
Targeted Online Password Guessing:
An Underestimated Threat

Ding Wang†, Zijian Zhang†, Ping Wang†, Jeff Yan∗, Xinyi Huang‡

†School of EECS, Peking University, Beijing 100871, China
*School of Computing and Communications, Lancaster University, United Kingdom

‡School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China
{wangdingg, zhangzj, pwang}@pku.edu.cn; jeff.yan@lancaster.ac.uk; xyhuang81@gmail.com

ABSTRACT
While trawling online/offline password guessing has been inten-
sively studied, only a few studies have examined targeted online
guessing, where an attacker guesses a specific victim’s password
for a service, by exploiting the victim’s personal information such
as one sister password leaked from her another account and some
personally identifiable information (PII). A key challenge for tar-
geted online guessing is to choose the most effective password can-
didates, while the number of guess attempts allowed by a server’s
lockout or throttling mechanisms is typically very small.

We propose TarGuess, a framework that systematically charac-
terizes typical targeted guessing scenarios with seven sound math-
ematical models, each of which is based on varied kinds of data
available to an attacker. These models allow us to design novel and
efficient guessing algorithms. Extensive experiments on 10 large
real-world password datasets show the effectiveness of TarGuess.
Particularly, TarGuess I∼IV capture the four most representative
scenarios and within 100 guesses: (1) TarGuess-I outperforms its
foremost counterpart by 142% against security-savvy users and by
46% against normal users; (2) TarGuess-II outperforms its fore-
most counterpart by 169% on security-savvy users and by 72%
against normal users; and (3) Both TarGuess-III and IV gain suc-
cess rates over 73% against normal users and over 32% against
security-savvy users. TarGuess-III and IV, for the first time, address
the issue of cross-site online guessing when given the victim’s one
sister password and some PII.

Keywords
Password authentication; Targeted online guessing; Personal infor-
mation; Password reuse; Probabilistic model.

1. INTRODUCTION
Passwords firmly remain the most prevalent mechanism for user

authentication in various computer systems. To understand pass-
word security, a number of probabilistic guessing models, e.g.,
Markov n-grams [21, 25] and probabilistic context-free grammars
(PCFG) [31, 35], have been successively proposed. A common
feature of these guessing models is that they characterize a trawl-
ing offline guessing attacker who mainly works against the leaked

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria
© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978339

password files and aims to crack as many accounts as possible.
As highlighted in [16], offline guessing attacks, no matter trawling
ones or targeted ones, only pose a real concern in the very limited
circumstance: the server’s password file is leaked, the leakage
goes undetected, and the passwords are also properly hashed and
salted. Recent research [7, 16] has realized that it should be the
role of websites to protect user passwords from offline guessing by
securely storing password files, while normal users only need to
choose passwords that can survive online guessing.

Online guessing can be launched against the publicly facing
server by anyone using a browser at anytime, with the primary
constraint being the number of guesses allowed. Trawling online
guessing mainly exploits users’ behavior of choosing popular pass-
words [22, 34], and it can be well addressed by various security
mechanisms at the server (e.g., suspicious login detection [14],
rate-limiting and lockout [18]). However, targeted online guessing
(see Fig. 1) can exploit not only weak popular passwords, but also
passwords reused across sites and passwords containing personal
information. This is a serious security concern, since various
Personally Identifiable Information (PII) and leaked passwords be-
come readily available due to unending data breaches [2, 3, 17].
For instance, the most recent large-scale PII data breach in April
2016 [3] involves 50 million Turkish citizens, accounting for 64%
of the population. According to the CNNIC 2015 report [1], over
78.2% of the 668 million Chinese netizens have suffered PII data
leakage. In a series of recent breaches, over 253 million American
netizens become victims of PII and password leakage [27].

This indicates that the existing password creation rules (e.g., [15,
28]) and strength meters (e.g., [24,32]) grounded on these trawling
guessing models [21, 25, 31, 35] can mainly accommodate to the
limited offline guessing threat, taking no account of the targeted
online guessing threat which is increasingly more damaging and
realistic. This misplaced research focus largely attributes to the
failure (see [7, 33]) of the academic world to identify the crux
of current practices and to suggest convincingly better password
solutions than current practices to lead the industrial world.

The main challenge for targeted online password guessing is to
effectively characterize an attacker A’s guessing model, with multi-
ple dimensions of available information (see Fig. 2) well captured,
while the number of guesses allowed to A is small – the NIST
Authentication Guideline [18] requires Level 1 and 2 systems to
keep login failures less than 100 per user account in any 30-day
period. The following explains why it is a challenge.

First, people’s password choices vary much among each other.
When creating a password, some people reuse an existing pass-
word, and some modify an existing password; Some incorporate
PII into their passwords, yet others do not; Some favor digits,
some favor letters, and so on. Thus, a user population’s passwords
created for a given web service can differ greatly. Therefore, the

1242

http://dx.doi.org/10.1145/2976749.2978339

Figure 1: Targeted online guessing. Figure 2: Multiple info for A.

trawling guessing models [21, 25, 31, 35], which aim to produce
a single guess list for all users, are not suitable for characterizing
targeted online guessing.

Second, users’ PII is highly heterogeneous. Some kinds of
PII (e.g., name, and hobby) are composed of letters, some (e.g.,
birthday and phone number) are composed of digits, and some
(e.g., user name) are a mixture of letters, digits and symbols. Some
PII (e.g., name, birthday and hobby), as shown in Fig. 2, can be
directly used as password components, while others (e.g., gender
and education) cannot. As we will show, most of them have an
impact on people’s password choice. Thus, it is challenging to, at a
large-scale, automatically incorporate such heterogeneous PII into
guessing models when the guess attempts allowed is limited.

Third, users employ a diversified set of transformation rules to
modify passwords for cross-site reuse. As shown in [12, 32], when
given a password, there are over a dozen transformation rules,
such as insert, delete, capitalization and leet (e.g., password→
passw0rd) and the synthesized ones (e.g., password→
Passw0rd1), that a user can utilize to create a new password.
How to prioritize these rules for each individual user is not easy.

Moreover, which transformation rules users will apply for pass-
word reuse are often context dependent. Suppose attacker A targets
Alice’s eBay account which requires passwords of length 8+, and
knows that Alice is in her 30s. With access to a sister pass-
word Alice1978Yahoo leaked from Alice’s Yahoo account, A
will have a higher chance by guessing Alice1978eBay than by
Alice1978 due to the inertia of human behaviors. Yet, when
Alice’s leaked password is 123456, A would more likely succeed
by guessing Alice1978 than by Alice1978eBay. When site
password policies are also considered, the situation may further
vary. Such context dependence necessitate an adaptive, semantics-
aware cross-site guessing model.

1.1 Related work
Zhang et al. [37] suggested an algorithm for predicting a user’s

future password with previous ones for the same account. Das et
al. [12] studied the password reuse issue, and proposed a cross-site
cracking algorithm. However, their algorithm is not optimal for
targeted online guessing for four reasons. First, it does not consider
common popular passwords (e.g., iloveyou, and pa$$w0rd)
which do not involve reuse behaviors or user PII. Second, it as-
sumes that all users employ the transformation rules in a fixed
priority. Yet, as we observe, this priority is actually dynamic
and context-dependent. Third, their algorithm does not consider
various synthesized rules. Fourth, it is heuristics based.

Li et al. [20] examined how user’s PII may impact password
security, and found that 60.1% of users incorporate at least one
kind of PII into their passwords. They proposed a semantics-rich
algorithm, Personal-PCFG, which considers six types of personal
information: name, birthdate, phone number, National ID, email
address and user name. However, as we will show, its length-
based PII matching and substitution approach makes it inaccurate
to capture user PII usages, greatly hindering the cracking efficiency.
Our TarGuess-I manages to overcome this issue by using a type-
based PII matching approach and gains drastic improvements.

1.2 Our contributions
In this work, we make the following key contributions:
• A practical framework. To overcome the challenges

discussed above, we propose TarGuess, a framework to
characterize typical targeted online guessing attacks, with
sound probabilistic models (rather than ad hoc models or
heuristics). TarGuess captures seven typical scenarios, with
each based on a different combination of various
information available to the attacker.

• Four probabilistic algorithms. To model the most repre-
sentative targeted guessing scenarios, we propose four al-
gorithms by leveraging probabilistic techniques including
PCFG, Markov and Bayesian theory. Our algorithms all
significantly outperform prior art. We further show how
they can be readily employed to deal with the other three
remaining attacking scenarios.

• An extensive evaluation. We perform a series of experi-
ments to demonstrate that both the efficacy and general ap-
plicability of our algorithms. Our empirical results show that
an overwhelming fraction of users’ passwords are vulnerable
to our targeted online guessing. This suggests that the danger
of this threat has been significantly underestimated.

• New insights. For example, Type-based PII-tags are more
effective than length-based PII-tags in targeted guessing.
Simply incorporating many kinds of PII into algorithms will
not increase success rates, which is counter intuitive. The
success rate of a guess decreases with a Zipf’s law as the
rank of this guess in the guess list increases.

2. PRELIMINARIES
We now explicate what kinds of user personal information are

considered in this work and elaborate on the security model.

2.1 Explication of personal information
The most prominent feature that differentiates a targeted guess-

ing attack from a trawling one is that, the former involves user-
specific data, or so-called “personal info”. This term is sometimes
used inter-changeably with the term “personally identifiable info”
[10, 20], while sometimes their definitions vary greatly in different
situations, laws, regulations [23, 29]. Generally, a user’s personal
info is “any info relating to” this user [29], and it is broader than
PII. For better comprehension, in Table 1 we provide the first
classification of personal info in the case of password cracking,
making a systematical investigation of targeted guessing possible.

We divide user personal information into three kinds, with each
kind having a varied degree of secrecy, different roles in passwords
and various types of specific elements. The first kind is user PII
(e.g., name and gender), which is natively semipublic: public to
friends, colleagues, acquaintances, etc., yet private to strangers.
The second kind is user identification credentials, and parts of them
(e.g., user name) are public, while parts of them (e.g., password)
are exclusively private. The remaining user personal data falls into
the third kind and is irrelevant to this work. We further divide user
PII into two types: Type-1 and Type-2. Type-1 PII (e.g., name and
birthday) can be the building blocks of passwords, while Type-2
PII (e.g., gender and education [22]) may impact user behavior of
password creation yet cannot be directly used in passwords. Each
type of PII shapes our guessing algorithms quite distinctly.

