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ABSTRACT
Encrypting Internet communications has been the subject
of renewed focus in recent years. In order to add end-to-end
encryption to legacy applications without losing the conve-
nience of full-text search, ShadowCrypt and Mimesis Aegis
use a new cryptographic technique called “efficiently deploy-
able efficiently searchable encryption” (EDESE) that allows
a standard full-text search system to perform searches on
encrypted data. Compared to other recent techniques for
searching on encrypted data, EDESE schemes leak a great
deal of statistical information about the encrypted messages
and the keywords they contain. Until now, the practical
impact of this leakage has been difficult to quantify.

In this paper, we show that the adversary’s task of match-
ing plaintext keywords to the opaque cryptographic identi-
fiers used in EDESE can be reduced to the well-known com-
binatorial optimization problem of weighted graph match-
ing (WGM). Using real email and chat data, we show how
off-the-shelf WGM solvers can be used to accurately and
efficiently recover hundreds of the most common plaintext
keywords from a set of EDESE-encrypted messages. We
show how to recover the tags from Bloom filters so that the
WGM solver can be used with the set of encrypted mes-
sages that utilizes a Bloom filter to encode its search tags.
We also show that the attack can be mitigated by carefully
configuring Bloom filter parameters.
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1. INTRODUCTION
Encrypting Internet communications has been the sub-

ject of renewed focus in recent years. Encrypting only the
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links (e.g. with TLS) is no longer considered sufficient; in-
stead, recent work has focused on encrypting communica-
tions from end-to-end between client devices. Whenever a
message is transmitted or stored on a remote service, it is
first encrypted with a key that is kept secret from the ser-
vice provider. This approach protects against malicious or
compromised providers.

ShadowCrypt [17] and Mimesis Aegis [22] propose a novel
approach for adding end-to-end encryption to cloud based
communication services that do not support it natively, in-
cluding Gmail, Facebook, and Twitter. To do this, both
ShadowCrypt and Mimesis interpose themselves between
the user interface of the legacy application and the human
user. ShadowCrypt works with web applications and builds
on the Shadow DOM, an emerging standard for isolating
components on a web page from each other in the browser.
Mimesis Aegis works with Android applications by injecting
a transparent window over the top of the legacy app. In
both cases, the new security layer captures the user’s input
and encrypts it before handing it off to the legacy app. Simi-
larly, when the app retrieves encrypted data from the cloud,
the security layer transparently decrypts it and displays the
plaintext to the user.

At the same time, the large number of messages that users
send and receive each day can lead to a form of “informa-
tion overload” [31] where it becomes very difficult for the
user to manage their messages, e.g. to find a message that
they received in the past. The most effective tool for com-
bating information overload is full-text search. Highly effec-
tive search is an important feature of many successful apps
such as Gmail. In order to achieve widespread deployment,
any new security layer must not remove the user’s ability
to efficiently search their stored messages. There are many
cryptographic techniques for searching on encrypted data.
Many of these have formal proofs that they conform to rig-
orous definitions of security [12] based on semantic security
[15]. Unfortunately these constructions cannot be deployed
on top of the legacy services that ShadowCrypt and Mimesis
aim to support. Instead, ShadowCrypt and Mimesis propose
the use of simplified constructions that the Mimesis authors
call efficiently deployable, efficiently searchable encryption
(EDESE).

EDESE.
In order to achieve reasonable performance, all practi-

cal techniques for searching on encrypted data leak some
amount of information about the encrypted database and
the search queries. This leakage profile is typically small,
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precisely defined, and rigorously verified with formal proofs
of security. However, the implications of the leakage—that
is, what other sensitive information can be inferred from
it—are not yet well understood.

In order to achieve backwards compatibility with legacy
systems, EDESE schemes like those used in Mimesis and
ShadowCrypt have a particularly aggressive leakage profile.
To enable a legacy service or application to search on en-
crypted messages, EDESE attaches to each message a list
of opaque identifiers—here we call them “tags”—that corre-
spond to the set of keywords in the message. Each tag t
is computed as a pseudorandom function of a keyword w,
using a secret key k. When the user initiates a search for a
keyword w, Mimesis and ShadowCrypt intercept the user’s
input and replace the plaintext query with one or more tags
t = Fk(w) before returning control back to the legacy app.
On the back end, the legacy application can use any stan-
dard full-text indexing technique to keep track of the list of
messages that contain each tag. Given a search request for
tag t, the legacy app’s back end consults its index and re-
turns the encrypted documents to the front end. When the
front end goes to display the search results, Mimesis and
ShadowCrypt again intercept the user interface to decrypt
the messages and display the plaintext to the user.

The practical benefits of EDESE are clearly compelling.
It allows users to immediately begin encrypting their com-
munications, without changing providers or losing famil-
iar application user interfaces. The EDESE approach also
has much lower startup costs compared to other techniques
for searching encrypted data. According to a case study
by Grubbs [16], implementation and deployment of a con-
ventional symmetric searchable encryption system requires
around one person-year of effort.

On the other hand, EDESE reveals a great deal of infor-
mation that could be useful to an adversary, namely: (i) the
relative frequency of each tag in the corpus and (ii) the
frequency with which each pair of tags occurs together in
the same message. In contrast, with a conventional SSE
scheme, the adversary is only allowed to learn the relation-
ship between a tag and a document when the user performs
a search for corresponding keyword. The additional leakage
from EDESE provides the opportunity for statistical infer-
ence attacks whereby the adversary uses known word fre-
quencies to match the observed tags back to the keywords
that they represent.

Recent works make conflicting claims about the security
of SSE and EDESE schemes against such inference attacks.
As a result, it has been difficult so far to determine whether
the gains in efficiency and convenience that EDESE offers
are worth the increased risk of inference attacks. Up until
now, there have been no known attacks against the version of
EDESE used in Mimesis, and the one known attack against
the EDESE used in ShadowCrypt only works against a weak-
ened version of the scheme. We will refer to the efficiently
searchable encryption scheme used in Shadowcrypt as SC-
ESE and the scheme proposed in Mimesis as MA-ESE.

