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ABSTRACT
Most existing cloud storage providers rely on data dedupli-
cation in order to significantly save storage costs by storing
duplicate data only once. While the literature has thoroughly
analyzed client-side information leakage associated with the
use of data deduplication techniques in the cloud, no previ-
ous work has analyzed the information leakage associated
with access trace information (e.g., object size and timing)
that are available whenever a client uploads a file to a curious
cloud provider.

In this paper, we address this problem and analyze infor-
mation leakage associated with data deduplication on a curi-
ous storage server. We show that even if the data is encrypted
using a key not known by the storage server, the latter can
still acquire considerable information about the stored files
and even determine which files are stored. We validate our
results both analytically and experimentally using a number
of real storage datasets.

1. INTRODUCTION
With the ever increasing amount of data produced world-

wide, the cloud offers a cheaper and more reliable alternative
to local storage. Existing cloud service providers such as
Amazon S3, Microsoft Azure, or Dropbox guarantee a good
trade-off between quality of service and cost effectiveness.
The cloud has also gained many clients among SMEs and
large businesses that are mainly interested in storing large
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amounts of data while minimizing the costs of both storage
and infrastructure management/maintenance.

Existing cloud solutions store duplicate data uploaded by
different users only once—thus saving storage costs. Recent
studies show that cross-user data deduplication can reduce
storage costs by more than 40% in standard file systems and
by up to 83% in back-up applications [15].

The literature features a number of proposals for secur-
ing data deduplication (e.g., [1, 3, 6, 17, 18, 20, 21]) in the
cloud. All these proposals share the goal of enabling cloud
providers to deduplicate encrypted data stored by their users.
Such solutions allow clients to reduce storage costs, while
they ensure confidentiality of the stored data. These works,
however, do not consider the information leakage incurred
by the access traces. We assume that each entry in an access
trace contains a timestamp, an object ID, and the object size.

Previous work has analyzed client-side information leak-
age associated with data deduplication. For example, Harnik
et al. [10] describe how a malicious client can learn whether
a file is already stored on a particular cloud by guessing pre-
dictable content hashes. This leakage can be countered us-
ing Proof of Ownership (PoW) schemes [5,9], which enable
clients to prove possession of a file. However, PoW can only
prevent information leakage towards malicious clients, and
not towards the storage provider itself (since the provider is
the one checking the PoW). To the best of our knowledge,
no prior work has analyzed the information leakage associ-
ated with the access traces that are available to the service
provider.

In this paper, we analyze the information leaked to a cu-
rious storage provider by systems that perform client-side
deduplication and encryption. We assume that the underly-
ing client-side encryption is secure, and we show that the
storage provider can still acquire considerable information
about the stored files without knowledge of the encryption
key. Our results show that data deduplication offers a strong
distinguisher for a curious storage server to determine which
files are stored. We confirm our analysis by means of thor-
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ough experiments using real datasets approximately amount-
ing to 13.5 TiB of data. Finally, we discuss the solution
space to minimize information leakage associated with ex-
isting data deduplication techniques. Our work therefore
lays the foundations for quantifying the trade-off between
security and storage-efficiency associated with various data
deduplication techniques.

Our contributions in this paper are summarized as follows:
• We analyze and quantify the information leakage to a

curious storage server due to data deduplication. Our
results show that popular content-based chunking meth-
ods offer clear distinguishers for stored content, even
when such content is securely encrypted. In partic-
ular, a curious storage provider can probabilistically
determine the absence and presence of stored files by
observing the size of deduplicated content. Although
such leakage is also witnessed in fixed-sized block-
based and file-based deduplication, we show that the
prediction of a curious storage provider is more accu-
rate for content-defined chunking (CDC)-based dedu-
plication.
• We validate our analysis by means of experiments us-

ing real datasets. We extract two novel datasets from
storage servers of an industrial research lab and a uni-
versity. Our results show that existing CDC-based dedu-
plication schemes leak information by up to 54%.
• We explore the solution space to limit information leak-

age associated with existing block-based data dedupli-
cation techniques. Our findings suggest that little can
be done to prevent leakage due to CDC-based schemes.
In this respect, we show that fixed-sized block-based
deduplication technologies establish a solid trade-off
between the achieved privacy and the storage-efficiency
performance.