Here we highlight a special kind of user personal information —
a user’s passwords at various web services. As shown in [12, 32],
users tend to reuse or modify their existing passwords at other sites
(called sister passwords) for new accounts. However, such sister
passwords are becoming more and more easily available due to the
unending catastrophic password file leakages (see [2, 4, 27]).

1243

Table 1: Explication of user personal info (NID stands for National identification number, e.g., SSN; PW for password)
Different kinds of personal info Degree of secrecy Roles in PWs Considered in this work(X) Not Considered in this work(×)
Personally identifiable Type-1 Semipublic Explicit Name, Birthday, Phone number, NID Place of birth, Likes, Hobbies, etc.

information (PII) Type-2 Semipublic Implicit Gender, Age, Language Faith, Disposition, Education, etc.

User identification credentials Private Explicit Passwords, Personal Identification Numbers Finger prints, Private keys, etc.
Public Explicit User name, Email address Debit card number, Health IDs, etc.

Other kinds of personal data — — — Employment, Financial records, etc.

Table 2: A summary of the four most representative scenarios of targeted online guessing

Attacking scenario Exploiting public information Exploiting user personal information †
Existing literature Our model(e.g., datasets and policies) One sister password Type-1 PII Type-2 PII

Trawling #1 X Ref. [21, 25, 35]
Targeted #1 X X Ref. [20] TarGuess-I

Targeted #2 X Ref. [12]
X X None TarGuess-II∗

Targeted #3 X X X None TarGuess-III
Targeted #4 X X X X None TarGuess-IV

∗As public password datasets are readily available, TarGuess-II and [12] is comparable because they exploit the same type of user PII.
†A total of 7(=C1

3+C2
3+C3

3) scenarios result from combining the three types of personal info. With TarGuess-I∼IV, all 7 cases will be tackled in Sec. 4.

2.2 Security model
Without loss of generality, in this work we mainly focus on

the client-server architecture, the most common case of user au-
thentication, as shown in the right of Fig. 1. There are three
entities involved in a targeted online guessing attack: a user U ,
an authentication server S and an attacker A.

User U has registered a password account at the server S. This
password is only known to S, though U ’s passwords at other sites
may have already been publicly disclosed. S may be remote (e.g.,
an e-commerce site) or local (e.g., a password-protected mobile
device). To be realistic, we assume that S enforces some security
mechanisms such as suspicious login detection and lockout [14,18],
and thus the number of guesses allowed to A is limited (e.g., 102

[8,18]). A knows some amount of personal info about U , and may
be a curious friend, a jealous wife, a blackmailer, or even an evil
hacker group that buys personal info from the underground market.

As there is a messy mixture of multiple dimensions of info (see
Fig. 2) potentially available to the attacker A, it is challenging to
characterize A. We tackle this issue by assuming that all the public
info (e.g., leaked PW lists and site policies) should be available to
A, and then by defining a series of attacking scenarios (see Table
2) based on varied types of U ’s personal info given to A. This is
reasonable: (1) A is smart and likely to exploit the readily available
public info to increase her chance; and (2) A would use different
attacking strategies when given different personal info. Once A
has successfully guessed the password, the victim’s sensitive info
can be disclosed, reputation could be ruined (see [36]), password
account may be hijacked and money might be lost (see [26]).

Note that, here we only consider scenarios where A is with at
most one sister password of user U . The underlying reason is
that, among the 547.56M of leaked password accounts that we
have collected over a period of six years, less than 1.02% (resp.
1.73%) of them have more than one match by email (resp. user
name). Similarly, among the 7.96M accounts collected by Das et
al. in 2014 [12], only 152 (0.00191%) of them have more than one
match by email. Therefore, it is realistic to assume that most users
have leaked one sister password, and A can exploit U ’s this sister
password for attacking.

3. HUMAN BEHAVIORS OF PASSWORD
CREATION

Here we report a large-scale empirical study of human behaviors
in creating passwords, in particular, how often they choose popular
passwords, how often to reuse passwords, how often to make use
of their own PII.

Table 3: Basic information about our 10 password datasets
Dataset Web service Language When leaked Total PWs With PII
Dodonew E-commerce Chinese Dec., 2011 16,258,891
CSDN Programmer Chinese Dec., 2011 6,428,277
126 Email Chinese Dec., 2011 6,392,568
12306 Train ticketing Chinese Dec., 2014 129,303 X
Rockyou Social forum English Dec., 2009 32,581,870
000webhost Web hosting English Oct., 2015 15,251,073
Yahoo Web portal English July, 2012 442,834
Rootkit Hacker forum English Feb., 2011 69,418 X
Xiaomi∗ Mobile, cloud Chinese May, 2014 8,281,385
Xato Synthesised English Feb., 2015 9,997,772
∗Xiaomi passwords are in salted-hash and will be used as real targets.

Table 4: Basic information about our personal-info datasets
Dataset Language Number of Items Types of PII useful for this work
Hotel Chinese 20,051,426 Name, Gender, Birthday, Phone, NID
51job Chinese 2,327,571 Email, Name, Gender, Birthday, Phone

12306 Chinese 129,303
Email, User name, Name, Gender, Birth-
day, Phone, NID

Rootkit English 69,324 Email, User name, Name, Age, Birthday

3.1 Our datasets
Our evaluation builds on ten large real-world password datasets

(see Table 3), including five from English sites and five from
Chinese sites. They were hacked by attackers or leaked by insiders,
and disclosed publicly on the Internet, and some of them have been
used in trawling password models [13, 19, 21]. Rootkit initially
contains 71,228 passwords hashed in MD5, and we recover 97.46%
of them by using our TarGuess-IV and various trawling guessing
models [21, 30] in one week. In total, these datasets consist of
95.83 million plain-text passwords and cover various popular web
services. The role of each dataset will be specified in Sec. 5.

In particular, two of these ten password datasets contain various
types of PII as shown in Table 4. Besides, we further employ two
auxiliary PII datasets, aiming to augment the password datasets
by matching the email address to facilitate a more comprehensive
understanding of the role of PII in user-chosen passwords. While
most of the PII attributes in Chinese PII-associated datasets are
available, 17.90% of names and 54.04% of birthdays in Rootkit
are null. These missing attributes may hinder the effectiveness of
targeted attacks against Rootkit users. To the best of knowledge,
our corpus is the largest and most diversified ever collected for
evaluating the security threat of targeted online guessing.

3.2 Popular passwords
Table 5 shows how often users from different services choose

popular passwords. It is disturbing that 0.79%∼10.44% of user-
chosen passwords can be guessed by just using the top 10 pass-
words. Generally, top Chinese passwords are more concentrated
than English ones [34], which may imply that the former would be

1244

Table 5: Top-10 most popular passwords of each service
Rank Dodonew CSDN 126 12306 Rockyou 000webhost Xato Yahoo Rootkit

1 123456 123456789 123456 123456 123456 abc123 123456 123456 123456
2 a123456 12345678 123456789 a123456 12345 123456a password password password
3 123456789 11111111 111111 5201314 123456789 12qw23we 12345678 welcome rootkit
4 111111 dearbook password 123456a password 123abc qwerty ninja 111111
5 5201314 00000000 000000 111111 iloveyou a123456 123456789 abc123 12345678
6 123123 123123123 123123 woaini1314 princess 123qwe 12345 123456789 qwerty
7 a321654 1234567890 12345678 123123 1234567 secret666 1234 12345678 123456789
8 12345 88888888 5201314 000000 rockyou YfDbUfNjH10305070† 111111 sunshine 123123
9 000000 111111111 18881888 qq123456 12345678 asd123 1234567 princess qwertyui

10 123456a 147258369 1234567 1qaz2wsx abc123 qwerty123 dragon qwerty 12345
% of top-10 3.28% 10.44% 3.52% 1.28% 2.05% 0.79% 1.46% 1.01% 3.94%
†The letter-part (i.e., YfDbUfNjH) can be mapped to a Russian word which means “navigator”. Why it is so popular is beyond our comprehension.

more prone to online guessing. While most of the top Chinese pass-
words are only made of simple digits, popular English ones tend to
be meaningful letter strings or keyboard patterns. Love plays an
important role — iloveyou and princess are among the top-
10 lists of two English sites, while 5201314 and woaini1314,
both of which sound as “I love you forever and ever” in Chinese,
are among the top-10 lists of three Chinese sites. Other factors
such as culture (see 18881888) and site name (see rockyou and
rootkit) also show their impacts on password creation.

Figure 3: Fraction of PWs shared between two sites.

Fig. 3 illustrates the fraction of top-k passwords shared between
two different services with varied thresholds of k. Generally, the
fraction of shared passwords from the same language is substantial-
ly higher than that of shared passwords from different languages. In
addition, the fraction of shared passwords between any two services
is less than 60% at any threshold k larger than 10. This implies that
both language and service play an important role in shaping users’
top popular passwords.

Rockyou and 000webhost share significantly fewer common
passwords than other pairs do. We examine these two datasets and
find that 99.29% of 000webhost passwords include both letters and
digits, indicating that this site enforces a password creation policy
that requires passwords to include both letters and digits. This can
also be corroborated by Table 5 where all top-10 000webhost
passwords are composed of both letters and digits. Similarly, we
find that CSDN requires passwords to be of length 8+.

3.3 Password reuse
While users have to maintain probably several times as many

password accounts as they did 10 years ago, human-memory ca-
pacity remains stable. As a result, users tend to cope by reusing
passwords across different services [16,32]. Several empirical stud-
ies [5, 12] have explored the password reuse behaviors of English
and European users, yet as far as we know, no empirical results
have been reported about Chinese users, who reached 668 million
by Dec., 2015 [11] and account for about 25% (and the largest
fraction) of the world’s Internet population.

To fill this gap, we intersect 12306 with Dodonew by matching
email, and further eliminate the users with identical password pairs.
This produces a new list 12306&Dodonewwith two non-identical
sister passwords for each user. Similarly, we obtain two more
intersected Chinese password lists and three intersected English

lists as shown in Fig. 4. During the matching process, we find
that 34.02%∼71.11% of Chinese users’ sister password pairs are
identical (and thus are eliminated), while these figures for English
users are 6.25%∼21.96% (see Sec. 5.1). This suggests that our
English users reuse less.

Figure 4: Using the Levenshtein-distance similarity metric to
measure the similarity of two passwords chosen by the same
user across different services. Results suggest that most users
modify passwords in a non-trivial way.

We employ the widely accepted Levenshtein-distance metric
to measure the similarity between two different passwords of a
given user. Fig. 4 shows that, sister passwords of Chinese users
generally have higher similarity than English users, implying that
Chinese users modify passwords less complexly. About 30% of
the non-identical Chinese password pairs have similarity scores
in [0.7, 1.0], while this figure for our English password pairs is
less than 20%. We also employ the longest-common-subsequence
metric for measurement. Both metrics show similar results. Our
results imply that the majority of users modify passwords in a non-
trivial approach, and it would be challenging to model such users’s
modification behaviors.