Our Contributions.
In this paper, we show that the risks of using EDESE

schemes are much greater than previously known. We de-
scribe new inference attacks that enable an honest but curi-
ous adversary to recover the plaintext keywords for hundreds
of the most common tags. Our attacks are the first inference

attacks that are effective against the full-strength version of
SC-ESE, and the first ever inference attack against the more
sophisticated MA-ESE construction used in Mimesis Aegis.

Our threat model is conservative, in that we give the ad-
versary access to only the ciphertext messages and the search
tags. Unlike the standard adversary model for searchable
encryption, our adversary has no access to encryption or de-
cryption oracles. Notably, unlike previous inference attacks,
our techniques are effective even when the adversary has
no a priori knowledge of the search queries, the plaintext
messages, or the plaintext keywords for any of the tags.

A key insight underlying our approach is that the SC-
ESE adversary’s task can be reduced to well-known com-
binatorial optimization problems based on graph matching:
weighted graph matching and labeled graph matching. Al-
though these graph matching problems are in NP, there ex-
ist several efficient solvers that can find good approximate
solutions in polynomial time. Another key observation of
our work is that constructions like MA-ESE that use Bloom
filters for encrypted search must be careful in how they con-
figure the Bloom filter’s parameters. If the filter parameters
are chosen carelessly, or with only efficiency in mind, then
the adversary can use an additional pre-processing step to
apply the graph matching attacks against the bits in the
Bloom filter.

Using real email and chat data, we show how these solvers
can be used to efficiently and accurately recover the list of
keywords for messages encrypted with MA-ESE and SC-
ESE. For example, for several users in the Enron email cor-
pus, the attack can recover more than 900 of the top 1000
most common keywords. In a corpus of chat messages from
the Ubuntu Linux project, it recovers more than half of the
top 500 keywords. Recovering so many of the top keywords
would enable the adversary to perform a variety of inter-
esting analyses on the encrypted documents, such as group-
ing similar documents together in clusters or identifying the
sentiment (positive/negative, happy/sad/angry) expressed
in each message.

To mitigate against our attacks, we propose and evalu-
ate a new strategy based on careful tuning of the Bloom
filter parameters to reduce the information leaked by the
tags. Experimental results show that an efficient choice of
parameters is sufficient to break our current attack, while
better protection is possible at the cost of increased space
overhead. However, we caution that our proposed defense
does not eliminate the information leakage entirely. Given
a sufficient amount of data, it is still possible that a clever
adversary might be able to reverse-engineer the Bloom filter.

Beyond the immediate impact to efficiently searchable en-
cryption, our results here may have implications for the se-
curity of other encrypted search systems that use Bloom
filters, such as SADS [26, 25] and BlindSeer [24, 13], and for
systems that perform symmetric searchable encryption over
natural language documents [14, 12, 10].

2. BACKGROUND AND RELATED WORK

Full-Text Indexing.
To enable efficient full-text search on collections of doc-

uments, one standard approach is to construct an inverted
index. For each keyword, the index contains a list of all
the documents that contain that word [32]. The most com-
mon words like the, a, and, or, of, etc. are called “stop
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words” and are typically excluded from the index. Exclud-
ing these extremely common words significantly reduces the
space requirements for the index without sacrificing much
expressive power. Since stop words appear in almost ev-
ery document, they are not usually useful as search terms.
Recent searchable encryption schemes like [10] work by es-
sentially encrypting, and then selectively revealing, parts of
an inverted index. In contrast, EDESE schemes work by
letting an existing full-text search system include crypto-
graphic tags in its inverted index.

Bloom Filters.
Bloom filters [6] are probabilistic data structures that rep-

resent sets and support membership queries. For applica-
tions that can tolerate a small false positive rate, Bloom
filters offer a space-efficient alternative to the full inverted
index. Conceptually, the Bloom filter is an array or bit vec-
tor of m bits, all initially set to zero. To insert an element
x into the set, we hash x with each of k hash functions and
set each of the k bits bi = hi(x), 1 ≤ i ≤ k to one in the
Bloom filter. To check if an item z is in the set, we check if
hi(z) = 1 for all 1 ≤ i ≤ k.

The standard BF construction described by Bloom allows
anyone to check for the presence of an item in the filter.
This is not desirable for indexing encrypted data; it could
be leveraged by an attacker to perform a dictionary attack.
Therefore EDESE schemes use a pseudorandom function
(PRF) to set the bits in the Bloom filter. More formally, let
f1, f2, ..., fk be a family of k pseudorandom functions. Let
F (w) be the set of bits in the Bloom filter that correspond
to keyword w, ie F (w) = {fi(w) : i ∈ [1, k]}. Only someone
who has the secret symmetric key can compute the PRF.
This prevents simple brute-force dictionary attacks on the
hash function. In practice, the PRF can be instantiated as a
truncated message authentication code (MAC), sometimes
also called a “keyed hash.” For example, Mimesis Aegis uses
HMAC-SHA256 to set bits in a Bloom filter of size 224.

Searching on Encrypted Data.
Song, Wagner, and Perrig proposed the first scheme for

searching on encrypted data [28]. Goh [14] and Curtmola,
Garay, Kamara, and Ostrovsky [12] formalized definitions of
security and described new schemes that met those defini-
tions. Goh was also the first to propose use of Bloom fil-
ters for encrypted search. The EDESE construction used in
Mimesis is very similar to a weaker version of Goh’s scheme.
Early SSE schemes assumed a relatively static document
corpus and offered somewhat limited performance. Current
SSE schemes can handle dynamic data [19] and offer good
performance even on very large data sets [10]. However,
the security definitions for SSE require that the server must
engage in a cryptographic protocol with the client to exe-
cute searches on their behalf. Conventional SSE schemes
are therefore not compatible with existing “legacy” applica-
tions and services.

Efficiently Searchable Encryption.
Bellare, Boldyreva, and O’Neill [4] introduced the notion

of efficiently searchable encryption (ESE) and presented a
new definition of security, called PRIV, for such schemes.
They showed that a simple hash-and-encrypt construction
is secure in this model when the data has high min-entropy.
Amanatidis, Boldyreva, and O’Neill [3] introduced the re-

lated notion of efficiently searchable authenticated encryp-
tion (ESAE) which also guarantees the authenticity of ci-
phertexts. They prove that a simple MAC-and-encrypt scheme
satisfies this definition. Unlike conventional searchable en-
cryption, ESE and ESAE schemes can be efficiently indexed
and searched by an unsecured full-text search system. The
tagging scheme used in ShadowCrypt’s SC-ESE is concep-
tually similar to the construction in [3].