The remainder of the paper is organized as follows. In
Section 2, we briefly overview existing data deduplication
techniques. In Section 3, we describe our model and present
our privacy metrics. In Section 4, we analyze information
leakage due to existing data deduplication techniques. In
Section 5, we validate our analysis by means of evaluation
using real datasets. In Section 6, we discuss further insights
with respect to our analysis and explore the solution space
to minimize information leakage due to data deduplication.
In Section 7, we overview related work in the area, and we
conclude the paper in Section 8.

2. BACKGROUND
Deduplication techniques mostly fall into two broad cat-

egories: file-based and block-based techniques [16]. All
existing techniques, however, rely on indexing in order to
identify already deduplicated content and to reconstruct the
original files. As we discuss in this section, the indexing
overhead greatly varies depending on the underlying dedu-
plication technique.

In order to explain the differences amongst the dedupli-
cation techniques considered in this paper, we rely in the
sequel on a running example with 5 files F1, .., F5, as de-
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Figure 1: Different deduplication techniques demonstrated
for five example files F1.., F5. The original storage layout
is depicted in 1a. Figures 1b - 1d show the deduplicated
storage including the stored data objects and the indices for
the different techniques.

picted in Figure 1. Files F1 and F2 are identical, F3 extends
F1 with a prepended byte (each byte of the files in Figure 1
is depicted by a character), F4 extends F1 with a few ap-
pended bytes, and finally F5 is identical to F1 in all but the
last byte. For the deduplicated storages in Figures 1b - 1d,
we depict the stored data objects on the left and the indices
used to reconstruct files from the objects on the right.

2.1 File-based Deduplication
File-based deduplication only deduplicates identical files.

Deciding whether two files are identical is usually achieved
by hashing the contents of each file and comparing the re-
sults. In the example of Figure 1b, F1 is actually stored,
while F2 is deduplicated and simply a pointer to F1 is main-
tained (instead of storing the whole F2). File-based dedu-
plication requires modest computational and indexing over-
head. The main drawback of file-based deduplication is that
it does not result in any storage savings if two files differ
even in a single bit (since the resulting hash would be differ-
ent). For example, in Figure 1b, F3, F4 and F5 are all stored,
even though they share a large amount of content with F1.

2.2 Block-based Deduplication
Block-based deduplication chunks a file into blocks and

deduplicates any two blocks with identical content. This
technique enables fine-grained deduplication and overcomes
the drawbacks of file-based deduplication.

The simplest chunking algorithm splits a file in blocks of
fixed size. Fixed block-size chunking can efficiently dedu-
plicate files that only differ in one or a few blocks. In Fig-
ure 1c, only the blocks of F4 and F5 that differ from the ones
of F1 are stored; blocks in common with F1 are referenced
to with a pointer. Small block sizes may increase the storage
savings (since the probability that two blocks are identical
increases)—this however comes at the expenses of larger in-
dexes. Previous work has shown that block sizes of 4 to
8 KiB yield the best storage savings taking into account the
savings for deduplication and the size of the index [14, 15].

Fixed block-size chunking, however, fails to effectively
deduplicate even slightly “shifted” content. For instance, in
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Figure 2: Content-defined chunking (CDC) is used to pro-
duce variable-sized blocks, well-suited for deduplication.
In CDC, a sliding window is moved over a file and block
boundaries are inserted depending on the computed finger-
prints.

Figure 1c all blocks of F3 are stored because they are all
different from the ones of F1, even thought F3 has the same
content of F1 with a prepended byte. This shortcoming can
be effectively addressed by content-defined chunking (CDC)
algorithms.

CDC produces variable-sized blocks by processing files
with a sliding window with one-byte steps. At each offset,
CDC computes a fingerprint of the content in the window
and inserts a block boundary at the end of the window if the
fingerprint matches a pre-defined value; if a block boundary
is inserted at byte i, the new windows starts at byte i+1. This
procedure is depicted in Figure 2 where only the first block
of F3 that contains the prepended byte, has to be stored. The
remaining blocks can just be referenced with a pointer to the
stored blocks of F1.