We have observed that our English users reuse less and modify
passwords more complexly. A plausible reason for this observation
is that the two english sites are not normal: Rootkit is a hacker fo-
rum and 000webhost is mainly used by web administrators. There-
fore, the users of both sites are likely to be more security-savvy
than normal users. Thus, the lists Rootkit&000webhost,
Rootkit&Yahoo and 000webhost&Yahoo will show more
secure reuse behaviors than that of normal English/Chinese users.

In 2014, Das et al. [12] found that the fraction of identical sister
PW pairs of normal English users is 43%, which roughly accords
with our Chinese users yet 2∼6 times higher than our English users.
They also showed that about 30% of their non-identical English PW
pairs have similarity scores in [0.7, 1.0], well in accord with that of
our Chinese users. Moreover, the survey results on password reuse
behaviors of normal Chinese users [32] are largely consistent with
the survey results on normal English users [12]. Both empirical and
survey results suggest that normal Chinese and English users have
similar reuse behaviors, while our English users would be good
representatives of security-savvy users.

1245

Table 6: Percentages of users building passwords with (and only with) their own heterogeneous personal information†

Typical usages of personal information (examples) PII-Dodonew PII-126 PII-CSDN PII-12306 PII-Rootkit PII-Yahoo PII-000web-
(161,510) (30,741) (77,439) (129,303) (69,330) (214) host(2,950)

Full_name (lei wang, john smith) 4.68 0.82 3.00 1.32 4.85 1.81 5.02 1.13 1.38 0.75 2.34 1.87 2.44 1.32
Family_name (wang, smith) 11.15 0.01 6.16 0.00 9.75 0.00 11.23 0.00 2.28 0.78 4.67 1.87 3.73 1.46

Given_name (lei, john) 6.49 0.07 4.10 0.12 6.26 0.08 6.61 0.07 0.49 0.07 0.93 0.00 0.75 0.20
Abbr. full_name (wl, lwang, js, jsmith) 13.64 0.02 6.36 0.00 9.42 0.00 13.13 0.00 0.15 0.01 0.00 0.00 0.20 0.00

Birthday(19820607, 06071982, 07061982) 3.12 1.00 3.70 2.77 6.29 5.16 4.33 1.77 0.08 0.06 0.47 0.00 0.10 0.07
Year of bithday (1982) 8.92 0.00 8.84 0.01 11.37 0.00 10.78 0.00 0.75 0.01 1.40 0.00 1.12 0.00

Date of bithday (0607, 0706) 8.32 0.00 10.48 0.02 11.84 0.00 10.03 0.00 0.44 0.01 0.47 0.00 0.58 0.00
Abbr. bithday(198267, 671982, 761982, 820607, 060782) 2.37 0.59 2.60 1.71 2.89 1.45 3.31 1.12 0.10 0.05 0.00 0.00 0.20 0.14

Family_name+bithday (wang19820607, smith06071982) 0.08 0.08 0.05 0.05 0.03 0.03 0.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00
Family_name+Abbr. bithdayÀ(wang198267, smith671982) 0.11 0.11 0.03 0.02 0.05 0.05 0.15 0.14 0.00 0.00 0.00 0.00 0.00 0.00
Family_name+Abbr. bithdayÁ(wang820607, smith060782) 0.17 0.17 0.07 0.07 0.13 0.11 0.17 0.16 0.00 0.00 0.00 0.00 0.00 0.00

Family_name+year of birth (wang1982, smith1982) 0.55 0.22 0.20 0.07 0.22 0.07 0.64 0.25 0.01 0.00 0.00 0.00 0.00 0.00
Family_name+date of birth (wang0607, smith0607) 0.12 0.09 0.05 0.03 0.08 0.04 0.16 0.12 0.01 0.00 0.00 0.00 0.00 0.00

User name (icemoon12, bluebirdz) 1.54 1.14 0.54 0.38 0.61 0.43 1.96 1.32 1.59 0.92 2.34 1.40 2.20 1.32
Email_prefix (l0veu4ever@example.com) 5.07 3.07 2.52 1.60 4.35 2.48 3.03 1.82 0.77 0.44 4.21 1.87 1.32 0.78

Phone number (11-digit Chinese mobile number 13511336677) 0.10 0.10 0.48 0.45 0.50 0.45 0.07 0.01 — — — — — —
‘a’+birthday(a19820607, a06071982, a07061982) 0.16 0.13 0.04 0.02 0.03 0.02 0.16 0.12 0.00 0.00 0.00 0.00 0.00 0.00

Full_name+1 (wanglei1, johnsmith1) 1.49 0.22 0.51 0.03 0.84 0.03 1.65 0.17 0.06 0.01 0.00 0.00 0.03 0.00
†All the decimals in the table use ‘%’ as the unit. For instance, 4.68 in the top left corner means that 4.68% of the 161,510 PII-associated Dodonew users
employ their full name to build passwords; 0.82 means that 0.82% of these 161,510 Dodonew users’ passwords are just their full names.

(a) Gender on freq. distribution. (b) Age on length distribution.

Figure 5: Impact of type-2 PII on user password creation. Both
gender and age show tangible impacts.

3.4 Password containing personal info
We show in Table 6 how often users employ their own PII to

build passwords. Since some password lists have no PII (see Table
3), we correlate them with the PII datasets of the same language
in Table 4 by matching email. As a result, seven PII-associated
password lists are produced, and they are much more diversified
than those in [20]. The sample size of each PII-associated dataset
is shown in the first row of Table 4. As expected, highly heteroge-
neous PII becomes components of passwords, and users like to use
names, birthdays and their variations. Particularly, a non-negligible
fraction of users employ just their full names (0.75%∼1.87%)
as passwords, and 1.00%∼5.16% of Chinese users use just their
birthdays as passwords. Surprisingly, email and user name prevail
in passwords of both user groups, ranging from 0.77% to 5.07%
and from 0.54% to 2.34%, respectively. In comparison, English
users exhibit a more secure behavior in PII usages, for our English
users represent security-savvy ones.

Fig. 5 illustrates the impact of type-2 PII : (1) passwords of
Dodonew female users are more concentrated; (2) passwords of
Dodonew users in age≤24 and age≥46 have quite similar length
distributions (pairwise χ2 test, p-value= 0.009), while users in
age 25∼45 are significantly different in length distributions (p-
values<10−6). Similar results are found in all other datasets.
Type-based PII matching. To achieve accuracy in PII recognition,
we propose a type-based PII segment matching method: besides
the traditional PCFG-based L, D, S tags [35], we employ a few
kinds of PII tags (e.g., N for name and B for birthday), and each
subscript number of our PII tags stands for a particular sub-type of
one kind of PII considered. For instance, N1 denotes the usage of
family name (e.g., li), B5 denotes the usage of year in birthday
(e.g., 1982) and so on. More details will be given in Sec. 4.1.

This is inherently different from the length-based PII matching
method given in an independent study [20]. To avoid mismatching,
only PII segments with len ≥ 3 are considered in [20]. For
instance, a match with any length 3+ substring (e.g., 195, 952,
520) of a birthday 19520123 will be considered as a birthday
match. However, this introduces both under-estimations and over-
estimations in PII matching. For example, the password li.520
of a user named “Wei Li” with birthday 19520123” will be tagged
as L2S1Birth3, because the family name li is of length <3. As
20% of the top-50 Chinese family names are with length <3 (e.g.,
li, wu and he), a large fraction of users’ name usages may be
under-estimated by [20]. For instance, 30,926 (23.9%) of the 13K
12306 users are with a family name len ≤2, and 4,346 of these
30,926 users indeed use their family name in passwords, yet this
fact cannot be captured in [20].

On the other hand, the segments (e.g.,123, 520 and 201) in
top popular digital passwords (e.g., 123456, 123456789,
5201314) would often coincide with user birthdays and phone
numbers, leading to over-estimations of their usages in passwords.
As we will show in Sec. 4.1, this length-based matching method
also introduces a weakness in the guess generation process when
performing cracking, while either increasing or decreasing their
length threshold will not eliminate the problem.
Summary. Our PII-associated password corpus is so far the largest
and most diversified ever collected for evaluating targeted online
guessing. Particularly, it, for the first time, covers (security-savvy)
English users. While users’ three vulnerable behaviors might be
potentially exploited to improve cracking, our results show that
varied circumstances (e.g., language, service and policy), non-
trivial transformation rules and highly heterogeneous PII all would
make it a challenging task to automate this process, especially
when given a limited guessing number (e.g., 100 by NIST [8, 18]).

4. TARGUESS: A FRAMEWORK FOR
TARGETED ONLINE GUESSING

We now propose TarGuess, a practical framework that effec-
tively addresses the realistic yet challenging problem of modeling
various targeted online guessing scenarios.

As shown in Fig. 6, TarGuess consists of three phases (i.e.
preparing, training and guessing). The design of the first and third
phases is straightforward, and the main task lies in the second one.
TarGuess captures four types of the most representative targeted
online guessing scenarios, with each type based on varied kinds
of personal information available to A (see Table 2): (i) only

1246

Figure 6: An architectural overview of the TarGuess. Figure 7: TarGuess-I: an illustration.

type-1 PII; (ii) one sister password; (iii) combination of i and
ii; (iv) combination of iii and type-2 PII. To model these four
scenarios, we suggest four guessing models (I∼IV) by leveraging
a number of probabilistic techniques such as PCFG, Markov and
Bayesian theory. We also show that, with TarGuess-I∼IV, the three
remaining scenarios can also be well addressed.