Inference Attacks on Encrypted Data.
In an inference attack, the adversary uses some outside

“auxiliary” information to exploit leakage from a crypto-
graphic construction in order to infer the value of some hid-
den data. The original statistical inference attack was al-
Kindi’s frequency analysis [1], first proposed in the 9th cen-
tury AD. It was developed to break classical crypto schemes
such as substitution ciphers, and it is still widely used to il-
lustrate the weakness of these schemes in introductory cryp-
tography courses. More recent inference attacks have also
targeted efficient schemes for storing and searching records
in relational databases [27] [23] and anonymized packet traces
[7]. Interestingly, a new analysis by Lacharité and Paterson
[21] proves that frequency analysis is the maximum likeli-
hood estimator for deterministic encryption.

Islam, Kuzu, and Kantarcioglu [18] presented the first
inference attack against symmetric searchable encryption.
They noted that over time, as more searches are performed
in an SSE, the server can see which tags tend to occur to-
gether in the same documents. In the IKK attack, the adver-
sary observes the frequency of co-occurrence for each pair of
words in some corpus of training data, then uses this infor-
mation to map tags in the encrypted corpus back to plain-
text words. IKK prove that the adversary’s task is an NP
Complete combinatorial optimization problem, but they also
demonstrate that simulated annealing can be used to recover
most of the top few hundred keywords in under 14 hours.
We apply a similar approach for our attack against EDESE,
but our attack is even stronger. We provide a reduction to a
well-known problem that has been studied for 30 years and
has good off-the-shelf solvers.

Unfortunately the IKK experiments use the same data for
the target and for the adversary’s auxiliary information—
this implicitly assumes that the adversary has perfect knowl-
edge of the word co-occurrence frequencies. Cash, Grubbs,
Perry, and Ristenpart (CGPR) attempted to reproduce the
IKK experiments [9], and their results show that the accu-
racy of the IKK attack degrades quickly as the adversary’s
knowledge of the encrypted corpus decreases. CGPR present
new, simpler attacks that outperform the IKK attack but
also require knowledge of a large fraction of the target data.
CGPR also show an inference attack against a weakened
version of SC-ESE that reveals the order in which the tags
appear in the plaintext document. Our attacks work against
the full-strength scheme that hides the original ordering.

3. GRAPH MATCHING

Weighted Graph Matching.
The weighted graph matching (WGM) problem is a well

known combinatorial optimization problem that has been
studied for nearly 30 years [11]. Given two weighted graphs
G and H with n nodes each, the problem is to find the
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permutation that re-labels the nodes in H so that the per-
muted graph most closely resembles G. More formally, let
AG = [gij ] and AH = [hij ] be the adjacency matrices of
G and H, respectively. Here, gij ≥ 0 gives the weight of
the edge connecting nodes i and j in G, and hij ≥ 0 gives
the weight in H. Further, let X be an n × n permutation
matrix, and let A′H = XAHX

T be the adjacency matrix
for the permuted version of H, with edge weights h′ij . The
goal of the optimization problem is then to find the permu-
tation matrix that minimizes the matrix distance between
AG and A′H . For example, using the Euclidean distance as
our matrix distance, the problem can be stated as

minimize ||AG −XAHX
T ||2 =

√√√√ n∑
i=1

n∑
j=1

(gij − h′ij)2

subject to

n∑
i=1

Xij = 1, 1 ≤ j ≤ n

n∑
j=1

Xij = 1, 1 ≤ i ≤ n

Xij ∈ {0, 1}, 1 ≤ i, j ≤ n.

The WGM problem is in NP. There exist many algorithms
for efficiently finding approximate solutions, including an in-
fluential 1988 paper by Umeyama [29] that uses eigendecom-
position of the adjacency matrices to find a nearly-optimal
solution in O(n3) time. Umeyama’s algorithm works espe-
cially well when the two input graphs are nearly perfectly
isomorphic. The PATH algorithm [33] is more robust, using
an adaptive path-following strategy; it also runs in O(n3)
time, but with a larger constant factor than Umeyama’s al-
gorithm. A powerful linear programming (LP) technique
from Almohamad and Duffuua [2] has complexity O(n7), so
we do not consider it for use in practical inference attacks.

Labeled Graph Matching.
Labeled graph matching (LGM) is a further generalization

of WGM. Whereas in WGM the similarity of two graphs
is computed as a function of their edge weights, in LGM
the nodes may also have weights. The best matching is
the one that simultaneously minimizes the difference in edge
weights while maximizing the similarity of the node weights.
For example, if Cij gives the similarity of node i’s weight
in G with node j’s weight in H, and P is the set of all
permutation matrices, then the permutation that maximizes
the similarity of the node weights is

max
X∈P

tr(CTX) = max
X∈P

n∑
i=1

n∑
j=1

CijXij .

A natural way to include both the edge weights and the
node weights in a single objective function is with a simple
linear combination where the parameter α designates the
weight given to the terms of the linear combination. The

full optimization problem can then be stated as

minimize (1− α) ||AG− XAHX
T ||2 − α tr(CTX)

subject to

n∑
i=1

Xij = 1, 1 ≤ j ≤ n

n∑
j=1

Xij = 1, 1 ≤ i ≤ n

Xij ∈ {0, 1}, 1 ≤ i, j ≤ n.

Both the Umeyama algorithm and PATH can be easily
adapted to solve the labeled graph matching problem. The
GraphM software package [33] includes efficient implemen-
tations of these and other algorithms.

4. ATTACKS ON SC-ESE
The idea of using word co-occurrence frequencies for in-

ference attacks against symmetric searchable encryption was
first proposed by Islam, Kuzu, and Kantarcioglu [18]. Here
we improve on this attack strategy for EDESE and formalize
it as an instance of the graph matching problems described
above. We also compare our attack to previous inference
attacks, including classical frequency analysis and the `p-
optimization technique from Naveed et al [23].