Popular functions for CDC algorithms consist of rolling
checksums, e.g., based on Rabin fingerprints [14, 16, 19].
Rolling checksums allow the efficient computation of check-
sums based on a sliding window, as the checksum of the cur-
rent window can be efficiently computed using the checksum
of the previous window. For example, Rabin Fingerprints
use a window of n bits (a1, ..., an), ai ∈ Z2 as coefficients
of the polynomial p(x) = a1 ∗ xn−1 + ...+ an. The finger-
print is then defined as r(x) = p(x) mod q(x), where q(x)
is an irreducible polynomial. CDC places a boundary at the
end of the current window, if the last l bits of r(x) match
the last l bits of a pre-defined constant. Tuning the value
of l allows for controlling the expected block size (a small
l leads to more matches and smaller blocks, while a large
l features less matches and hence larger blocks). The fin-
gerprint for the current window can be efficiently computed
by “subtracting” the first byte of the previous window and
“adding” the last byte of the current window. CDC usually
defines a minimum and a maximum block size in order to
avoid very small or very large blocks [7].

As shown in Figure 1c, CDC successfully deduplicates
most of the blocks of F3.

2.3 Deduplication over Encrypted Data
Since data is often outsourced to the cloud, (client-side)

encryption is clearly desirable to protect data confidentiality
with respect to third parties and a curious storage server.

Clearly, encryption comes at odds with deduplication; en-
crypting two identical files (or blocks) with a semantically
secure cipher, leads to two different ciphertexts with over-

whelming probability. Deterministic encryption only helps
in a single-client scenario where the client uses the same
encryption key to encrypt any of his files before uploading
them to the storage server. However, the largest savings of
deduplication typically originate from cross-user deduplica-
tion, i.e., when files from different users are deduplicated.

One approach to enable cross-user deduplication over en-
crypted data is to ensure that whenever a given file (or block)
is encrypted by any user, the same encryption key is used, so
that the output ciphertext is always the same. This approach
is taken by Message-locked Encryption (MLE) [4] and its
most prominent instantiation being Convergent Encryption
(CE) [6]. A CE encryption scheme uses deterministic sym-
metric encryption and sets the encryption key for a file to be
the hash of the file content. Therefore, the encryption of a
given file always results in the same ciphertext. However,
CE is vulnerable to off-line dictionary attacks. In particular,
the adversary can “guess” the file content, CE-encrypt it, and
match the computed ciphertext against the stored one [10].
If CE is used in a block-based deduplication system, a guess-
ing attack can be mounted against single file blocks.

To mitigate a guessing attack against CE, systems like
DupLESS and ClearBox [1, 3] use a semi-trusted key server
as a third party. Here, clients engage in an oblivious proto-
col with the key server to generate encryption keys for their
files. The protocol ensures that the key server does not learn
the content submitted by a client, while enabling any two
clients that have identical files to receive the same encryp-
tion key. The key server makes guessing attacks impractical
as it introduces rate limitation. As long as the key server is
not compromised, DupLESS and ClearBox provide seman-
tic security for the encrypted data; in case the key server is
compromised, the security provided by these schemes falls
back to that of CE.

Notice that Dupless and ClearBox assume file-based dedu-
plication but could easily be adapted to work with block-
based deduplication. Clearly, if block-based deduplication
techniques are employed, chunking must be applied before
encryption. If encryption would precede chunking, slightly
modified files would result in largely different ciphertexts.
Given two such ciphertexts as input, the chunking algorithms
will not likely find shared content to deduplicate.

3. MODEL
In this section, we introduce our system and threat model,

our storage graph model, and our privacy metrics.

3.1 System Model
In the sequel, we use the term object to refer to the unit

of deduplication. For instance, in file-based deduplication,
objects correspond to whole files; in case of block-based
deduplication, objects refer to blocks output by the chunk-
ing algorithm.