4.1 TarGuess-I
TarGuess-I aims to online guess a user U ’s passwords by ex-

ploiting U ’ some type-1 PII (e.g., name and birthday, not gender).
It builds on Weir et al.’s PCFG-based algorithm [35] which has
been shown a great success in dealing with trawling guessing
scenarios. In the training phase of [35], each password is seen as a
combination of letter(L)-, digit(D)- and symbol(S)- segments. For
example, loveyou@1314 is parsed into the L-segment “lovey-
ou”, S-segment “@” and D-segment “1314”, and its base structure
is L7S1D4; wanglei@1982 is also parsed into L7S1D4.
Our new algorithm. To capture PII semantics, besides the L, D,
S tags as with PCFG [35], we introduce a number of type-based
PII tags (e.g., N1∼N7 and B1∼B10). For a type-based PII tag,
its subscript number stands for a particular sub-type of one kind
of PII usages but not the length matched, as opposed to the L,
D, S tags. For instance, N stands for name usages, while N1 for
the usage of full name, N2 for the abbr. of full name (e.g., lw
from “lei wang”), · · · ; B stands for birthday usages, B1 for full
birthday in YMD format (e.g., 19820607), B2 for full birthday in
MDY, · · · . This gives rise to a PII-enriched context-free grammar
GI = (V,Σ,S,R), where:

1) S ∈ V is the start symbol.
2) V = {S; L, D, S; N1, · · · , N7; B1, · · · , B10; A1, A2, A3; E1,

E2, E3; P1, P2; I1, I2, I3} is a finite set of variables,1 where:
(1) N1 and N2 have been specified earlier, N3 for family name
(e.g., wang), N4 for given name, N5 for the 1st letter of the
given name + family name (e.g., lwang), N6 for last name+
the 1st letter of the given name (e.g., wangl), N7 for family
name with its 1st letter capitalized (e.g., Wang); (2) B1 and
B2 have been specified earlier, B3 stands for full birthday in
DMY (e.g., 07061982), B4 for the date in birthday, B5 for the
year in birthday, B6 for Year+Month (e.g., (e.g., 198206), B7

1The number of PII-based variables and their specific definitions depend
on the nature of the PII to be trained (e.g., phone number in US is 10 digits
while 11 digits in China) and on the granularity the attacker A prefers (e.g.,
A may prefer 4 types of name usages but not 7 as we do). Here we give
a typical definition for attacking Chinese users, and it is easily tailored to
other user groups. Besides, it’s feasible to generalize GI by pre-defining
a number of running-modes: Chinese-mode, US-mode, German-mode, etc.
Then, GI needs no customization, and the inputs to the algorithm TarGuess-
I are the victim’s PII-attributes plus a running-mode.

for Month+Year (e.g., 061982), B8 for the last two digits of
year + date in MD format (e.g., 820607), B9 for date in MD
format + the last two digits of year (e.g., 060782), B10 for
date in DM format + the last two digits of year (e.g., 070682);
(3) A stands for account name usages, A1 for full account
name (e.g., icemoon12), A2 for the (first) letter-segment
of account name (e.g., icemoon), A3 for the (first) digital-
segment of account name (e.g., 12); (4) E stands for email
prefix usages, E1 for the full email prefix (e.g., loveu1314
from loveu1314@example.com), E2 for the first letter-
segment of email prefix (e.g., loveu), E3 for the first digital-
segment of account name (e.g., 1314); (5) P stands for mobile
phone number usages, P1 for the full number, P2 for the first
three digits, P3 for last four digits; (6) I stands for the Chinese
Notional Identification number, I1 for the last 4 digits, I2 for
the first 3 digits, I3 for the first 6 digits.2

3) Σ={95 printable ASCII codes, Null} is a finite set disjoint
from V and contains all the terminals of GI .

4) R is a finite set of rules of the form A → α, with A ∈ V and
α ∈ V ∪ Σ (see Fig. 7).

Figure 8: A comparison of TarGuess-I (and its variants) with
Personal-PCFG [20], trained on the 50% of 12306 dataset and
tested on the remaining 50%. Both TarGuess-I and Personal-
PCFG [20] employ six kinds of the 12306 type-1 PII, while
TarGuess-I′ eliminates phone # and NID, TarGuess-I′′ further
eliminates email and user name, and TarGuess-I′′′ further
eliminates birthday. TarGuess-I and I′ greatly outperform [20].

A probabilistic context-free grammar (PCFG) is a CFG that, for
a specific left-hand side (LHS) variable (e.g., L4), all the proba-
bilities associated with its rules (e.g., L4 → love and L4 →
Suny) can add up to 1 [35]. This condition is satisfied by GI .
2Our definitions are gained by recursively adjusting and training on the PII-
associated 126 dataset. To follow the basic machine learning principles, this
dataset hereafter will never be used as the test set.

1247

It is not difficult to see that the training phase of TarGuess-I can
indeed automatically derive a PCFG. For more background, see
[35]. Using this grammar, in the guess generation process (see Fig.
7) we can further derive: (1) all the terminals (e.g., love@1314)
which are instantiated from base structures that only consist of L, D
and S tags; and (2) all the pre-terminals (e.g., N3B5 and N31234)
which are intermediate guesses consisting of PII-based tags. The
final guess candidates come from these terminals as well as from
instantiating all the pre-terminals with the victim’s PII.

Note that, to improve accuracy, we match using the longest-
prefix rule and also only consider PII-segments with len ≥ 2.
For example, if john06071982 matches John Smith’s account
name “john0607”, it will be parsed into A1B5 using the longest-
prefix rule, but not N3B2. In addition, we have only considered full
MMDD dates in the definition of B1 ∼ B10, yet many users tend
to use an abbr. of date when possible (e.g., “198267” instead of
“19820607”). Thus, when matching a birthday-based segment in
the training phase, if an abbreviation happens, the tag related to the
corresponding full segment will be counted by one; In the password
generation process, both full and abbreviated date segments will be
produced. For instance, both “john06071982” and “john671982”
will be produced if the structure N3B2 is used for guess generation.

Our type-based PII tags are widely applicable. In the above, we
have shown how to employ type-based PII tags to build a semantic-
aware grammar using PCFG. Actually, they can also be employed
by various other guessing algorithms (e.g., Markov-based [21] and
TarGuess-II in Sec. 4.2) to build PII-enriched cracking algorithms.
For instance, to build a PII-enriched Markov-based algorithm, we
only need to incorporate the type-based PII tags {N1, · · · , N7; B1,
· · · , B10; A1, A2, A3; E1, E2, E3; P1, P2; I1, I2, I3} into the
alphabet Σ (e.g., Σ = {95 printable ASCII characters} in [21]) of
the Markov n-gram model, and then all operations for these type-
based PII tags are the same with the original characters in Σ.

GI is highly adaptive. On the one hand, whenever we want to
consider new semantic usages (e.g., website name) or new type-1
PII usages (e.g., hobby), we can simply define new corresponding
type-based tags (e.g., W for website name and H for hobby), the
same as we define the N and B tags. In the training and guess
generation phases, all the operations related to H and W are similar
to that of N and B tags. It is “Plug-and-Play”. On the other hand,
even if TarGuess-I defines the B tag yet the training set has no
birthday information, GI still works properly—it will not parse
passwords using B tags and simply parse birthday information in
passwords using the D tag. That is, GI is “self-dumping” and we
do not need to specially eliminate the B-related tags in such cases.
An independent study. In a recent paper (published in April
2016), Li et al. [20] presented a length-based PII matching method.
Our work is independent from theirs.

Besides the L, D, S tags in PCFG [35], Li et al. introduced six
kinds of PII tags: N for name, B for birthdate, E for email, A for
account (user) name, P for phone number, and I for NID. In contrast
to our type-based approach, each PII-based tag in [20] uses a sub-
script number to denote the length len of the matched PII segment
(only len ≥ 3 are considered in [20]), following the same approach
of the L, D and S tags as in PCFG [35]. As a result, in [20],
wanglei@1982 now is parsed into the N segment “wanglei”, S
segment “@” and B segment “1982”, and its base structure will be
N7S1B4; “loveyou@1314” is parsed into L7S1D4. Within 100
guesses, their “Personal-PCFG” algorithm cracked about 17% of
their test dataset by using “perfect dictionaries”.

However, we discovered a weakness in their Personal-PCFG.
Their algorithm uses length-based tags, the same as Weir et al.’s
algorithm [35]: it differentiates a segment’s length, but is insensi-
tive to a segment’s subtype. For example, both john@1982 and

wang@1982 will be parsed into N4S1B4, because both “wang”
and “john” are of length 4, despite the fact that “wang” is a family
name while “john” is a given name. As shown in Fig. 9, this not
only introduces both under-estimations and over-estimations in the
training phase, but also leads to illogical situations in the guess
generation phase. In the training phase, since “wang”, “smith”
and “li” are all family names and “1982” is a user’s year of birth,
the probability of N4B4 shall be 0.6 but not 0.4, the probability of
L2B4 shall be 0 but not 0.2. In the guess generation phase, “lee”
is of length 3, but there is no base structure N3B4 available, and
thus the guess lee1977 will be given a probability 0 and thus not
be generated by Personal-PCFG.

Figure 9: A weakness of Personal-PCFG [20].
According to our grammar GI , both wang1982 and li1982

will be parsed into the same base structure N3B5, john1982 is
parsed into N4B5, and thus the guess lee1977 can be generated
using the base structure N3B5 for “David Lee” born in 1977. This
addresses the weakness in [20].
Evaluation. For fair comparison, we leverage the 12306 dataset
as with [20] and follow their experimental setups (see Fig. 8) as
closely as possible. The only exception is that, we do not use “the
perfect (L-) dictionary” which is collected directly from the test
set, because this not only introduces overfitting issues [21, 35] but
also is unrealistic in practice. Instead, all our experiments directly
learn the L- dictionary from the 12306 training set, a recommended
practice in password cracking [13, 21]. Fig. 8 shows that, within
10∼103 guesses, our TarGuess-I outperforms Persona-PCFG [20]
by 37.11%∼73.33%, and outperforms the three trawling online
guessing algorithms [6, 21, 35] by at least 412%∼740%.

We have further examined to what extent each individual PII
would impact TarGuess-I. As shown in Fig. 8, within 100 guesses,
our TarGuess-I can successfully crack a 12306 user’s password
with an average chance of 20.26% when given this user’s email,
account name, name, birthday, phone number and NID. This figure
is 20.18% when given email, account name, name and birthday.
This figure is 13.61% when given name and birthday; this figure
is 6.04% when given only name. Our results suggest that email,
account name, name and birthday would be very valuable for an
online attacker, while phone number and NID provide marginally
improved success rates. Interestingly, Personal-PCFG [20] exploits
two more PII attributes than TarGuess-I′ yet is much less effective,
suggesting that simply incorporating more PII information into
algorithms will not always yield more effectiveness.
Summary. We are the first to propose type-based PII tags for
building a semantics-aware PCFG. Such PII tags can also be em-
ployed by other trawling algorithms (e.g., Markov n-grams [21])
to build targeted ones. Within 102 guesses, TarGuess-I has a
success rate of 20.18% when given a 12306 user’s email, user
name, name and birthday. Within 10∼103 guesses, TarGuess-
I outperforms Personal-PCFG [20] by cracking 37.11%∼73.33%
more passwords. Particularly, TarGuess-I is highly adaptive.