4.1 Frequency Analysis and `p-Optimization
The application of frequency analysis to attack EDESE

is straightforward. Given an auxiliary corpus of plaintext
messages, a target corpus of encrypted messages and their
tags, the adversary simply counts the number of times that
each keyword appears in the auxiliary data and the number
of times each tag appears in the target data. He sorts both
the list of keywords w = {w1, ...,wn} and the list of tags
t = {t1, ..., tn} by their frequency. So, for example, w1 is
the most common keyword and w2 is the second-most com-
mon, and so forth. Finally, the adversary concludes that the
ith most common tag corresponds to the ith most common
keyword; that is, ti ≡ wi, for all i ∈ [1, n].

Naveed, Kamara, and Wright [23] also use frequency infor-
mation in an inference attack. Rather than simply matching
up plaintexts to ciphertexts in order of decreasing frequency,
they pose the problem as a linear sum assignment problem to
find the optimal matching that minimizes the total difference
in frequencies. For p ≥ 2, they found that `p-optimization
produced results that are identical to frequency analysis;
this strongly suggests that the two approaches may in fact
be equivalent.

Both of these previous attacks rely solely on the frequen-
cies of individual plaintexts and ciphertexts. Although they
were highly effective against categorical data in encrypted
databases, our experimental results in Section 4.3 show that
they are much less accurate against natural language data,
where the frequencies of plaintext keywords are much nois-
ier. Instead, as in the IKK attack [18], we use the frequen-
cies of pairs of words occurring together to drive our graph
matching attacks for much greater accuracy.

4.2 Graph Matching Attacks
We now give the polynomial-time reduction of the infer-

ence attack on EDESE to the graph matching problems,
WGM and LGM. Given a plaintext corpus for use as the
adversary’s auxiliary information and an EDESE-encrypted
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corpus as his target, he first removes the most common
“stop” words (e.g. a, the, and, of, ...) from the auxiliary
data, because the victim system almost certainly stripped
them from the target data before generating the tags. Then
the adversary selects the top n most common remaining key-
words w = {w1, ...,wn} from the auxiliary data and the
top n most common tags t = {t1, ..., tn} from the target
data. He creates two graphs G and H to represent the aux-
iliary and target data, respectively, as follows. For each
i, j ∈ [1..n], he sets the weight of the edge gij in G to be
the probability, over the auxiliary corpus, that keywords wi

and wj occur in the same document. Similarly, he sets the
weight hij in H to be the probability, over the target data,
that tags ti and tj are attached to the same encrypted doc-
ument. This is sufficient to reduce the attack to the WGM
problem.

To yield an instance of the LGM problem, the adversary
must create a similarity matrix C for the nodes. Intuitively,
each cell Cij in the matrix should give the similarity of the
frequency of word wi compared to the frequency of tag tj .
There are many ways to capture this similarity. For exam-
ple, we might set the node weights as in [23] to minimize the
overall difference in frequencies. Here, we opt instead for a
slightly different approach based on the method of maxi-
mum likelihood. Let gi be the fraction of auxiliary docu-
ments that contain word wi and hj be the frequency of tag
tj in the target data. Let D be the number of documents
in the target. Let kj = hj · D. Then the adversary sets
the similarity Cij as the likelihood that word wi appears in
kj out of D documents. The permutation matrix X that
maximizes the objective function is therefore the maximum
likelihood solution.

D = Number of Documents

gi = Frequency of word wi

hj = Frequency of tag tj

kj = hj ·D
Cij = Binom(kj , D, gi)

Cij =

(
D

kj

)
(gi)

kj (1− gi)D−kj

The adversary solves the graph matching problem to find
the optimal permutation matrix X ′ that most closely maps
H to G. He then applies the same permutation to the list
of tags to obtain the permuted list t′ = X ′t. Finally, the
adversary concludes that each tag t′j in the encrypted corpus
represents keyword wj from the auxiliary data, for all j ∈
[1, n]

4.3 Empirical Evaluation
ShadowCrypt and Mimesis aim to support email and other

messaging applications, including Gmail, Twitter, What-
sApp, and others. To evaluate the practical impact of our
attacks, we use two data sets of real email and chat messages.
The Enron email corpus [20] includes real emails from the
mailboxes of 150 employees of Enron Corporation, received
between 2000 and 2002. It was originally made public as part
of the federal government’s investigation into the company’s
collapse, and it has since been used in several studies on the
practicality of searchable encryption schemes [19] and the
effectiveness of inference attacks [18, 9]. The Ubuntu Chat
Corpus [30] is composed of archived chat logs from Ubuntu’s

Internet Relay Chat technical support channels. This corpus
comes from the logs between July 2004 and October 2012.
Table 1 summarizes the data sets that we use to evaluate
our attacks on real data.

4.3.1 Initial Experiments
For a direct comparison with prior work that tests and

trains on the same data [18] or that gives the adversary ac-
cess to the plaintext corpus [9], we performed a small initial
experiment with the Enron corpus. We note that normally,
testing and training on the same data is considered excep-
tionally bad practice. However, for tools like ShadowCrypt
and Mimesis Aegis, there is one real scenario where this
might give an appropriate model for the adversary’s capa-
bilities. Suppose a user has a large corpus of messages stored
on a service like Gmail, and she decides to encrypt all of her
old messages using EDESE. At the moment when she fin-
ishes uploading the encrypted messages, the server has per-
fect knowledge of both the old plaintext corpus and its new
EDESE tags. Since the server already has the old plaintext
corpus, the point of performing the attack at this stage is to
learn information about the tags. If the server can match
tags to keywords at that point in time, it can recover the
keywords in each new encrypted message almost for free.

In this initial experiment, we divide each Enron user’s
mails randomly into a training set and a testing set. Here
we ignore the testing set, and we use the training set as
both the adversary’s auxiliary information and the target
data. We use the training set to construct an adjacency
matrix as described in Section 4.2 and we use this matrix as
both AG and AH . We use the open source graphm tool with
the Umeyama and PATH algorithms to find the permutation
that most closely matches AG to AH .