Similar to [1, 3], we assume a storage server S and a
number of clients. We assume that the chunking/encryption
operations are performed at the client. Indeed, client-side
deduplication is widely used amongst cloud storage services,
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Figure 3: Our system model. We assume that the clients
perform chunking, intra-file deduplication, and encryption
before uploading the contents to S . We assume the use of
strong encryption keys that are kept secret from S. There-
fore, the adversary A can only observe ciphertexts and their
sizes.

such as Dropbox, since it results in considerable bandwidth
savings. We also note that client-side deduplication reduces
information leakage towards the server when compared to
the case where the server orchestrates deduplication; for ex-
ample, the server does not learn about redundant blocks con-
tained in a single file. Recall that in client-side deduplication
systems, the storage server does not perform data chunking
and is not equipped with the necessary keys to encrypt/de-
crypt file objects. This abides by the end-to-end security
argument in which the encryption keys are retained by the
clients.

As shown in Figure 3, we assume that a client initially
chunks the file contents according to a system-wide chunk-
ing algorithm; if file-based deduplication is configured, no
chunking is required. Next, the client encrypts the result-
ing objects using a secure block cipher and a secret key, and
uploads the corresponding ciphertexts to the cloud storage
server S. Here, we assume that the utilized encryption func-
tion is length-preserving.

Similar to DupLESS or ClearBox [1, 3], the encryption
key can be generated using the help of a key server (which is
independent of the storage server). We also assume that file
metadata, such as filenames, are not visible to S (e.g., the
filenames are also encrypted).

3.2 Threat Model
We consider an adversary (denoted byA) that is interested

in learning whether a given plaintext file is stored at S . For
instance, the adversary could be a state agency that is inter-
ested in checking whether a given copyrighted document is
stored in the cloud. A can acquire the access traces of S
(e.g., through compromise, coercion, subpoena power). We
assume that entries in such an access trace contain a times-
tamp, the object ID, and the object size. By leveraging the
access traces,A can try to identify which objects form a file1

(e.g., by correlating timestamps).
As mentioned earlier, we further assume that all stored

contents are encrypted, the encryption keys are unknown
to A and cannot be guessed by the latter. We further as-
1This information can be alternatively acquired by compro-
mising the storage index that is maintained by S.

F1,2

F3

F4

F5

Size: 2

Size: 5

Size: 2

Size: 3

Size: 3

Size: 2

File Nodes Data Nodes

Figure 4: The Storage GraphGmodels the observable struc-
ture of S. To createG, we deduplicate the files F1.., F5 from
Figure 1 using CDC-based deduplication. Note that S can-
not distinguish F1 and F2. Therefore S only observes four
files. The data vertices inG are connected to the file vertices
they belong to.

sume that A is computationally bounded and, as such, can-
not break secure encryption functions. Finally, we assume
that the clients do not collude with the adversary. Notice
that a malicious client could trivially check whether certain
files have been stored on S by uploading these files and ob-
serving the changes on S [10].

To summarize, we consider the “ideal” setting for secure
deduplication storage systems, where the storage server can-
not guess or acquire the encryption keys, and can only ob-
serve limited information (such as objects size and times-
tamp or storage indexes) which is revelead whenever clients
upload contents to the cloud. We show that, even in such
settings, data deduplication leaks considerable information
about the stored contents.

3.3 Storage Graph
We model any file f as a tree T (f). Each leaf node rep-

resents an object of f as output by the chunking algorithm;
in case of file-based deduplication, the chunking algorithm
outputs only one object. Leaf nodes also have an attribute
size that is set to the size of the corresponding object. All
leaves of a file are connected to a common root node.

The set of files on S is modeled with a graph G = (V,E)
populated with the trees of the stored files; as it will become
clear, trees added to G may share some leaves.
G is initially empty and trees are added as follows when-

ever a new file f is stored. If f can be entirely deduplicated,
we leave G unchanged. Otherwise, we create a new tree
T (f), initially comprising only the root node. The leaves of
T (f) depend on which objects of f can be deduplicated and
which must be actually stored on S. If an object of f cannot
be deduplicated, a new leaf node is created and linked to the
root of T (f). If an object of f can be deduplicated, i.e., it is
identical to an object already stored on S, the root of T (f) is
connected to the node of G that represents the stored object.

Given the above model, each root node of G is connected
to exactly one leaf node in case of file-based deduplication.
In case of block-based deduplication, each root is connected
to at least one leaf node. If files are chunked in blocks using
a fixed block-size, most leaves have the same size (since only
the last block of a file may have a size smaller than the block-
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size parameter); if chunking is based on file content, leaves
may have different sizes, as seen in Figure 4.