4.2 TarGuess-II
TarGuess-I aims to online guess a user U ’s password PWx at

one service (e.g., CSDN) when given U ’s one sister password PWs

leaked from another service (e.g., Dodonew). This is a challenging
task for two reasons. Firstly, the online guessing number allowed is
small. Secondly, there are over a dozen transformation rules, such

1248

as insert, delete, capitalize, leet (e.g., password→ passw0rd)
and the synthesized ones (e.g., password→ Passw0rd), at user-
s’ choices to create PWx by modifying PWs. This process de-
pends on the password creation policy, the value of service and
each user’s creativity. Moreover, even if A knows that U is likely
to insert three digits, which digital sequence will be exactly used
by U? It is worth noting that, users also love to use top popular
passwords instead of modifying PWs (see Sec. 3.2). The sole
work by Das et al. [12] considers cross-site guessing by using U ’s
one sister password, yet it is ineffective due to four reasons as we
have shown in Sec. 1.

Figure 10: The training process of TarGuess-II

In this work, we prefer a data-driven approach. We use two
lists of passwords as training sets, one leaked from a similar poli-
cy/service with the target site, the other is similar with that of PWs,
and look for the same users in these two lists by matching email.
Further, the identical PW pairs are eliminated, and this creates a
new list of non-identical sister PW pairs {PWA, PWB}. Then,
we measure how PWB is modified from PWA, or whether PWB

is simply a popular password. To determine whether PWB is a
popular one, we build a top-104 list L for the target service (e.g.,
CSDN) from various leaked lists with consideration of policy and
language, e.g., L={pw |len(pw)≥ 8 and the value of Pcsdn(pw) ∗
P126(pw) ∗ Pdodonew(pw) ranks top-104}.

As shown in Fig. 10, in the training phase of TarGuess-II,
first of all it determines whether PWB ∈ L or not. If yes, the
occurrence of PWB ∈ L increases by one; If not, the pair (PWA,
PWB) first goes through the structure-level training and then the
segment-level training. In the structure-level process, TarGuess-
II first parses passwords with L, D, S tags as with TarGuess-I.
For instance, abc123 is parsed into L3D3. According to [12,
32], we consider six main types of structure-level transformation
rules: insertion (e.g., L3D3→ L3D3S2), deletion (e.g., L3D3S2)
→ L3D3), capitalization C, leet L, substring movement SM (e.g.,
abc123→123abc) and reverse R (e.g., abc123→321cba).
There are two segment-level rules: insertion (e.g., L3 : abc →
L4 : abcd) and deletion (e.g., L3 : abc → L2 : bc). For each of
these eight types of rules, there exist a number of sub-types and
we consider the most common ones. More specifically, for both
levels of insertion (see Fig. 11), there are tail insertion ti (resp.
ti′) and head insertion hi (resp. hi′); For both levels of deletion,
there are tail deletion td(resp. td′) and head deletion hd(resp. hd′);
For capitalization, there are four types as in Table 7; For leet, we
consider 5 sub-types as in Table 8; For reverse, we consider 2 sub-
types as in Table 10. Note that, a combination of our insertion and
deletion operations can transform abc123 to abc!123, achieving
the middle insertion.

The first step of the structure-level training is to employ the
Levenshtein-distance (LD) algorithm (with only insertion and
deletion enabled) to measure the similarity score d1=LD(PWA,
PWB) between the pair PWA and PWB . Then, we use each
structure-level rule (except for insertion and deletion) in the C, L,
R, SM order to obtain PW ′

A based on PWA, when considering
that their popularity order is C>L>SM>R [12, 32] and that the
rule R would result in a more drastic change than SM . Upon each
rule, we compute d2=LD(PW ′

A, PWB). If d2>d1, such a rule is
called a “live” one, then PWA is updated to PW ′

A, and the
occurrence of the corresponding rule (see Tables 7 to 10) increases

by one. Then, we execute the next rule on PW ′
A to produce

PW ′′
A, and compute d3=LD(PW ′′

A, PWB). If d3>d2, this rule is
“live” and counted.

Upon all these live rules, assume PW ′′′
A will be created from

the original PWA. To avoid futile transformations to dilute the
effective ones, we require that if LD(PW ′′′

A , PWB) is smaller than
a predefined threshold (e.g., 0.5 as suggested in this work), then all
these “live” rules are un-counted, and the training process switches
to the next password pair in the training set. Otherwise, both PW ′′′

A

and PWB are parsed with L, D and S tags to be, e.g., L4D3S2 and
L6S1. Since we do not consider the length of a PW segment in
the structure-level, L4D3S2 and L6S1 will be seen as LDS and LS.
Now we use the LD metric to compute d3=LD(“LDS”, “LS”) and
meanwhile, the LD algorithm returns a LD edit route which records
how to arrive “LS” from “LDS”: first use the rule td on the S2-
segment, then use the rule td on the D3-segment, and finally use the
rule ta on the S1-segment, producing PW ′′′′

A with a base structure
L4S1. Accordingly, the occurrence of all the corresponding items
in Fig. 11(a) is updated.

Now we come to the segment-level training phase, and the focus
is in the inner of the L-, D- or S- segment of a password. For
PW ′′′′

A (whose structure is L4S1) and PWB (L6S1), we use the
LD metric to measure the similarity of their L-segments. As with
the structure-level training, the LD metric is used to update the
occurrence of all the corresponding rules in Fig. 11(b). In our
experiments, we find that the probabilities in the right-most row
of Fig. 11(b) are better by computing using Markov n-grams [21]
which are trained on a million-sized large password list, than by
using the training as stated above. This is mainly because the size
of the non-identical PW pairs in our training sets is only moderate
and may lead to the sparsity issue. Fortunately, Markov n-gram
model trained on million-sized PW lists can overcome this issue.

Our above two training phases give rise to a password-reuse
based context-free grammar GII = (V,Σ,S,R), where:
1) V = {S; L,D,S; L, R, C, SM ; ti, td, hi, hd; ti′, td′, hi′,

hd′} is a finite set of variables.
2) S ∈ V is the start symbol.
3) Σ={95 printable ASCII codes; C1,· · · ,C4; R1,R2; L1, · · · ,

L5; Yes, No; No′} is a finite set disjoint from V .
4) R is a finite set of rules of the form A → α, with A ∈ V and

α ∈ V ∪ Σ (see Fig. 11 and Tables 7 to 10).
Note that, GII is a probabilistic context-free grammar due to the

fact that, for a specific left-hand side (LHS) variable (e.g., R →)
of GII , all the probabilities associated with its rules (e.g., R →No,
R → R1 and R → R2) can add up to 1. Using GII , in the guess
generation phase we can create a list of guesses with possibilities.
For instance, when given password, Pr(“Pa$$word123”)=
Pr(S → L8)* Pr(L8 → ti)∗ Pr(ti→ D3)* Pr(D3→123) ∗P (C
→C1) ∗Pr(L→L2) ∗Pr(L→L2) ∗Pr(R→No)∗Pr(SM→No)
=1 * 0.1 * 0.15 * 0.08 * 0.03 * 0.01 * 0.01 * 0.97 * 0.97 = 3.39 *
10−9, where the related probabilities are referred to Tables 7 to 10.
Then, all the probabilities of guesses generated by GII should be
multiplied by the factor α. This α represents the fraction of users
who do not choose top passwords (e.g., 0.21 in Fig. 10). Then, the
probability of each password in the top-104 list are multiplied by
1 − α. Finally, these two probability-associated lists are merged
and sorted in decreasing order, and then we select the top k (e.g.,
k=103) as the final guess candidates.

In Fig. 12, we provide a comparison of TarGuess-II with Das et
al.’s algorithm [12]. These two algorithms are comparable because
they employ the same personal information of the victim. When
given a user U ’s Dodonew password, within 100 guesses, Das et
al.’s algorithm [12] gained a success rate of 8.98% against U ’s CS-
DN account, while the figure for TarGuess-II is 20.19%, reaching

1249

Table 7: Training of capitalization C (C1: Cap. all; C2: Cap. the
1st letter; C3: Lower all; C4: Lower 1st)

No C1 C2 C3 C4

Probability 0.95 0.01 0.03 0.003 0.007

Table 8: Training of the leet transformation rule L

No L1 : a ↔ @ L2 : s ↔ $ L3 : o ↔ 0 L4 : i ↔ 1 L5 : e ↔ 3
Prob. 0.95 0.02 0.01 0.01 0.005 0.005

Table 9: Training of sub-
string movement

substring moved SM

Yes No
Prob. 0.03 0.97

Table 10: Training of reverse
operation R (R1: Reverse all; R2:
Reverse each segment)

No R1 R2

Probability 0.97 0.02 0.01

(a) Structure-level insertion/deletion.

(b)Segment-level insertion/deletion.
The right two rows is better trained
using Markov n-grams.

Figure 11: Training of two levels of insertion and deletion. As over
99% of passwords are with len ≤16 [21], only segments with len ≤16
are considered by us. The right-most two rows in Fig. 11(a) is better
trained by using PCFG [35] on a million-sized password list.

a 124.83% improvement. In a series of 10 experiments in Sec.
5, under the same personal information and within 100 guesses,
TarGuess-II outperforms their algorithm [12] by 8.12%∼300%
(avg. 111.06%). One may conjecture that the two variations of
TarGuess-II employ more personal information than one sister PW,
and thus they are more powerful. In what follows, we, for the first
time, provide more than anecdotal evidence to back this conjecture.

4.3 TarGuess-III
TarGuess-III aims to online guess a user U ’s passwords by ex-

ploiting U ’s one sister password as well as some PII. This is
realistic: if the attacker A wants to target U and knows U ’s one
sister password, it is likely that A can also obtain some PII (e.g.,
email, name) about U . As far as we know, no public literature
has ever paid attention to this kind of attacking scenario. Here we
mainly consider type-1 PII (e.g., name and birthday), while type-2
PII (e.g., gender and age) will be dealt with in Sec. 4.4.

Given a limited number of guesses, more information available
to TarGuess-III generally means more messy things to be consid-
ered and thus more challenges to be addressed. Suppose A wants
to target Alice Smith’s account at eBay which requires passwords
to be of length 8+, and knows Alice was born in 1978 and one
of Alice’s passwords Alice1978Yahoo was leaked from Yahoo.
Given guesses Alice1978eBay, Alice1978 and 12345678,
which one shall A try first? If Alice’s leaked password is 123456,
will the choice vary? Answering this question necessitates an
adaptive, PII-aware cross-site guessing model.