In this easy attack scenario, the weighted graph match-
ing attack performs extremely well. The Umeyama WGM
algorithm achieves perfect 100% accuracy for every user in
the corpus, as does simple frequency analysis. This is to
be expected, as both algorithms are optimized for the case
where the auxiliary and target data have very few differ-
ences. The Umeyama algorithm matches each pair of graphs
in under 40 seconds. The PATH algorithm is designed to
handle greater variation in the graphs, so it runs roughly
two orders of magnitude slower than Umeyama. Its accu-
racy on this experiment is also somewhat reduced compared
to the naive algorithms. Figure 1 shows the complemen-
tary cumulative distribution function (CCDF) of the PATH
WGM algorithm’s accuracy across all 150 users in the Enron
data set.

A point at position (x, y) on the graph means that the
attack correctly matched at least x% of the keywords for
y% of the users in the corpus. The attack recovers about
95% of the keywords for more than 90% of the users, with
some slight degradation in accuracy as we expand the attack
to target a larger number of keywords.

Previous attacks on standard SSE require a priori knowl-
edge of the both target corpus and some number of the
queries. Islam, Kuzu, and Kantarcioglu report that their
simulated annealing attack could analyze up to 150 queries
and 2500 keywords in under 14 hours, and it could recover
more than 80% of the queries. That is, the IKK attack can
recover between 120 and 150 of the top keywords, as long as
they are used in a query by some user. Given a similar ex-
perimental setup with 10% of queries known a priori, Cash
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Corpus Type Date Messages Keywords per Message
Enron Email 2000–2002 517446 101
Ubuntu IRC chat 2004–2012 26360715 6.57

Table 1: Email and chat corpora

Figure 1: Accuracy of weighted graph matching at-
tack (PATH algorithm) against SC-ESE for users
in the Enron email corpus, using perfect auxiliary
information

et al’s count attack recovers 100% of the queries. The accu-
racy of our attack is similar to the related work, even when
we have no known queries. But because EDESE gives us
access to the tags for all the keywords, the practical impact
is greater. Whereas a 95%-accurate attack on SSE might
retrieve more than 140 keywords, our attack on EDESE re-
covers more than 950.

On the other hand, these results may give an overly pes-
simistic estimate of the security of SSE and EDESE. When
given access to only 50% of the target data, both of the
attacks from prior work achieve accuracy very near to zero
(c.f. Fig. 6 in [9]). Next we look at what happens when we
run our attack with no access to the target data.

4.3.2 Experiments with Imperfect Auxiliary Info
Here we consider a more realistic scenario, where the ad-

versary does not have any specific knowledge of the messages
in the encrypted corpus, but he still has very good estimates
for the keyword frequencies. We conducted experiments in
this model using data from the Enron email corpus and the
Ubuntu chat corpus.

For each user in the Enron corpus, we randomly divided
the user’s emails into two non-overlapping sets. We took
one half of the user’s emails as the training set and used
them to construct the adjacency matrix AG for the adver-
sary’s auxiliary information. We took the other half of the
user’s emails as the test set and used them to construct the
adjacency matrix AH for the target data. We did this for
several values of n between 100 and 1000.

To match the top n keywords, we first ran the attack us-
ing Frequency Analysis / `p-optimization and the Weighted
Graph Matching attack with the Umeyama algorithm [29].
Figure 2 shows the complementary cumulative distribution

function (CCDF) of the accuracy for the Frequency Anal-
ysis attack and the Weighted Graph Matching with the
Umeyama algorithm. For the top 500 words, the accuracy
for these two attacks is less than 10% for almost all users.

Figure 2: Accuracy of Frequency Analysis and
Weighted Graph Matching (Umeyama) attacks for
Enron data, with imperfect auxiliary information.

We then performed the Weighted Graph Matching attack
with the PATH algorithm [33]. Figure 3 shows the (CCDF)
of the attack’s accuracy across the 150 users in the Enron
corpus. Over all, the accuracy of the attack decreases as we
increase the number of keywords targeted. But even when
attempting to match the top 1000 words, the adversary still
achieves over 90% accuracy for about 10% of the users. To
reiterate—for these 15 unlucky users, the adversary recovers
more than 900 of the top 1000 words in their email. If the
adversary is only interested in the top 200 words, he achieves
greater than 80% accuracy for half the users in the corpus.
Note that, unlike previous work [18, 9], this attack succeeds
given no access to the target data, zero known keywords, and
zero known documents.

Further work will be required to understand why the at-
tack’s effectiveness varies so much from user to user. Our
working hypothesis is that the variation stems from differ-
ences in the users’ topic model. Like the earlier IKK attack,
our adversary assumes that the probability of seeing each
word—or each pair of words—in a document is constant
across the entire corpus. For natural language text, this as-
sumption does not really hold. Instead, in more accurate
models of text, such as latent Dirichlet allocation [5], the
distribution of words is fixed for each of several topics, and
the mix of topics can vary greatly from document to doc-
ument. We suspect that users for whom the attack is very
successful have a more stable distribution of topics in their
email. It might be possible for a future attack to learn both
the topic model and the word frequencies at the same time.
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Figure 3: Accuracy of Weighted Graph Matching at-
tack (PATH Algorithm) against SC-ESE for Enron
data, with imperfect auxiliary information.

Following a similar procedure, we ran the experiment for
each month of IRC chat logs from the Ubuntu corpus. We
randomly assigned each day in the month to either the ad-
versary’s auxiliary information (ie, the training set) or the
target data (ie, the test set). For each value of n, we cre-
ated the adjacency matrices AG and AH as above, and we
ran the graphm experiment for each month of the Ubuntu
corpus, just as we did with each user in the Enron data.

Figure 4: Accuracy of Weighted Graph Matching
attack (PATH Algorithm) for Ubuntu data

Figure 4 shows the results for the Ubuntu experiment.
Compared to the email data, overall the adversary’s accu-
racy degrades more quickly as we increase the number of key-
words targeted, but the attack is still many times more ac-
curate than random guessing. For 10 percent of the months,
the adversary correctly recovers almost 400 of the top 500
keywords. He recovers more than half of the top 500 key-
words for nearly 90% of the corpus.

4.3.3 Runtime Performance
We ran all experiments on a cluster of HP Proliant servers

with Intel Xeon L5520 processors at 2.26GHz, running Cen-
tOS Linux 6 and version 0.52 of the graphm software. The
Umeyama algorithm required less than 40 seconds to run
each attack in Section 4.3.1 with perfect 100% accuracy.
However, its accuracy was substantially reduced when test-
ing and training on different data.