Notice that G is built by examining at the access traces of
the storage server, without the need to learn the contents of
the stored files. Therefore,G can be built even if the contents
are encrypted with unknown keys. We also point out that G
is a bipartite graph where the set of nodes is partitioned into
file nodes and object nodes.

3.4 Anonymity and Candidate Sets
For any file f , we denote its deduplication fingerprint by

T (f). Given two files f , f ′, we say that they have the same
deduplication fingerprint if T (f) is a valid isomorphism of
T (f ′). An isomorphism between the two trees is valid if
it preserves nodes, edges, and the sizes of the leaves. For
example, the deduplication fingerprint of file F1 in Figure 4
is the subtree ofGwith nodes F1,2, Size: 2, Size: 5 and Size:
2, since the file comprises three chunks of sizes 2, 5, and
2, respectively. We stress that a deduplication fingerprint,
cannot be used to uniquely identify files or objects (unlike
cryptographic hashes) since it only contains sizes (and not
file IDs); in our example, files F1, F2 and F5 share the same
deduplication fingerprint but not the content.

The anonymity set of f is the set of all possible files that
have the same deduplication fingerprint as f . Clearly, “the
set of all possible files” is application-dependent and, in the
worst case, amounts to all binary strings of a given length.

Similarly, the candidate set of f inG (denoted asC(f,G))
is the set of files stored on S— and hence represented inG—
that have the same deduplication fingerprint as f .

In order to compute C(f,G), we proceed as follows. We
start with C(f,G) = ∅. We go through each root node of
G, identify its tree T (f ′), and check if the deduplication fin-
gerprint of f ′ is equal to the one of f . In this case, we add
f ′ to C(f,G) and remove T (f ′) from G before moving to
the next root node. Notice that leaf nodes of T (f ′) that be-
long to other trees are not removed. If T (f ′) is not a valid
isomorphism of T (f), we keep moving to the next root node
until all root nodes have been examined.

If f ′ ∈ C(f,G), then we say that f ′ is a candidate for
f . In case f ′ 6= f , we say that we have a deduplication
fingerprint collision.

Notice, that A can construct the storage graph G, find
deduplication fingerprints for stored files and thereby com-
pute the candidate set C(f,G) for any file f on S. None of
these actions require knowledge of the encryption key.

Where appropriate, we additionally consider the probabil-
ity that f is stored on S—which we denote by Probability of
Storage (PoS). Namely, PoS quantifies the probability that at
least one of the stored candidates indeed corresponds to f .

4. STORAGE INFERENCE
In this section, we proceed with analyzing the probability

that a target file f is stored on S given the storage graph G.

4.1 File Absence
We start with the following observation. If candidate set

C(f,G) = ∅, the adversary is certain that f is not stored on

G: Storage Graph of S

X: Set of Files on S

D: Deduplication
Algorithm

Bayesian
Inference

Figure 5: We model the storage process as a Bayesian Net-
work. P (X,G,D) = P (G|X,D) · P (X) · P (D)

S. This is due to the fact that if f would have been stored,
the storage graph G would contain at least one valid isomor-
phism for T (f).

Clearly, f might have been compressed or encoded before
being uploaded to the cloud. However, compression and en-
coding are public functions and therefore we assume that the
adversary is aware of this transformation.

Checking for file absence can have serious implications
on existing outsourced storage systems that rely on dedupli-
cation. For instance, if an enterprise is required by law to
store certain files, an external auditor can directly prove that
the files have not been entirely stored simply by observing
the storage graph, and without having access to the neces-
sary keys to decrypt data.

4.2 File Presence
If C(f,G) 6= ∅, the candidate set defined in the previous

section is not sufficient to quantify the probability that f is
actually stored on S.

In order to reason about the presence of f on S, we must
take into account how likely it is for any file f ′ 6= f to have
T (f ′) = T (f), i.e., we must also consider the anonymity
set. If the size of the candidate set is identical to that of
the anonymity set, it means that all possible files that share
its deduplication fingerprint with f (including f itself) are
stored on S. Otherwise, if the size of the candidate set is
smaller than the one of the anonymity set we cannot con-
clude that f is stored on S because we may just be witness-
ing deduplication fingerprint collisions.

