
POSTER: Efficient Cross-User Chunk-Level Client-Side
Data Deduplication with Symmetrically Encrypted

Two-Party Interactions

Chia-Mu Yu (chiamuyu@nchu.edu.tw)
Department of Computer Science and Engineering, National Chung Hsing University, Taiwan

ABSTRACT
Data deduplication has been widely used in cloud storage to reduce
the amount of storage space and save bandwidth. Unfortunately,
as an increasing number of sensitive data are stored remotely, the
encryption, the simplest way for data privacy, is not compatible
with data deduplication. Here, we propose an encrypted dedupli-
cation scheme, XDedup, based on Merkle puzzle. To the best of
our knowledge, XDedup is the first brute-force resilient encrypted
deduplication with only symmetrically cryptographic two-party in-
teractions. XDedup also achieves perfect deduplication.

1. INTRODUCTION

1.1 Privacy Concerns in Data Deduplication
Data deduplication, aiming to avoid storing the identical file twice,

is an essential technique widely used in cloud storage providers
(CSPs) (e.g., Dropbox). The use of data deduplication may achieve
up to 90% storage savings. In particular, according to the extent of
the deduplication effectiveness and overhead reduction, cross-user
chunk-level client-side deduplication acts as the most aggressive
technique in eliminating the redundant transmitted and stored data.

The implementation of data deduplication is, in fact, straightfor-
ward; for a chunk f to be uploaded, the user first calculates and
sends the hash h(f) to the cloud, where h(·) denotes the crypto-
graphic hash function (e.g., SHA256). Once the cloud finds a copy
of h(f) in the memory (i.e., file existence), the user has no need
to upload f again. Otherwise, the user simply uploads f and the
cloud keeps h(f) in the memory for duplicate checks in the future.

Unfortunately, since more and more sensitive data are uploaded
to the cloud storage, one may have a privacy concern that the cloud
will be benefited by looking at the user’s private data. Encrypting
the data before uploading it might be a solution for the privacy leak-
age, but the encryptions of the identical file from independent users
result in different ciphertexts, losing the storage and bandwidth ad-
vantages of data deduplication. As a consequence, in this paper, we
put the particular emphasis on the development of a cloud storage
with the reconciliation of the encryption and data deduplication.

1.2 Related Work

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS’16 October 24-28, 2016, Vienna, Austria

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2989047

Convergent Encryption. Convergent encryption (CE) is the
simplest way for tackling the privacy concern without compromis-
ing the deduplication effectiveness. In particular, with the hash
h(f) as convergent key, the user calculates and uploads Eh(f)(f),
where Ek(·) denotes the symmetric encryption with key k. Since
users with f are all able to derive the same h(f) and Eh(f)(f), the
deduplication still takes place on Eh(f)(f). CE can be generalized
as message-locked encryption (MLE), which achieves remarkable
speedup in the encryption calculation.

Encrypted Deduplication with Independent Servers. Despite
their simplicity, CE and MLE suffer from the brute-force attack,
particularly in the case of low min-entropy files (i.e., predictable
files). In real world, the files usually have low min-entropy and
therefore potential predictability, because of the prior knowledge
such as document format. Since the key space in CE is identical to
the plaintext space, the low min-entropy characteristic leads to the
possibility of brute-force.

To counter against the brute-force attack, based on the idea of
additional randomness, Bellare and Keelveedhi present DupLESS
[1], where an additional key server KS is introduced to assist the
key generation. More specifically, before uploading f , the user ci
and KS jointly compute a content-dependent key kf for f by using
oblivious pseudorandom function (OPRF) with the guarantee that
no one, except for ci, can derive kf . After that, kf is used for the
calculation of the deduplicatable Ekf (f).

Encrypted Deduplication w/o Independent Servers. Albeit
key server helps generate kf for users, DupLESS and the follow-
up solutions still find useless in the real world because the indepen-
dent server has to be run by the third party. Encrypt-with-Signature
(EwS) [2] claims to eliminate the need for a key server. Nonethe-
less, the dealers in EwS serve as the similar role of key server [4].
Very recently, Liu et al. [3] propose PAKEDedup based on a client-
as-a-key-server (CaS) framework to dedeuplicate encrypted data
by using password authenticated key agreement (PAKE) and par-
tially homomorphic encryption (PHE). In essence, the independent
server with additional secret is still necessary in PAKEDedup for
generating kf ’s; however, all of the users in CaS framework are po-
tential key servers that check the chunk hash consistency via PAKE
and exchange the chunk key via PHE.