Figure 5: Runtime performance of the Weighted
Graph Matching attack (PATH Algorithm) for the
Enron email corpus

Figure 5 shows the average runtime for matching the top
100,200,...,1000 keywords for each Enron user with the PATH
algorithm. Matching the top few hundred keywords is very
fast; even our older 2009-era CPUs can match the top 500
words for a user in under one hour. The Umeyama and
PATH algorithms are O(n3) in the number of keywords to
be matched, so attacking thousands of keywords becomes in-
creasingly expensive. However, matching several thousand
keywords would not be beyond the capacity of a large cor-
poration or a nation state. It is also possible that a much
faster solver could be implemented using graphics process-
ing units or other specialized hardware. Memory does not
appear to be a limiting factor: even when matching the top
1000 keywords, the graphm process uses less than 250MB of
memory.

4.3.4 Experiments with Time Delay
Figure 6 shows the accuracy of our attack when the ad-

versary’s auxiliary information is from the previous month
before the target data. Comparing this graph to Figure 4,
the attack performance is considerably lower. The cause for
this degradation is likely due to the differences in topics,
and thus words from one month to the next. The result is
our auxiliary training data is not as close to the actual data
compared to the attack on messages within the same month.

5. ATTACKS ON MA-ESE
MA-ESE is a more difficult target than SC-ESE. We

cannot apply our graph matching attack directly, because
MA-ESE does not reveal a one-to-one correspondence be-
tween keywords and tags. Where SC-ESE uses a single
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Figure 6: Accuracy of Weighted Graph Matching
attack (PATH Algorithm) for Ubuntu data; 1 month
delay between auxiliary and target

PRF to generate a single search tag for a given keyword,
MA-ESE uses a family of k PRFs and generates up to k
distinct tags for each keyword. If the Bloom filter is suffi-
ciently small, there may be some collisions in the PRFs, so
some tags may correspond to more than one keyword.

As we will show in Section 6, the MA-ESE construction
provides the opportunity to make inference attacks much
more difficult by carefully tuning the parameters of the Bloom
filter. On the other hand, a naive choice of BF parameters
such as those proposed in [22] allows the adversary to mount
the same graph matching attack with only a small amount
of additional work and a variable decrease in accuracy.

Our inference attack on MA-ESE proceeds in two steps.
First, we analyze the Bloom filters to identify sets of bits
that likely represent plaintext keywords. Then we use the
graph matching attack to match each set of bits to the best-
fitting keyword.

5.1 Recovering tags from Bloom filters
Our general strategy to discover the groups of bits that

represent keywords in the Bloom filters begins with a simple
frequency-based analysis. If the Bloom filters use k hash
functions, then for each keyword we expect to see a group
of k bits that (1) have the same bit counts where the bit
count is the number of documents that the bit is set to one
and (2) appear together in the same set of documents. For
example, if a keyword w sets the bits 10, 20, 30 and 40, we
expect each of these bits to have similar counts and appear
together in the same documents. To find these bits for each
keyword, we begin by counting the number of documents in
which each bit is set, and we group together all the bits that
have the same count.

For example, suppose we have a collection of Bloom filters
with the parameters used in Mimesis Aegis: m = 224 bits
and k = 10 hash functions. Figure 7 gives some example
counts that arise for one Enron user with these parameters.
Each row represents a set of bits that all occur in the same
number of documents. The first column gives the count
of the documents where these bits appeared, and the 2nd
column gives the number of bits with that count.

Doc Count Set Size
238 10
226 10
219 11
212 9
211 10
206 10
186 10
173 10
169 10
143 10
129 1

Doc Count Set Size
113 10
101 10
99 9
98 10
89 10
87 10
84 20
82 10
81 10
80 20
79 40

Figure 7: Example Bloom filter counts

Exact Matching.
Sometimes it is easy to identify the bits for many key-

words. In our example, there are exactly 10 bits that ap-
pear in 238 documents, another 10 bits that appear in 226
documents, and other sets of 10 that occur in 211, 206, 186
documents, respectively. It is very likely that these five sets
of 10 bits correspond to five keywords that appear 238, 226,
211, 206, and 186 times in the plaintext corpus. Similarly,
the other sets of 10 bits probably represent one plaintext
keyword each. Each of these sets of 10 bits are equivalent
to the tags from Section 4.

Algorithm 1 Bloom Filter Tag Extraction

1: Let S be the set of sets of bits
2: Let D be the set of encrypted documents
3: Let B be the set of Bloom filters B = {Bd : d ∈ D}
4: Let k be the number hash functions in each bloom filter
5:
6: function FindTags(S, D, B, k)
7: Let T ← ∅ . T will be the set of extracted tags
8: for b ∈ S do
9: if |b| == k then
10: T ← T ∪ b
11: else
12: T ← T ∪ Split(b)

return T
13:
14: function Split(b)
15: for d ∈ D do
16: Let s1 ← b ∩Bd

17: Let s2 ← b \ s1
18: if |s1| == k then return {s1} ∪ Split(s2)
19: else if |s2| == k then return {s2} ∪ Split(s1)
20: else if k < |s1| < |b| − k then return

Split(s1) ∪ Split(s2)
21: else
22: Continue
23: return b

Other sets of bits likely include multiple plaintext key-
words. For example in Figure 7, there are 20 bits that appear
in 84 documents and 40 bits that appear in 79 documents.
These probably represent two keywords that each appear 84
times and four keywords that each appear 79 times. We can
identify the 10 bits that correspond to each distinct keyword
if we can find an encrypted document that contains the given
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keyword but none of the other keywords that have the same
count. Algorithm 1 gives a more formal specification of our
technique for finding such a document.

In some cases there is no such document in the encrypted
corpus, and so our algorithm fails to split a larger set of
bits into individual keywords. This means that the words
in that set always appear together in the same documents,
and therefore they will be indistinguishable under the graph
matching attack anyway. The important thing is that we
have identified a set of keywords that always appear to-
gether; this is sufficient for setting up the graph matching
attack.