Determining the anonymity set of the target file requires
knowledge of the storage domain, i.e., the set of all possi-
bly stored files. Knowledge of the complete storage domain
is a strong assumption in general-purpose storage systems
but may be justified if the storage server only hosts specific
types of files. Contextual information may also increase the
chances of A knowing the storage domain. For example, if
the target file is a movie and files on S are organized in fold-
ers, then the adversary may only take into account the files
stored in the “video” folder.

Given a file f , the file domain, and the storage graph G,
we now compute the probability that f is on stored S—
which we denote by Probability of Storage (PoS). To do so,
we model the state of S as a Bayesian Network [12], as de-
picted in Figure 5. The Bayesian Network consists of three
random variables. Variable X represents the set of all files
stored on S. The probability distribution of X depends on
file popularity and possible storage combinations. For in-
stance, a popular movie is a likely storage candidate and
different photos of the same person are also likely stored
together. D is the random variable capturing the dedupli-
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cation algorithm used on S. Usually, D is known, but our
model also accounts for potential uncertainty. Finally, G is
the random variable describing the storage graph of S. G is
conditioned by D and X , since the storage graph depends
on both of these variables.

To learn whether f ∈ X , we assume knowledge of the
deduplication algorithm Do and the observed storage graph
Go. Using this knowledge, we can determine the Probability
of Storage as:

PoS(f,Go, Do) = P (f ∈ X| G = Go, D = Do)

We compute the Probability of Storage for a given file f
using Bayesian inference as follows. We apply bottom-up
reasoning where we observe evidence for D and G and use
the evidence to infer the updated probabilities P (X). Based
on the probabilities P (X), we compute P (f ∈ X). Given
the observed deduplication algorithm Do and the observed
storage graph Go, we compute P (f ∈ X) as:

PoS(f,Go,Do) = P (f ∈ X| G = Go, D = Do)

=

∑
Xp:f∈Xp

P (X = Xp, G = Go, D = Do)∑
Xp

P (X = Xp, G = Go, D = Do)
(1)

That is, to determine PoS, we sum over all possible file
sets Xp. Following the properties of the Bayesian Network,
the joint probability P (X,G,D) is computed as:

P (X,G,D) = P (G|X,D) · P (X) · P (D)

Notice that the knowledge of P (X) is only required for
those values of X where P (G|X,D) > 0. That is, we only
need to know the probability that a certain set of files X is
stored on S, if the deduplication fingerprints of X match the
storage graph G given the deduplication algorithm D.

4.2.1 Template Attacks
So far, we showed how to compute the Probability of Stor-

age for single files given knowledge of the storage domain
and the file popularity. We now provide a concrete exam-
ple where such knowledge is available to an adversary. We
frame this scenario as a template attack. In this attack, we
leverage the Probability of Storage of different files in order
to infer higher-level contextual information.

Template attacks assume that S stores a number of files
that originate from a common template. For instance, con-
sider the scenario where an enterprise stores employment
contracts. All contracts are generated from a common tem-
plate where the general conditions are fixed, while the name
and the salary are filled in for each employee.

We assume the adversary A knows the fixed parts of the
template and tries to infer the variable parts of the stored
contracts. We model the content of the contracts with two
categories of random variables: Target Variables are the ran-
dom variables that represent valuable information for the ad-
versary (i.e., names and salaries of the employees). Margi-
nal Variables are random variables that model the informa-
tion that is not of interest for the adversary. For example,

if contracts are stored as PDFs, they contain creation times-
tamps [11].
A tries to link the target variables, such as name and salary.

To do so, A tests the probability of a number of combina-
tions C, e.g., John Doe earns $50,000. To compute this, A
identifies all files from the storage domain with this com-
bination which we denote by FC , e.g., FC are all files with
“John Doe” and “$50,000”. Then, A determines the Proba-
bility of Storage for all files in FC and all trees Ts that can
be found in G.