1.3 Design Challenges
Existing solutions are all subject to certain performance, secu-

rity, and applicability limitations.
Brute-Force Resiliency (L1). CE, MLE, and their variants all

involve the uploading of h(f) and Eh(f)(f). Nevertheless, real
world applications usually generate low min-entropy contents f ,
making the offline brute-force attack easy to find out f .

1763

Table 1: COMPARISONS AMONG SOLUTIONS

Methods (L1) (L2) (L3) (L4) (L5)
CE and MLE − X X X X
DupLESS [1] X − − X X

EwS [2] X − − X X
PAKEDedup [3] X X − X −

XDedup (this paper) X X X X X

Independent Server Assumption (L2). In spite of the differ-
ences in their functionalities, most of previous solutions assume
the use of independent servers. Note that the compromise of those
independent servers usually will not lead to the crash down of the
system, but unfortunately the security guarantee will degrade to
the level of CE. Furthermore, the adversary is able to launch on-
line brute-force attack, aiming to recover the matching ciphertext
by repeatedly querying servers. Lastly, the most critical weakness
of independent servers is the impracticality of running independent
servers without business justification [3].

Complicated Computation and Architecture (L3). Some of
the current methods involve complicated arithmetics or architec-
tures. The corresponding performance drawback even has adverse
impact on the deduplication granularity and effectiveness. In fact,
the fine-grained chunk-level duplicate checks will bring too much
computation burden at both user and server sides if intensive com-
puting tasks need to be accomplished.

Heuristic Parameter Setting (L4). For some heuristic approaches,
choosing an explicit threshold by using file popularity, file sizes,
and user privileges to differentiate the data sensitivity would be
difficult. Moreover, heuristic approaches also have restriction on
application scenarios.

Additional Privacy Leakage (L5). In the CaS framework, on-
line user status needs to be exposed to either cloud or even the
public, depending on protocol design. However, in either case, the
privacy of user behavior is sacrificed for data privacy.

2. XDEDUP
CaS framework is helpful in eliminating the need of independent

servers. Nevertheless, we find three drawbacks under CaS frame-
work. First, the online user status will be exposed, reducing users’
willingness in using the cloud storage services. Second, a tremen-
dous amount of communications and computation efforts are re-
quired for the uploader and matching users to determine whether
they share the same h(f). Third, each user needs to keep chunk
hash h(f) and chunk key kf for each f uploaded by herself, im-
posing unnecessary overhead.

Aiming to tackle these problems, we propose XDedup as the
first brute-force resilient symmetrically encrypted data deduplica-
tion involving only the uploader ci and cloud S. In particular, XD-
edup goes back to the simplest scenario, where the uploading and
downloading of f rely solely on the interactions between ci and S.
A comparison among different schemes is shown in Table 1.

2.1 Detailed Description of XDedup
In XDedup (see Fig. 1), S is assumed to maintain an extended

lookup table L+. L+ is indexed by sh(f) and contains more infor-
mation (e.g., hh(f)(r), Eh(f)(r), Eh(f)(kf)) for duplicate checks
via Merkle puzzle and key exchange.

The setting is an uploader ci attempting to upload a low min-
entropy chunk f . This ci has access to h(f) and truncated hash

Offline Setting:
S maintains a lookup table L+

Online Execution:
01 ci → S : sh(f)
02 if L+(sh(f)) = ∅ (case 1)
03 ci picks a random key kf and a random value r
04 ci → S : hh(f)(r), Eh(f)(r), and Eh(f)(kf)
05 L+ = L+ ∪ [sh(f), 〈hh(f)(r), Eh(f)(r), Eh(f)(kf)〉]
06 ci → S : Ekf (f) and Eki(kf)
07 else (case 2)
08 S → ci : {Eh(fj)(rj)}E

h(fj)
(rj)∈L+(sh(f))[2]

09 ci → S : {hh(f)(Dh(f)(Eh(fj)(rj)))}
10 if ∃π s.t. hh(fπ)(rπ) = hh(f)(Dh(f)(Eh(fπ)(rπ)))
11 S → ci : Eh(fπ)(kπf)
12 ci obtains kf by calculating Dh(f)(Eh(fj)(kπf)))
13 ci → S : Eki(kf)
14 else
15 ci picks a random key kf and a random value r
16 ci → S : hh(f)(r), Eh(f)(r), and Eh(f)(kf)
17 L+ = L+ ∪ [sh(f), hh(f)(r), Eh(f)(r), Eh(f)(kf)]
18 ci → S : Ekf (f) and Eki(kf)

Figure 1: The protocol description of XDedup.