Inexact Matching.
Finally, there are some sets whose sizes are not nice multi-

ples of k. Some sets have extra bits, and some sets appear to
be missing bits. In our example, there is only one bit with a
count of 129, and the set with count 99 has only 9 bits in it.
It is likely that we are seeing the results of a collision in one
of the PRFs. The bit with count 129 probably belongs with
the bits in the set with count 99, representing a plaintext
keyword that appears in 99 documents. This same bit must
also go with one or more other keywords that collectively
occur in 30 other documents to bring its total count up to
129.

In cases like this example, it is tempting to treat the set
of 9 bits as a “good enough” match for a plaintext keyword.
Then we can ignore the left-over singleton bits like the one
above. But how likely is it that those 9 bits are a real word
and not a false positive? To evaluate this, we look at the
false positive formulas [8] for Bloom filters. The probability
that a specific bit is zero after all elements are entered into
the Bloom filter is:

p′ = (1− 1

m
)kn ≈ e

−kn
m

where k is the number of hash functions, m is the size of the
Bloom filter, n is the number of words added to the Bloom
filter. The probability of a false positive is:

(1− p′)k ≈ (1− e
−kn
m )k

We can modify this formula to calculate the false positive
rate when we only require a match on ` ≤ k bits:

(1− e
−kn
m )`

Mimesis uses a Bloom filter with m = 224, k = 10. The
Enron emails contain on average n = 101 unique keywords.
The false positive rate with these parameters when matching
on 10 bits = 6.25×10−43. The false positive rate with 9 bits
= 1.04× 10−38 and 8 bits = 1.72× 10−34

It appears that we can safely create a node in our graph
matching step whenever we find a group of ` bits that tend
to appear together, even if ` is smaller than k. We present
experimental results for 8 and 10 bits in Section 5.2.

Graph Matching on Extracted Tags.
After finding the sets of bits that we believe correspond

to each of the top keywords in the corpus, we again use the
graph matching attack to match each set of Bloom filter bits
to its best-fitting plaintext keyword.

5.2 Empirical Evaluation
We evaluate our attacks on Mimesis in two parts. First, we

measure the ability of the tag recovery algorithm to extract
the correct set of bits from the Bloom filter for each keyword.
Then, we measure the accuracy of the graph matching attack
when its list of tags comes not from ground truth, but from
the (possibly incorrect) set of tags extracted by the attack
on MA-ESE.

We created a Bloom filter for each email in the Enron
corpus. The Bloom filter parameters we used are the same
parameters from [22], m = 224 bits and k = 10 hashes.
HMAC-SHA-256 is the PRF with each hash in k receiving
a unique key.

5.2.1 Bloom Filter Attack
An attack on the Bloom filter is successful when a set of k

bits is successfully identified as a tag for the corresponding
keyword. Figure 8 shows the average accuracy of our attack
across all users in the Enron corpus changes as we increase
the number of words targeted. With the majority of users,
we were able to recover over 80% of the tags up to the top
1000 words used.

In addition to our experiments that required us to identify
all 10 bits for each tag, we also ran experiments relaxing this
restriction. The loosened restriction means if we can identify
as few as 8 bits that have similar counts and belong to the
same set of documents, those 8 bits are considering a tag.
Figure 8 compares the Tag finding accuracy on the Enron
corpus matching 10 bits for each Tag compared to the less
restrictive matching on 8 bits. The dashed lines show the
accuracy of the top 10% of the attack results from the test.
The dotted lines reflect the bottom 10% of the attack results.

Figure 8: Tag Finding accuracy on Enron corpus
Bloom filters with parameters: k=10 and Bloom fil-
ter size = 224, matching on 8 and 10 bits

5.2.2 Graph Matching Attacks
The real evidence if matching on less than k bits is effec-

tive is to compare the results from graph matching. Figure
9 shows the graphm accuracy of the SC-ESE tags compared
to the accuracy of the MA-ESE tags matching on all 10
bits verses matching on 8 bits. As with the previous graph,
the dashed lines show the accuracy of the top 10% of the
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attack performances from the test. The dotted lines reflect
the bottom 10% of the attack performances.

Figure 9: Accuracy of Weighted Graph Matching
attack (PATH Algorithm) for MA-ESE and SC-
ESE on Enron Data

The accuracy on these graphm attacks for the Bloom filters
appears to degrade quickly between the 100 and 300 word
count. Discovering an improved tag finding attack would
certainly help this. We believe it also makes a significant
difference which tags are not found from the Tag Finding
attack. A tag that has a high rate of occurrence will have a
larger effect on the graphm algorithm than a tag with a lower
rate. Missing the tag with the highest occurrence would cer-
tainly have an increased adverse effect compared to missing
the tag with the 100th highest count.

Future work might involve analyzing the relationship among
the occurrence count of the tags that are not found from the
graph matching and working on algorithms to maximize the
attack on discovering those specific tags.

The success rate of the graphm attack with the tags recov-
ered from the Bloom filter is fairly low with a vocabulary
size of 1000. However even an attack that has only a 10%
success rate is still much better than random guessing and
reveals much to an adversary.

6. MITIGATION
The most obviously effective defense against our attacks is

to use an encrypted search construction that reveals much
less information to the adversary, e.g. [10]. However, for
many real use cases the operational requirements only ad-
mit efficiently-searchable schemes [16]. Here we describe a
novel strategy for defending EDESE schemes against infer-
ence attacks by carefully tuning the Bloom filter parameters.

When deciding which Bloom filter parameters to use for
encrypted search, many previous works [14, 22, 26] discuss
how the parameters affect the false positive rate. Until now,
little or no attention has been paid to how the choice of
parameters may affect security. Our experiments in the
previous section demonstrate that the parameters used in
Mimesis Aegis are susceptible to attack. Our analysis in
this section reveals that the attacks are possible because the
Bloom filter used in Mimesis is much larger than necessary.

With careful tuning of the parameters, we can make infer-
ence attacks much more difficult.

Broder and Mitzenmacher [8] describe a technique for
picking the optimal number of hash functions in a Bloom
filter to minimize its false positive rate. Given a Bloom fil-
ter with m bits and a document length of n keywords, the
FP rate is minimized at

k = ln(2 ∗ (m/n))

As a side effect of this parameter choice, it happens that
each bit in the Bloom filter will be set with probability 50%
in each document. Intuitively, this will make it more diffi-
cult for the adversary to extract information about which
keywords appear in which documents.