Finally, A computes the probability that at least one file
from FC is stored on S:

P (C, G,D) = 1−
∏
Ts∈G

(1−
∑
fi∈FC

PoS(fi, Ts, D))

In Section 5.4, we evaluate template attacks and their ac-
curacy against different deduplication schemes.

We acknowledge, however, that the assumption that the
adversary knows all possible sets of files that could be stored
on S and their respective probability cannot always be met.
In the following section, we analytically show that existing
data deduplication schemes still leak considerable informa-
tion towards the storage server, even in scenarios where such
assumptions cannot be met.

4.3 Quantifying Anonymity Sets
Recall that the anonymity set of a file f is the set of all

possible files that have the same deduplication fingerprint as
f . That is, A(f) = {f ′ ∈ {0, 1}∗ : T (f ′) ' T (f)}. This
set clearly depends on the deduplication algorithm used by
the storage server. The cardinality of an anonymity set for
file f refers to the number of files in the storage domain that
share the deduplication fingerprint with f .

In the following, we analyze the cardinality of the anony-
mity set for a given file f of size n bytes, with respect to each
of the deduplication techniques considered in this paper.

4.3.1 File-Based Fingerprints
In file-based deduplication, a file of size n bytes can have

exactly one deduplication fingerprint, i.e., a tree with one
leaf node of size n. In other words, all files of size n share
the same deduplication fingerprint (regardless of their con-
tent). Therefore, the anonymity set A(f) = {0, 1}n and its
cardinality is 2n.

4.3.2 Fixed-Sized Block-Based Fingerprints
Fixed-sized block-based deduplication splits a file of n

bytes into d nB e blocks, where B is the chosen block size.
All blocks but the last have size B; the last block has size n
mod B. Notice that since we assume client-side deduplica-
tion, identical blocks are not included in the fingerprint. That
is, if a file has two identical blocks they are deduplicated at
the client and only one is uploaded to S.

Consequently, if f has x B-sized blocks, the anonymity
set of f comprises all files whose trees have x leaves of size
B and d nB e − b

n
B c leaves of size n mod B.

4.3.3 CDC-Based Fingerprints
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In contrast to the previous schemes, a file of size n can
have a large number of possible CDC-based deduplication
fingerprints. This is due to the fact that the block sizes could
be anywhere between a minimum block size α and a maxi-
mum block size β. This results in the fact that the anonymity
set for each file shrinks—resulting in additional leakage per
deduplication fingerprint.

To quantify the associated information leakage, we pro-
vide a lower bound for the number of possible deduplication
fingerprints for a given file size n, such that the sum of the
sizes of their leaves totals n. We first compute the num-
ber of possible fingerprints given file size n, k blocks and
a maximum block size β using an modified version of the
stars-and-bars theorem [8, 22]:

S(n, k, β) =
min(k, n

β+1 )∑
q=0

(−1)q ·
(
k
q

)
·
(
n−q(β+1)+k−1

k−1
)

We extend this to also include the minimum block size α:

S(n, k, α, β) =
S(n− k · α, k, β − α)

k!

+
α−1∑
r=1

S(n− (k − 1) · α− r, k − 1, β − α)
(k − 1)!

Finally, we iterate over the possible number of blocks.
The minimum number of blocks is given by dn/βe, while
the maximum number of blocks is given by dn/αe. There-
fore, the lower bound for the number of CDC-based dedu-
plication fingerprints is:

N(n, α, β) =

dn/αe∑
k=dn/βe

S(n, k, α, β) (2)

As an example, consider a CDC scheme with an average
block size of 4 KiB (α = 2KiB, β = 8KiB). For files of
size 8 KiB, there are 242,984,335 possible deduplication fin-
gerprints. In this case, the lower bound as computed from
Equation 2 is N (8KiB, 2KiB, 4KiB) = 209,014,500 possi-
ble fingerprints—thus demonstrating the rapid growth of the
number of CDC-based deduplication fingerprints and the va-
lidity of our lower bound.

In the following, we show that two randomly chosen files
of the same size are unlikely to share a deduplication finger-
print when CDC-based deduplication is used. Namely, we
analyse the probability that two randomly chosen files (of
the same size) have identical deduplication fingerprints.

To analytically determine the collision probability, we need
the number of possibilities S(n, k, α, β) to split a file of size
n into k blocks of minimum size α and maximum size β.