(also called short hash) sh(f). Short hash sh(f) can be imple-
mented by keeping only partial bits of h(f) and has high collision
rate so that the adversary cannot be confident that it is the specific
f that implies sh(f), mitigating the brute-force threat.

In XDedup, after receiving sh(f) from ci, S looks for a match
in L+ (case 1 of Fig. 1). The case of L+(sh(f)) = ∅, where
L+(sh(f)) returns a set of 3-tuples of the form

[hh(f)(r), Eh(f)(r), Eh(f)(kf)],

and L+(sh(f))[i] denotes the ith element of L+(sh(f)), implies
that no Ekf (f) corresponding to sh(f) has been uploaded previ-
ously. Thus, ci simply picks a random chunk key kf to encrypt f
and uses ki to encrypt kf . Subsequently, ci uploads Ekf (f) and
Eki(kf), and the necessary materials such as hh(f)(r), Eh(f)(r),
Eh(f)(kf) to S. Here, the former two items hh(f)(r) and Eh(f)(r)
are particularly for Merkle puzzle used to make sure whether ci
has the same f , while the last item Eh(f)(kf) is used to make sure
ci with f can derive kf . The conceptual illustration of case 1 of
XDedup is shown in Fig. 2a.

(a) XDedup (negative response). (b) XDedup (positive response).

Figure 2: Our proposed XDedup solution.

Consider the case of L+(sh(f)) 6= ∅, where S can find at least
one match of sh(f) in L+ (case 2 of Fig. 1). S extracts and
sends all of the ciphertexts Eh(fj)(rj)’s from L+(sh(f))[2] to ci,
where f j denotes the jth possibility of f with the same sh(f) and
rj is a random number for f j . For each received Merkle chal-
lenge, ci performs the decryption and then hash calculation, both

1764

with h(f) as the key. After that, ci replies Merkle responses to S.
Once S finds the consistency between the received Merkle response
hh(f)(Dh(f)(Eh(fj)(rj))) and the Merkle response hh(fj)(r

j) kept
in the memory, S has confidence that the deduplication can take
place on Ekf (f). If so, S sends Eh(f)(kf) to ci, which then de-
crypts to derive kf and uploads Ekf (f) to S. Otherwise, this is
equivalent to the case, where all of Ekf (f)’s in S happen to have
short hash sh(f) and no one uploads Ekf (f) previously. Hence,
ci uploads Ekf (f) as in case 1. The conceptual illustration of case
2 of XDedup is shown in Fig. 2b. It is worthy to note that XD-
edup achieves perfect deduplication because ci with f can always
receive Eh(f)(r) and the duplicate can always be detected.

2.2 Performance Evaluation of XDedup
We consider the scenario, where ci uploads a random distinct

chunk to S for evaluating the expected performance.
Deduplication Percentage DXDedup. The occupied spaces in dif-

ferent cases of the uploading behaviors in XDedup are shown in
Fig. 3a. In particular, we can see from Figs. 1 and 3a that if
Ekf (f) /∈ S, ci needs to send Ekf (f) to S, while if Ekf (f) ∈
S, the uploading of Ekf (f) can always be omitted. As a result,
DXDedup can be formulated as

DXDedup = 1− 1

`f/(((1− p•)(`f + `k)))
. (1)

Chunk not
in cloud

Chunk
in cloud

0

lf+lk

(a) DXDedup in XDedup.

Chunk not
in cloud

Chunk
in cloud

sh(f) not
in cloud

sh(f)
in cloud

lr+lr+lk+lf+lk

(lr+lr)|L
+(sh(f)∩U)[2]|

+2lr+lk+lf+lk

(lr+lr)|L
+(sh(f)∩U)[2]|+lk+lk

(b) TXDedup in XDedup.

Figure 3: Overhead calculation in XDedup.

Memory overhead MXDedup. Since Ekf (f) and Eki(kf) are nec-
essary among all of the solutions, we do not consider them as
overhead. In this sense, the memory overhead at the server side,
MS

XDedup = |L+| only. On the other hand, since only ci com-
municates with S, ci does not keep information after finishing the
uploading. Hence, we claim that the memory overhead at the user
side, Mc