Fortunately, we find that TarGuess-III can fulfill this goal by
introducing the PII-based tags (which we have proposed in GI

of TarGuess-I) into the grammar GII of TarGuess-II. In this way,
we can build a PII-enriched, password reuse-based grammar GIII .
More specifically, besides the L, D, S tags in GII , our grammar
GIII further includes six types of PII usages as with GI , and adds a
number of type-based PII tags (e.g., N1∼N7 and B1∼B10 as shown
in Sec. 4.1) into V of GII .

In the training phase, all the PII-based password segments (each
of which is parsed with one kind of PII tag) only involve the six
structure-level transformation rules as defined in GII , and all the
other things in GIII remain the same with that of GII . In the guess
generation phase, from GIII we derive: (1) all the terminals (e.g.,

love@1314) which are instantiated from base structures that only
consist of L, D and S tags; and (2) all the pre-terminals (e.g., N4B5

and N31314) which are intermediate guesses that consist of PII-
based tags. For these intermediate guesses, we further instantiate
them with the target user’s PII.

As with GI , our GIII is also highly adaptive. The reasons
are similar with that of GI (see Sec. 4.1). This means that a
new semantic tag, namely W1 for website name, can be easily
incorporated into GIII as with these PII tags. Now, GIII can parse
Alice1978Yahoo into the structure N4B5W1, and the guess
Alice1978eBay can be generated with the highest probability,
because no transformation rules will be involved in the process
from N4B5W1 to Alice1978eBay.

Figure 12: A comparison of TarGuess II∼IV and Das et al.’s algorith-
m [12], trained on the 66,573 non-identical PW pairs of 126→CSDN
and tested on the 30,8045 non-identical PW pairs of Dodonew→CSDN.
Besides a sister password, TarGuess-III uses four types of 51job type-1
PII and TarGuess-IV further uses the gender information.

As shown in Fig. 12, even if U does not exactly reuse her
Dodonew password for her CSDN account, TarGuess-III can still
achieve a success rate of 23.48% when allowed to try only 100
guesses, being 16.3% more effective than TarGuess-II. Among
these un-cracked PW pairs by TarGuess-III, over 80% are signif-
icantly different (with LD similarity scores<0.5).

4.4 TarGuess-IV
TarGuess-IV aims to online guess a user U ’s passwords by

exploiting U ’s one sister password as well as both type-1 and type-
2 PII. A major challenge is that, type-2 PII (e.g., gender) can not
be directly measured using any PII tag-based PCFG grammars or
Markov n-grams. We tackle this issue by proving a theorem and
leveraging the Bayesian theory.

THEOREM 1. Let pw denote the event that the password pw
is selected by U for a service, pw′ denote the event that pw′

is selected by U for another service and was leaked, Ai (i =
1, 2, · · · , n) denote one kind of user PII attributes, including both
type-1 and type-2 ones. We have

Pr(pw|pw′, A1, A2, · · · , An) =
∏n

i=1 Pr(pw|pw′,Ai)

Pr(pw|pw′)n−1 ,

under the assumptions that A1, A2, · · · , An are mutually indepen-
dent, and that they are also mutually independent under the events
pw′ and (pw, pw′).3

Proof. Since A1, · · · , An are assumed to be mutually
independent, we have Pr(A1, · · · , An) =

∏n
i=1 Pr(Ai). Since

3Note that, the assumptions in Theorem 1 do not contradict with the fact
that A1, · · · , An are dependent on the events pw′ and (pw, pw′).

1250

they are also assumed to be mutually independent under the events
pw′ and (pw, pw′), thus Pr(A1, · · · , An|pw)=

∏n
i=1Pr(Ai|pw),

Pr(A1, · · · , An|pw′) =
∏n

i=1 Pr(Ai|pw′) and Pr(A1, · · · ,
An|pw, pw′) =

∏n
i=1 Pr(Ai|pw, pw′). Now, we can derive:

Pr(pw|pw′, A1, A2, · · · , An)

=
Pr(pw,A1, A2, · · · , An|pw′)

Pr(A1, A2, · · · , An|pw′)

=
Pr(A1, A2, · · · , An|pw, pw′) · Pr(pw|pw′)∏n

i=1 Pr(Ai|pw′)

=

(∏n
i=1 Pr(Ai|pw, pw′)

)
· Pr(pw|pw′)∏n

i=1 Pr(Ai|pw′)

=

∏n
i=1 (Pr(Ai|pw, pw′) · Pr(pw|pw′))(∏n
i=1 Pr(Ai|pw′)

)
· Pr(pw|pw′)n−1

=

∏n
i=1

Pr(pw,Ai|pw′)
Pr(Ai|pw′)

Pr(pw|pw′)n−1
=

∏n
i=1 Pr(pw|pw′, Ai)

Pr(pw|pw′)n−1
. �

This theorem indicates that the problem of predicting a user
U ’s pw′ at one service, when given U ’s PII information A1, A2,
· · · , An and the sister password pw at another service, can be
addressed by a “divide-and-conquer” approach. More specifically,
we can first compute Pr(pw|pw′, Ai) for each i and Pr(pw|pw′),
and then compute the final goal Pr(pw|pw′, A1, A2, · · · , An).
Fortunately, Pr(pw|pw′) can be computed using TarGuess-II, and
Pr(pw|pw′, Ai) can be obtained by using TarGuess-III when Ai

is a type-1 PII. When there are 2+ type-1 PII attributes to be con-
sidered (suppose Al, Am, An), they together first can be deemed
as one virtual attribute (e.g., to be A′

l) in Theorem 1 and then be
addressed simultaneously by running TarGuess-III. The only issue
left is how to compute Pr(pw|pw′, Ai) when Ai is a type-2 PII.

To address it, we introduce the Bayesian theory. Without loss of
generality, assume Ak is a type-2 PII. First,
Pr(pw, pw′, Ak) =Pr(pw,Ak|pw′) · Pr(pw′)

=Pr[(Ak|pw)|pw′] · Pr(pw|pw′) · Pr(pw′).

It is reasonable to approximate Pr[(Ak|pw)|pw′] by
Pr(Ak|pw). Consequently, we have:

Pr(pw|pw′, Ak) =
Pr(pw,Ak, pw

′)

Pr(pw′, Ak)

=
Pr[(Ak|pw)|pw′] · Pr(pw|pw′) · Pr(pw′)

Pr(pw′, Ak)

≈Pr(pw|pw′) · Pr(Ak|pw) · Pr(pw′)

Pr(pw′, Ak)
,

(1)

where Pr(pw|pw′) is called the “prior” in Bayesian theory, the
factor Pr(Ak|pw) · Pr(pw′)/Pr(pw′, Ak) represents the impact
of (pw′, Ak) on the probability of event (pw′, pw).

As a result, Pr(pw|pw′, Ak) can be fully computed: (1)
Pr(pw|pw′) can be computed using TarGuess-II; (2) Pr(pw′, Ak)
= c1 is a constant, because the event (pw′, Ak) is a known and
fixed fact when we attack U , and the ordering of guesses do not
need the exact value of c1; (3) Pr(pw′)=c2 is, similarly, a constant
since the event pw′ is a known and fixed fact when we attack U ;
and (4) Pr(Ak|pw) can be computed by counting the training
set—the password pw is selected by what fraction of users that are
with an attribute Ak. When the training data is sufficiently large
(e.g., >106), Pr(Ak|pw) can be obtained by direct counting.
Otherwise, smoothing techniques (e.g., Laplace and Good-Turing)
shall be used to overcome the sparsity issue to assure accuracy.

We note that some PII attributes are inherently dependent be-
tween each other (e.g., birthday vs. age, and first name vs. gender).
Fortunately, since the majority of PII attributes (see Table 1) are
mutually independent, the practicality of Theorem 1 will not be

affected much. This is especially true when many attributes are
simultaneously exploited. We observe that, even if TarGuess-III
only employs birthday and TarGuess-IV employs one more PII
(i.e., age), TarGuess-IV still performs better than TarGuess-III by
now only adjusting the non-birthday-involved guesses using Eq. 1.

As shown in Fig. 12, by exploiting an additional PII (i.e., gen-
der), TarGuess-IV can achieve improvements over TarGuess-III
by 4.38%∼18.19% within 10∼103 guesses, reaching a success
rate of 24.51% with 102 guesses and 30.66% with 103 guesses,
respectively. This indicates that type-2 PII, which, as far as we
know, has never been considered in the literature of password
cracking, is indeed valuable for A.

4.5 Dealing with other attacking scenarios
As mentioned in Table 2, seven scenarios can be resulted from

the various combinations of the 3 types of personal info that we
focus in this work. This means that, beyond the four most represen-
tative scenarios #1∼#4 that we have considered above, three other
ones remain: #5 (type-2 PII), #6 (type-1 PII + type-2 PII) and #7 (1
sister PW + type-2 PII). Besides, there are scenarios involving 2+

sister PWs: #8 (2+sister PWs) and #9 (2+sister PWs+some PII).
When Ak is a type-2 PII, it is natural to derive from Eq. 1 that:

Pr(pw|Ak) ≈ Pr(pw) · Pr(Ak|pw)
Pr(Ak)

, (2)

where Pr(Ak) = c3 is a constant, and both Pr(pw) and
Pr(Ak|pw) can be obtained by counting the training set, as
discussed in Sec. 4.4. Eq. 2 well addresses Scenarios #5.

To tackle Scenario #6, we need to develop a new formulation.
From Theorem 1, we can derive that

Pr(pw|A1, A2, · · · , An) =
∏n

i=1 Pr(pw|Ai)

Pr(pw)n−1 , (3)

where Pr(pw|Ai) can be obtained by using TarGuess-I when Ai is
a type-1 PII, or be obtained by using Eq. 2 when Ai is a type-2 PII.
This addresses Scenario #6.

As our Theorem 1 is suitable for both type-1 and type-2 PII,
Scenario #7 can be readily tackled by first using TarGuess-II to
generate a list of guesses and then adjusting the probabilities of the
guesses according to Eq. 1.

Scenarios #8 and #9 cannot be readily addressed using the mod-
els proposed above. A simple approach to tackle them is to employ
our TarGuess in a repeated manner, yet this is not optimal and we
leave these two scenarios for future work. Still, as we have shown
in Sec. 2, only a marginal fraction of users have leaked two or more
passwords, and thus these two scenarios are far less common than
the seven targeted guessing scenarios we have addressed.
Summary. We have designed a series of sound probabilistic mod-
els for targeted online guessing, with each characterizing one of the
seven types of attacking scenarios. Our TarGuess-I and II signifi-
cantly outperform the related algorithms [12, 20], while TarGuess-
III and IV, for the first time, tackle the realistic issues of combining
users’ leaked passwords and PII to facilitate online guessing. Based
on TarGuess-I∼IV, we further show how to address the three re-
maining scenarios. Extensive experiments in the following section
further demonstrate the effectiveness of our TarGuess-I∼IV.

