a thousand per year are issued, so these
are negligible in our analysis.

5. DISCUSSION AND CONCLUSIONS
Although one of blockchain’s core principles is its pub-

lic nature, the information stored in our blockchain is too
sensitive to be public. Therefore, we have chosen to use a
private blockchain for DecReg. The CA governs access to
this private blockchain, preventing any unauthorized parties
to obtain the sensitive information. One can argue the CA
is a central institution, thus centralizing the blockchain and
eliminating the advantages of using a blockchain. However,
the only power the CA has is deciding who enters and leaves
the network, it can not alter or contaminate any stored data.
To our knowledge, the only feasible attack possible would be
a collaboration between the CA and a seller, where the CA
denies an FSP from accessing the network. On receiving an
invoice finance request from this seller, the FSP will not be
able to verify any previously made agreement, making him
vulnerable to Double-Financing. In order to solve this prob-
lem, an FSP should halt invoice financing until it regains
access to the blockchain network.

As described by Tendermint, the network can be self-
governing: “Tendermint supports dynamic membership safely
by requiring a +2/3 quorum of validators to approve of mem-
bership changes”[4]. This would mean an efficiency improve-
ment and can decrease the costs of governance. However,

33

this would require a majority of the nodes to be always per-
fectly able to decide on nodes entering or leaving. As all
nodes are competitors of each other, it is decided on the CA
to govern the network and thus prevent incentive conflicts.

For our proposal, further optimizations can be made. As
invoices have expiration dates, the verification protocol does
not need to look for single invoices before a certain date
in the past. Invoices have a limited lifespan. Generally,
invoices do not have a payment term longer than 30 days and
are payed in extreme cases in 90 days. Therefore, we could
define a mechanism that prunes the blockchain data after a
certain cut-off date. This way, the size of the blockchain is in
connection with the amount of financed invoices in the given
period and not with all financed invoices since the genesis
of the blockchain. Furthermore, the search queries would be
faster, due to the set of transactions being smaller.

In the following, we also address two issues that provide
ground for future work.

Information exposure In DecReg, FSPs publish every
single agreement they have with a seller to all their competi-
tors. With this data, it is possible for an FSP to enumerate
operational information about competing FSPs. It is pos-
sible to prevent the exposure of such information via the
blockchain, while preserving the current functionality. Sev-
eral group signature schemes[10] provide a solution to this
problem. By using a group signature scheme in the network,
nodes would see that one of the certified nodes has signed
a transaction but they cannot identify which node. Due to
the traceability property, a CA is able to see the identity of
the signer in case of malicious behavior.

Invoice identifier uniqueness Although Dutch law re-
quires invoice numbers to be unique, in practice sellers easily
make mistakes. Factoring is mostly used by SMEs, so setting
the invoice number is often a manual job. For DecReg to
work, FSPs need to require correctly formatted invoice num-
bers from their customers, the sellers. Otherwise, Double-
Finance attempts could be detected that actually concern
different invoices that have the same number. Therefore,
use of unique invoice numbers should be enforced.

In this paper, we presented a framework that deploys the
blockchain technology to solve the double-factoring prob-
lem in finance. Our protocols that are designed to support
the business logic in factoring are effectively realized in our
blockchain variant and shown to be efficient to be used in
practice. In fact, our framework presented in this paper is
being deployed to be used in the financial industry as of
February 2017 in the Netherlands.

6. REFERENCES
[1] Anonymous. The go programming language.

https://golang.org/, 2009.

[2] Anonymous. Bitcoin wiki. https://en.bitcoin.it/wiki/
Technical background of version 1 Bitcoin addresses,
2017. Accessed: 1 Jan 2017.

[3] Anonymous. R3 consortium website.
http://www.r3cev.com/, 2017. Accessed: 17 Jan 2017].

[4] Anonymous. Tenderming vs PBFT.
https://tendermint.com/blog/tendermint-vs-pbft,
2017. Accessed: 14 Jan 2017.

[5] Anonymous. Tendermint ABCI overview.
https://tendermint.com/intro/abci-overview, 2017.
Accessed: 15 Jan 2017.

[6] A. Back. Hashcash-a denial of service counter-measure.
http://www.hashcash.org/papers/hashcash.pdf, 2002.

[7] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and
B.-Y. Yang. High-speed high-security signatures.
Journal of Cryptographic Engineering, 2(2):77–89,
2012.

[8] C. Bryant and E. Camerinelli. Supply chain finance.
2012.

[9] E. Buchman. Introduction to tendermint.
https://github.com/tendermint/tendermint/wiki/
Introduction, 2017. Accessed: 15 Jan 2017.

[10] D. Chaum and E. Van Heyst. Group signatures. In
Workshop on the Theory and Application of
Cryptographic Techniques, pages 257–265. Springer,
1991.

[11] S. Deetman. Bitcoin could consume as much
electricity as Denmark by 2020.
http://motherboard.vice.com/read/
bitcoin-could-consume-as-much-electricity-as-denmark-by-2020,
2016.

[12] J. J. Douceur. The sybil attack. In Proceedings of 1st
International Workshop on Peer-to-Peer Systems
(IPTPS), January 2002.

[13] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM
(JACM), 35(2):288–323, 1988. section 4, algorithm 2’.

[14] I. O. for Standardization. Iso 3166-1 alpha-3, 1974.

[15] E. Foundation. White paper. https:
//github.com/ethereum/wiki/wiki/White-Paper,
2017. Accessed: 13 Jan 2017.

[16] Y. Joshi, D. Das, and S. Saha. Mitigating man in the
middle attack over secure sockets layer. In IEEE
International Conference on Internet Multimedia
Services Architecture and Applications (IMSAA),
pages 1–5. IEEE, 2009.

[17] I. Justitia. European payment report. page 14, 2015.

[18] J. Kwon. Tendermint: Consensus without mining.
http://www.the-blockchain.com/docs/Tendermint%
20Consensus%20without%20Mining.pdf, 2014.

[19] J. Kwon. Byzantine consensus algorithm.
https://github.com/tendermint/tendermint/wiki/
Byzantine-Consensus-Algorithm, 2017. Accessed: 15
Jan 2017.

[20] J. Kwon. P2P authenticated encryption.
https://github.com/tendermint/tendermint/wiki/
P2P-Authenticated-Encryption, 2017. Accessed
15-January-2017.

[21] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):382–401,
1982.

[22] C. G. Moore. Factoring-a unique and important form
of financing and service. The Business Lawyer,
14(3):703–727, 1959.

[23] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2008.

[24] H. R. Randau and O. Medinskaya. Types of taxes. In
China Business 2.0, pages 125–137. Springer, 2015.

[25] R. van State. Wet van de omzetbelasting. artikel 35a,
lid 1, sub b, 1968.

34