After removing stop words, the Enron corpus has an av-
erage of 101 unique keywords per document. Applying this
formula with m = 224 and n = 101 results in an optimal
value of k = 115, 139. Clearly, using more than 100,000 hash
functions is not practical. So instead we looked at modifying
m, the size of the bloom filter. Applying the same formula,
but instead using k = 10, n = 101 and solving for m, we get
a value in between 211 and 212.

To test this approach, we re-ran our tag finding attack
against the Enron corpus, using a constant value of k =
10 hash functions, but varying the size of the Bloom filter
from 210 to 222. For each configuration, we computed the
average accuracy of the tag finding attack and the expected
false positive rate offered by the Bloom filter. The results of
this experiment are shown in Figure 10. Setting the size of
the Bloom filter close to the value derived from the formula
above is very effective in reducing the accuracy of the attack.
For m = 212, the attacker is unable to find the tags for even
the top 100 most common keywords. Without tags, the
attacker cannot even attempt the graph matching attack.
Moreover, with these parameters the Bloom filter still offers
a very low false positive rate of 2.5× 10−5. A side benefit of
this approach is that it is also more space efficient. With a
Bloom filter of only 212 bits, each tag can be much smaller
than in the default Mimesis configuration.

But as m grows large relative to k = 10, the success of
our attack grows very quickly. With 222 bits, we can find
tags for more than 60% of the top 1000 keywords. At the
same time, the tags must also grow to encode more bits.

Analysis.
With the naive choice of Bloom parameters, there is nearly

a 1:1 correspondence between the bits in the Bloom filters
and the keywords that generated those bits. The modified
Bloom filter parameters weaken this relationship, and as a
result, the attack is much less successful.

To make this more precise, let q be the “baseline” prob-
ability that any given bit, b, is set in any given Bloom fil-
ter. Using the equations from [8], we can compute q from
the number of words per document, n, the number of hash
functions, k, and the size of the Bloom filter, m:

q = 1− (1− 1

m
)kn ≈ 1− e

−kn
m .

Using the default parameters from Mimesis Aegis [22], we
obtain our original q value q0 = 6.01x10−5.

On the other hand, if some keyword w sets bit b = 1,
and w occurs in fraction p of the documents, then we should
expect to see bit b set in about p·1+(1−p)·q of the encrypted
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Figure 10: Tag finding accuracy on Enron corpus
with variable sized Bloom filters

corpus. If the resulting frequency is differs significantly from
q, then the adversary can easily tell which bits go together.
Table 2 illustrates this effect. With q = q0, we expect the
bits for each keyword to have a unique frequency very close
to the frequency, p, of the keyword itself. For example, bits
for the most common keyword should appear in about 54%
of the encrypted corpus, and bits for the 100th most common
keyword should appear in about 9.4% of the documents.

By increasing q, we can make the attack more difficult.
The optimized parameters from [8] set q at about 0.5, but it
is also possible to drive q even higher while maintaining a low
false positive rate. For example, with m = 211 and k = 25,
we get q = 0.709, and the probability of a false positive is
less than 10−3. Table 2 shows how the bit frequencies change
as we increase q. With q = 0.7, the frequencies for all bits
belonging to the top 300–1000 words will be roughly similar.
This makes it increasingly likely that large numbers of bits
will be grouped together in the first phase of our attack,
and increasingly likely that Algorithm 1 will fail to find the
unique documents it needs in order to identify the groups of
bits for individual keywords.

Word p Pr[bit b = 1]
Rank q = q0 q = 0.5 q = 0.7 q = 0.9

1 0.540 0.540 0.770 0.862 0.954
10 0.311 0.311 0.656 0.793 0.931
50 0.135 0.135 0.568 0.741 0.914
100 0.094 0.094 0.547 0.728 0.909
200 0.062 0.062 0.531 0.719 0.906
300 0.048 0.048 0.524 0.714 0.905
400 0.039 0.039 0.520 0.712 0.904
500 0.034 0.034 0.517 0.710 0.903
600 0.029 0.029 0.515 0.709 0.903
700 0.026 0.026 0.513 0.708 0.903
800 0.023 0.023 0.512 0.707 0.902
900 0.021 0.021 0.511 0.706 0.902
1000 0.019 0.019 0.510 0.706 0.902

Table 2: Impact of Bloom filter parameters on bit
frequency; Parameters from [22] give q0 = 6.01x10−5.

We caution the reader that these results do not in any
way constitute a proof of security, and it is possible that new

attacks might still be devised against the improved Bloom
filter parameters. Also, the analysis above depends on a
few critical simplifying assumptions that do not necessarily
hold in practice. First, the equations from [8] assume that
the words in the documents are uniformly random; this is
certainly not true for natural language texts. Second, our
simplified analysis here assumes that all documents contain
the same number of words; this is also untrue for any non-
trivial text corpus. These complications make further anal-
ysis more difficult and beyond the scope of this paper. For
the present time, we urge continued caution with systems
that rely on Bloom filters for encrypted search.

7. CONCLUSIONS AND FUTURE WORK
We presented new inference attacks on two recent schemes

for efficiently deployable, efficiently searchable encryption.
Unlike earlier attacks, ours do not require special knowl-
edge of the documents in the target encrypted corpus. Our
analysis of Bloom filters in Mimesis Aegis illustrates the
importance of Bloom filters on the security of the system.
We believe our attack would also be effective against other
searchable encryption schemes that rely on Bloom filters,
such as the SADS anonymous encrypted database [26]. This
validates the SADS author’s decision to use different hash
functions for each document in a later version of the sys-
tem [25]. Similarly, Goh [14] briefly discusses the possibility
of using Mimesis-style tags for efficient searchability. Our
results also validate his decision to apply a second layer of
protection to his Bloom filters before uploading them to the
untrusted server.

Although we have shown that careful tuning of the BF
parameters breaks the attacks presented here, we do not yet
have a proof that this defense will be effective against all
such attacks. In future work, we will provide a more formal
analysis of the security that is possible for EDESE schemes
using various defenses.
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