5. EXPERIMENTS
We now describe our experimental setups and comparatively

evaluate TarGuess-I∼IV with five leading algorithms.

5.1 Experiment setup
Among the nine algorithms to be evaluated, three (i.e., Markov

[21], PCFG [35] and Trawling optimal [6]) only need some training
passwords, four (i.e., Das et al.’s algorithm [12], TarGuess-II∼IV)
work on password pairs of the same user, and four (i.e., Personal-
PCFG [20], TarGuess-I, III and IV) involve various types of user

1251

Table 11: Training and test settings for each attacking scenario under 9 algorithms(Tra. opt.=Trawling optimal)†
Experimental Training set(s), with policy and language consistent with the test set Test set
scenario∗ PCFG Markov Tra. opt. Personal-PCFG TarGuess-I Das et al. TarGuess-II‡ TarGuess-III, IV‡ (size; service)

#1: 12306→Dodo 126 126 Dodo PII-12306 PII-12306 126 12306, 126 12306, PII-126 49,775; Dodo
#2: 12306→CSDN 8+Dodo 8+Dodo CSDN 8+PII-Dodo 8+PII-Dodo 8+Dodo 12306, 8+Dodo 12306, 8+PII-Dodo 12,635; CSDN
#3: Dodo→CSDN 8+Dodo 8+Dodo CSDN 8+PII-Dodo 8+PII-Dodo 8+Dodo Dodo, 8+126 Dodo, 8+PII-12306 5,997; CSDN
#4: Dodo→12306 Dodo Dodo CSDN PII-Dodo PII-Dodo Dodo Dodo, 126 PII-Dodo, 126 49,775; 12306
#5: CSDN→12306 Dodo Dodo 12306 PII-Dodo PII-Dodo Dodo CSDN, Dodo CSDN, PII-Dodo 12,635; 12306
#6: CSDN→Dodo 126 126 Dodo PII-12306 PII-12306 126 CSDN, 126 CSDN, PII-126 5,997; Dodo
#7: Rootkit→Yahoo Rockyou Rockyou Yahoo PII-Rootkit PII-Rootkit Rockyou Rootkit, Xato Rootkit, PII-Xato 214; Yahoo
#8: Rootkit→000web L+D Rockyou L+D Rockyou 000web L+D PII-Rootkit L+D PII-Rootkit L+D Rockyou Rootkit, L+D Xato Rootkit, L+D PII-Xato 2,949; 000web
#9: 000web→Rootkit Rockyou Rockyou Rootkit PII-Xato PII-Xato Rockyou 000web, Xato 000web, PII-Xato 2,949; Rootkit
#10: Yahoo→Rootkit Rockyou Rockyou Rootkit PII-Xato PII-Xato Rockyou Yahoo, Xato Yahoo, PII-Xato 214; Rootkit
†Dodo=Dodonew; 000web=000webhost; 8+=len≥8; PII-X=the PII-associated list X; L+D=Passwords with both letters and digits.
∗A → B means that: (1) for the four password-reuse-based algorithms (i.e., Das et al.’s algorithm [12], TarGuess-II∼IV), a user U ’s password at service A can be used by A to

help attack U ’s account at service B; and (2) for the other five algorithms, U ’s password at A is not involved, and only U ’s password at B is used as the target. Note that, every
user’s passwords in both A and B now have been associated with PII (see Tables 12 and 13) to facilitate the four PII-based algorithms.

‡When training TarGuess-II∼IV, U ’s one sister password comes from the 1st dataset, and A uses it to guess U ’s password from the 2nd dataset.

personal info. However, only two of our original datasets (i.e.,
12306 and Rootkit) are associated with PII (see Table 3). Thus,
as mentioned in Sec. 3.4, we build PII-Dodonew with size 161,510
by matching Dodonew with 51job and 12306 using email address,
and PII-000webhost with size 2,950 by matching 000webhost with
Rootkit. Matching by email ensures that all our PII-associated En-
glish passwords are created by Rootkit hackers, who well represent
security-savvy users. Since Rockyou does not contain email or user
name, we further match Xato with Rootkit to obtain 15,304 PII-
associated Xato passwords to supplement Rockyou.

As shown in Table 12, we further build three lists of password
pairs for Chinese users by matching Dodonew and CSDN with the
two PII-associated Chinese password lists using email address. For
instance, the list Dodonew↔12306 has a total of 49,775 password
pairs, of which 14,380 pairs are with non-identical passwords. Sim-
ilarly, we build three lists of password pairs for English users (see
Table 13), but eliminate one of them (i.e., Yahoo↔000webhost)
because the limited size of test set (i.e., 96) would make it impossi-
ble to reflect the true nature of an algorithm. These five pair-wised
lists lead to ten experimental scenarios in Table 11.
Table 12: Basic information of the matched Chinese datasets

Original PII-12306(129,303) PII-Dodonew(161,510)
dataset Total Non-identical(%) Total Non-identical(%)
Dodonew 49,775 14,380 (28.89%) — —
CSDN 12,635 5,538 (43.83%) 5,997 3,957(65.98%)

Table 13: Basic information of the matched English datasets
Original PII-Rootkit(69,330) PII-000webhost(2,950)
dataset Total Non-identical(%) Total Non-identical(%)
000webhost 2,949 2,510 (85.11%) — —
Yahoo 214 167 (79.04%) 96 90 (93.75%)

To make our experiments as realistic as possible, our choices of
the training set(s) for a given test set (attacking scenario) adhere
to three rules: (1) they never come from the same service; (2)
they are of the same language and password policy; and (3) the
training set(s) shall be as large as possible. Rule 1 prevents our
experiments from the overfitting issue, while rules 2 and 3 ensure
the effectiveness of each algorithm. For fair comparison, we further
make sure that all the 9 algorithms work on the same test set, and
that for the same type of algorithms (e.g., TarGuess-I and [20]),
their training sets exploit the same personal information.

5.2 Evaluation results
The guess number allowed is the most scarce resource when per-

forming an online attack, while computational power and bandwith
are not essential. For instance, in every of these ten experiments,
the training phase can be completed on a common PC in less than
65.3s, while the generation of 1000 guesses for each user takes less
than 2.1s. Thus, we use the guess-number-graph to evaluate the
effectiveness of our four probabilistic algorithms with five leading
algorithms (i.e., PCFG [35], Markov [21], Trawling optimal [6],
Personal-PCFG [20] and Das et al.’s cross-site algorithm [12]).

Figs. 13(a)∼13(j) show that, under the same personal informa-
tion available to A and within 100 guesses: (1) TarGuess-I dras-
tically outperforms its foremost counterpart, Personal-PCFG [20],
by 11.17%∼509% (avg. 84%); (2) TarGuess-II drastically outper-
forms Das et al.’s algorithm [12] by 8.12%∼300% (avg. 111.06%)
when cracking non-identical password pairs; and (3) TarGuess-III
and IV can gain a success rate of 73.09% when attacking Chinese
normal users and of 31.61% when attacking English security-savvy
users. As the number of guesses increases, in most cases the
superiorities of TarGuess-I∼IV over their counterparts are further
enhanced. Here we focus on cracking efficiency of cross-cite algo-
rithms for non-identical PW pairs, because cracking non-identical
pairs is their primary goal. As mentioned in Sec. 3.1, many PII
attributes in English test sets (i.e., Rootkit and its matched lists) are
missing, otherwise our cracking results would have been higher.

In particular, TarGuess-IV, for the first time, characterizes a
very powerful yet realistic attacker who can launch cross-site
guessing by exploiting a victim’s one sister password as well as
both type-1 and type-2 PII. As shown in Figs. 13(a)∼13(f), within
10 guesses, TarGuess-IV can gain success rates 45.49%∼85.33%
(avg. 65.70%) against accounts of normal users at various web
services; Within 102 guesses, the figures are 56.96%∼88.02%
(avg. 73.08%); Within 103 guesses, the figures are 62.95%∼
89.87% (avg. 77.32%). To achieve such high success rates, the
state-of-the-art trawling algorithms [21, 30] need 1013 guesses per
user and take several days by using high performance computers.

We discover that password strength against both targeted guess-
ing and trawling guessing follows a Zipf distribution. The first few
guesses are extremely effective, e.g., at 100 guesses, TarGuess-I
can gain a success rate of 20% against every Chinese service. Yet,
as the number of guesses increases, the success rate of each attempt
decreases rapidly. Interestingly, we find that for each of the eight
real-world algorithms (i.e., excluding the trawling optimal one [6]),
the ratio fn of the number of successfully cracked accounts to the
number of guesses per account n can be well approximated by the
Zipf’s law [34]: fn = C ∗ ns, where generally s∈[0.15, 0.30] and
C∈[0.001, 0.01] are constants dependent on the test set. Such a
relationship is a straight line when plotted on a log-log style (see
Fig. 13(k) which depicts the scenario of 12306→Dodonew). The
three parallel layers in Fig. 13(k) just correspond to three kinds of
guessing algorithms: trawling, targeted using PII, targeted using a
sister PW. This diminishing principle has an important implication:
A would stop at some point as her gains do not outweigh her
costs, and there would be three such points corresponding to three
different attacking strategies, yet existing guidelines [16, 18] only
consider the trawling point.

When sister passwords are available, TarGuess-IV can reach a
success rate of 77% against normal users with 100 guesses; Even
when sister passwords are unavailable, TarGuess-I can still achieve

1252

(a) 12306→dodonew (b) 12306→CSDN (c) Dodonew→CSDN

(d) dodonew→12306 (e) CSDN→12306 (f) CSDN→Dodonew

(g) Rootkit→000webhost (h) Rootkit→Yahoo (i) 000webhost→Rootkit

(j) Yahoo→Rootkit (k) Diminish returns in all algorithms (l) A further validation: 12306→Xiaomi
Figure 13: Experiment results for 11 targeted guessing scenarios. Sub-figures (a) to (f) represent attacks on normal users, while sub-figures (g) to (j)
represent attacks on security-savvy users. Our TarGuess-I∼IV are highly effective. Sub-figure (k) depicts the diminish returns in 12306→Dodonew.

about 20% success rates against normal users with just 100 guesses,
25% with 103 guesses, and 50% with 106 guesses. This suggests
that the majority of normal users’ passwords are prone to a small
number of targeted online guesses (e.g., 100 as allowed by NIST
[8, 18]), invalidating the 2016 NIST claim that online guessing
“can be readily addressed by throttling the rate of login attempts
permitted” [18]. As normal users’ passwords are even not strong
enough to resist online guessing and still far away from the [106,
1014] “online-offline chasm” [16], efforts directed towards resist-
ing offline attacks (e.g., 1010 guesses or beyond [24, 28]) could
have been better placed. Sites shall primarily focus on defending
against online attacks and protecting the password hash file, while
users shall mainly avoid the three bad behaviors examined in Sec.
3 to survive online guessing. In all, targeted online guessing is
a much more damaging threat to password security than trawling
guessing and than the community (see [8,18]) might have expected.
Our models will facilitate better evaluation of existing and future
password policies (e.g., [9,24,28]), and they will also be helpful for
forensic investigators to recover passwords in an offline manner.