SP, is zero.
Communication overhead TXDedup. The numbers of bits required

in the message exchanges of XDedup are shown in Fig. 3b. One
can see from Figs. 1 and 3b that in the case of L(sh(f)) = ∅, ci
has to spend (2`r +2`k + `f) bits to upload Ekf (f), Eki(kf), and
the required information in L+. In contrast, given L(sh(f)) 6= ∅,
as |L+(sh(f))[2]|Merkle puzzles are inevitably needed, the exact
number of bits required in the communication depends on whether
the chunk is in S. Here, to ease the calculation, we still assume
Pr[L(sh(f)) 6= ∅|f /∈ S] = 1 and Pr[L(sh(f)) = ∅|f /∈ S] =
0. The communication overhead TSP of SP can be approximated
as

TXDedup = p•((`r + `r)|L+(sh(f))[2]|+ `k + `k)

+ (1− p•)((`r + `r)|L+(sh(f))[2]|+ 2`r + 2`k + `f). (2)

2.3 Implementation Issues

2.3.1 Online Brute-Force Resiliency
The online brute-force vulnerability is due to the nature of the

deduplicated storage in the sense that the adversary can always

know the duplicate check result and then infer the sensitive content
by repeatedly making queries on candidate chunks. We adopt two
heuristic approaches to counteract the online brute-force attack.

Rate limiting. The rate limiting approach has been used by [1,3]
to resist online brute-force attack. In particular, we consider per-
file rate limiting [3] and adapt it to be per-chunk rate limiting and
fit in our context. The rationale behind the design is to ensure that
the uncertainty of a predictable chunk is larger than the number of
duplicate checks applied on the potential online users. Let RLa,
RLi, and RLS be the rate limits for {ca}, ci, and S, respectively.
Let m and x be the min-entropy of f and the number of users who
potentially possess f , respectively. The above notion cab be instan-
tiated as the constraints 2m > 2`shx(RLi +RLa) in SDedup and
2m > 2`sh(RLi+RLS) in XDedup. Despite its online brute-force
resiliency, such a defense actually sacrifices the deduplication ef-
fectiveness. This can be attributed to the fact that the uploading of
a highly popular chunk may easily exceed the rate limit, resulting
in the un-deduplicatable chunk.

User Unawareness of duplicate check result. We find that the
online brute-force stems from the duplicate result awareness of the
uploader ci. Thus, once the deduplication system is designed such
that ci is unaware of duplicate result result, one can avoid the online
brute-force attack. We also find that the side channel prevention in
deduplicated storage and our brute-force resiliency design actually
share the same objective. Thus, the existing solutions in side chan-
nel prevention, where each chunk f is associated a random dedu-
plication threshold tf and a counter cf that indicates the number of
copies in S, can be used in XDedup to enhance online brute-force
resiliency. Specifically, for the uploading request of f , a duplicate
is detected if cf ≥ tf and is undetected otherwise. The use of tf ’s,
to some extent, obfuscates the duplicate result. Nevertheless, this
approach shares similar downside with rate limiting; in the case
of cf < tf , actually this approach resist the online brute-force by
sacrificing dedeuplication effectiveness.

2.3.2 Overhead Reduction via Rate Limiting
The uploader ci in PAKEDedup, in theory, needs to communi-

cate with a large number of ca’s to derive kf . Nevertheless, in
practice, via simulations, Liu et al. [3] demonstrate that only a few
(e.g., two) PAKE runs suffice to derive kf with high probability.
Thus, rate limiting constraint can be strict. The reason behind the
surprising result is that the real world data usually follows power
law distribution (a.k.a., Zipf distribution) such that most of the up-
loading requests for files that have already been uploaded can find
a matched file within the rate limit. The performance of XDedup
can also be benefited by taking advantage of Zipf data distribution.
In particular, in XDedup, we inherently assume that all of Merkle
challenges are sent to ci at once. Now, S in XDedup instead sends
Merkle challenges to ci based on descending order of chunk pop-
ularity. Since chunk popularity is Zipf distributed, sending Merkle
challenges in this way ensures that popular uploaded chunks have
a much higher likelihood of being selected and thus deduplicated,
achieving the same benefit of overhead reduction.

3. REFERENCES
[1] M. Bellare and S. Keelveedhi. DupLESS server-aided encryption for

deduplicated storage. USENIX Security Symposium, 2013.
[2] Y. Duan. Distributed key generation for encrypted deduplication: Achieving

the strongest privacy. ACM CCSW, 2014.
[3] J. Liu, N. Asokan, and B. Pinkas. Secure deduplication of encrypted data

without additional independent servers. ACM CCS, 2015.

[4] Y. Zheng, X. Yuan, X. Wang, J. Jiang, C. Wang, and X. Gui. Enabling
encrypted cloud media center with secure deduplication. ACM ASIACCS,
2015.

1765