5.3 A further validation
In the above experiments, our test sets are in plain-text. Would

our algorithms be still effective when cracking “real accounts”

about which little is known? We confirm this with a further ex-
periment to crack Xiaomi cloud passwords, which are MD5 hashed
with salt, leaked from the world’s 3rd largest phone maker.

We attack Xiaomi as we crack Dodonew in Scenario #2 of Table
11. The test set contains 5,284 Xiaomi hashes obtained after match-
ing the 8M Xiaomi dataset with the 130K 12306 dataset using
email. As shown in Fig. 13(l), within 10∼103 guesses, TarGuess-
I outperforms Personal-PCFG [20] by 70.58%∼119%; TarGuess-
II outperforms Das et al.’s algorithm [12] by 73.66% ∼ 405%;
TarGuess-III and IV can gain success rates of 63.61%∼73.56%.
These results well accord with our above 10 experiments, especial-
ly the Chinese ones, suggesting the generality of our models.

6. CONCLUSION
We have presented the first systematic evaluation of the extent to

which an online guessing attacker can gain advantages by exploit-
ing various types of user personal info including leaked passwords
and common PII. Our study is grounded on a framework that
consists of 7 sound probabilistic models, with each addressing one
typical attacking scenario. Particularly, TarGuess-I∼IV character-
ize the four most representative scenarios, and for the first time, the
problem of how to model context-aware, semantic-enriched cross-
site password guessing attacks has been well addressed.

1253

Extensive experimental results show that TarGuess-I and II dras-
tically outperform their foremost counterparts, and TarGuess-III
and IV can gain success rates as high as 73% with just 100 guesses
against normal users and 32% against security-savvy users. Our
results suggest that the currently used security mechanisms would
be largely ineffective against the targeted online guessing threat,
and this threat has already become much more damaging than
expected. We believe that the new algorithms and knowledge of
effectiveness of targeted guessing models can shed light on both
existing password practice and future password research.

Acknowledgment
The authors are grateful to the anonymous reviewers for their con-
structive comments. We also give our special thanks to Dinei
Florêncio, Cormac Herley, Hugo Krawczyk, Haining Wang, Yue
Li, Joseph Gardiner, Haibo Cheng and Qianchen Gu for their
insightful suggestions and invaluable help. Ping Wang is the cor-
responding author. This research was in part supported by the Na-
tional Natural Science Foundation of China (NSFC) under Grants
Nos. 61472016 and 61472083, and by the National Key Research
and Development Plan under Grant No. 2016YFB0800600.

7. REFERENCES
[1] Nearly 80 percent of Internet users suffer identity leaks, July

2015. http://bit.ly/2b9TEdn.
[2] All Data Breach Sources, May 2016.

https://breachalarm.com/all-sources.
[3] Turkey: personal data of 50 million citizens leaked online,

April 2016. http://bit.ly/1TPA4j4.
[4] Amid Widespread Data Breaches in China, Dec. 2011.

http://www.techinasia.com/alipay-hack/.
[5] D. V. Bailey, M. Dürmuth, and C. Paar. Statistics on

password re-use and adaptive strength for financial accounts.
In Proc. SCN 2014, pages 218–235.

[6] J. Bonneau. The science of guessing: Analyzing an
anonymized corpus of 70 million passwords. In Proc. IEEE
S&P 2012, pages 538–552.

[7] J. Bonneau, C. Herley, P. van Oorschot, and F. Stajano.
Passwords and the evolution of imperfect authentication.
Commun. ACM, 58(7):78–87, 2015.

[8] W. Burr, D. Dodson, R. Perlner, and et al. NIST SP800-63-2:
Electronic authentication guideline. Technical report, NIST,
Reston, VA, Aug. 2013.

[9] X. Carnavalet and M. Mannan. A large-scale evaluation of
high-impact password strength meters. ACM Trans. Inform.
Syst. Secur., 18(1):1–32, 2015.

[10] A. Chaabane, G. Acs, M. A. Kaafar, et al. You are what you
like! information leakage through users’ interests. In Proc.
NDSS 2012, pages 1–15.

[11] C. Custer. China’s Internet users zoom to 668 million, Jan.
2016. http://www.apira.org/news.php?id=1736.

[12] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang.
The tangled web of password reuse. In Proc. NDSS 2014.

[13] M. Dell’Amico and M. Filippone. Monte carlo strength
evaluation: Fast and reliable password checking. In Proc.
ACM CCS 2015, pages 158–169.

[14] M. Dürmuth, D. Freeman, and B. Biggio. Who are you? A
statistical approach to measuring user authenticity. In Proc.
NDSS 2016, pages 1–15.

[15] S. Egelman, A. Sotirakopoulos, K. Beznosov, and C. Herley.
Does my password go up to eleven?: the impact of password
meters on password selection. In Proc. ACM CHI 2013,
pages 2379–2388.

[16] D. Florêncio, C. Herley, and P. van Oorschot. An
administrator’s guide to internet password research. In Proc.
USENIX LISA 2014, pages 44–61.

[17] Now it’s easy to see if leaked passwords work on other sites,
July 2016. http://bit.ly/29AJANh.

[18] P. A. Grassi and J. L. Fenton. NIST SP800-63B: Digital
authentication guideline. Technical report, NIST, Reston,
VA, 2016. https://pages.nist.gov/800-63-3/sp800-63b.html.

[19] S. Ji, S. Yang, X. Hu, W. Han, Z. Li, and R. Beyah. Zero-sum
password cracking game: A large-scale empirical study on
the crackability, correlation, and security of passwords. IEEE
Trans. Depend. Secur. Comput., 2015. Doi:
10.1109/TDSC.2015.2481884.

[20] Y. Li, H. Wang, and K. Sun. A study of personal information
in human-chosen passwords and its security implications. In
Proc. IEEE INFOCOM 2016, pages 1–9.

[21] J. Ma, W. Yang, M. Luo, and N. Li. A study of probabilistic
password models. In Proc. IEEE S&P 2014, pages 689–704.

[22] M. L. Mazurek, S. Komanduri, T. Vidas, L. F. Cranor, P. G.
Kelley, R. Shay, and B. Ur. Measuring password guessability
for an entire university. In Proc. CCS 2013, pages 173–186.

[23] E. McCallister, T. Grance, and K. Scarfone. NIST
SP800-122: Guide to protecting the confidentiality of
personally identifiable information (PII). Technical report,
NIST, Reston, VA, April, 2010.

[24] W. Melicher, B. Ur, S. Segreti, S. Komanduri, L. Bauer,
N. Christin, and L. Cranor. Fast, lean and accurate: Modeling
password guessability using neural networks. In Proc.
USENIX SEC 2016, pages 1–17.

[25] A. Narayanan and V. Shmatikov. Fast dictionary attacks on
passwords using time-space tradeoff. In Proc. ACM CCS
2005, pages 364–372.

[26] J. Onaolapo, E. Mariconti, and G. Stringhini. What happens
after you are pwnd: Understanding the use of leaked account
credentials in the wild. In Proc. SIGCOMM IMC 2016.

[27] Four Years Later, Anthem Breached Again: Hackers Stole
Credentials, Feb. 2015. http://t.cn/RqWrMKC.

[28] R. Shay, S. Komanduri, A. Durity, and et al. Designing
password policies for strength and usability. ACM Trans. Inf.
Syst. Secur., 18(4):1–34, 2016.

[29] Senate Bill No. 1386: Personal information, Sep. 2002.
http://bit.ly/1WJIIpK.

[30] B. Ur, S. M. Segreti, L. Bauer, and et al. Measuring
real-world accuracies and biases in modeling password
guessability. In USENIX SEC 2015, pages 463–481.

[31] R. Veras, C. Collins, and J. Thorpe. On the semantic patterns
of passwords and their security impact. In Proc. NDSS 2014.

[32] D. Wang, D. He, H. Cheng, and P. Wang. fuzzyPSM: A new
password strength meter using fuzzy probabilistic
context-free grammars. In Proc. IEEE/IFIP DSN 2016, pages
595–606. http://bit.ly/2ahJ8CO.

[33] D. Wang and P. Wang. The emperor’s new password creation
policies. In Proc.ESORICS 2015, pages 456–477.

[34] D. Wang and P. Wang. On the implications of Zipf’s law in
passwords. In Proc. ESORICS 2016, pages 1–21.

[35] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek.
Password cracking using probabilistic context-free
grammars. In Proc. IEEE S&P 2009, pages 391–405.

[36] This could be the iCloud flaw that led to celebrity photos
being leaked, Sep. 2014. http://bit.ly/Y5vnNc.

[37] Y. Zhang, F. Monrose, and M. Reiter. The security of modern
password expiration:an algorithmic framework and empirical
analysis. In Proc. ACM CCS 2010, pages 176–186.

1254

http://bit.ly/2b9TEdn
https://breachalarm.com/all-sources
http://bit.ly/1TPA4j4
http://www.apira.org/news.php?id=1736
http://bit.ly/29AJANh
https://pages.nist.gov/800-63-3/sp800-63b.html
http://t.cn/RqWrMKC
http://bit.ly/1WJIIpK
http://bit.ly/2ahJ8CO
http://bit.ly/Y5vnNc

	1 Introduction
	1.1 Related work
	1.2 Our contributions

	2 Preliminaries
	2.1 Explication of personal information
	2.2 Security model

	3 Human behaviors of password creation
	3.1 Our datasets
	3.2 Popular passwords
	3.3 Password reuse
	3.4 Password containing personal info

	4 TarGuess: A framework for targeted online guessing
	4.1 TarGuess-I
	4.2 TarGuess-II
	4.3 TarGuess-III
	4.4 TarGuess-IV
	4.5 Dealing with other attacking scenarios

	5 Experiments
	5.1 Experiment setup
	5.2 Evaluation results
	5.3 A further validation

	6 Conclusion
	7 References