We model the CDC algorithm using two variables: Ph is
the probability of inserting a boundary and Pβ is the prob-
ability of creating a maximum-sized block. We set Pβ =
(1 − Ph)β−α, which represents the case where a boundary
was not inserted (β−α) times. We now compute the proba-
bility P (n, k,m) of fingerprint collisions for k blocks, m of
which are maximum-sized:

P (n, k,m) = (Pβ
m · Phk−m · (k −m)!)2 · S(n, k, α, β)

Dataset 1 Dataset 2 Dataset 3 Dataset 4
Original Size 113.6 GiB 13.4 TiB 1.54 TiB 30.9 GiB
# Files 288,906 52,634,346 3,581,951 900,000
# Unique Files 219,578 13,646,320 1,696,978 900,000
Block Sizes 4, 8 KiB

1 MiB
8, 16 KiB
32, 64 KiB

4, 8 KiB
1 MiB

4, 8 KiB
1 MiB

Table 1: The datasets used for experimental evaluation.

Given this, we now compute the probability of finger-
print collisions for two random files of size n consisting of k
blocks. In the case where k > 2, we iterate over the number
of maximum-sized blocks. Otherwise, if k = 2 we approx-
imate the collision based on the position of the only bound-
ary. If k = 1, there will be a collision since both files will
have the signature n.

P (n, k) =


1 if k = 1

((1− Ph)(k−α))2 if k = 2
bnβ c∑
m=0

P (n, k,m) if k > 2

Finally, we can compute the overall collision probability
for two randomly selected files of size n by computing

CDC-Collision(n) =
dnα e∑
k=dnβ e

P (n, k)

In Section 5.3, we confirm this analysis experimentally.

5. EXPERIMENTAL VALIDATION
In this section, we experimentally evaluate the informa-

tion leakage due to different deduplication techniques using
real datasets.

5.1 Datasets
In our experiments, we rely on three real and a synthetic

dataset, as seen in Table 1. Dataset 1 consists of 113 GiB of
files stored in a shared repository of an academic institution.
Dataset 2 corresponds to 13.4 TiB of data extracted from
a subset of the publicly available collection of a previous
study [2, 15]. Additionally, Dataset 3 was extracted from a
file storage of an industrial research lab. Finally, Dataset 4 is
a synthetic dataset consisting of employee contracts derived
from the same template (cf. Section 4.2.1). For Datasets 2
and 3, we only had access to content hashes of the deduplica-
ted objects (i.e., file hashes for file-based deduplication and
block hashes for the block-based deduplication techniques).
Notice that we purged empty files in all studied datasets as
they cannot leak any content.

In our evaluation, Dataset 3 is used only for cross-validation
to confirm our findings about the probability of file presence.
Dataset 4 serves as the basis to evaluate the information leak-
age derived from template attacks (cf. Section 5.4).

Table 1 also lists the available block sizes for fixed-sized
and CDC-based deduplication techniques for each dataset.

In Tables 4 and 5 in the Appendix, we evaluate the storage
reduction due to the previously studied deduplication tech-
niques for Datasets 1 and 2. When measuring storage re-
duction due to deduplication, we also account for the addi-
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Figure 6: The sizes of anonymity sets plotted depending on
minimum file sizes in Dataset 2.

tional storage costs for storing file/block indexes. As men-
tioned earlier, the size of such indexes varies greatly with the
different techniques as the number of stored objects is very
different. Notice that there are a number of approaches for
managing such indexes [16]; in this paper, we conservatively
allocate 32 bytes per block hash, and 20 bytes per file path
hash.

We observe that, for all studied datasets, CDC-based sche-
mes using Rabin fingerprints with average block sizes of
4 KiB and 8 KiB exhibit the highest storage reductions (up
to 20% in Dataset 1 and 70% in Dataset 2). File-based dedu-
plication techniques achieve lower storage reduction when
compared to block-based techniques (e.g., file-based dedu-
plication reduces storage costs by 5% in Dataset 1 and by
50% in Dataset 2). We further observe that fixed-sized block
deduplication techniques considerably improve storage costs
when compared to their file-based counterparts; these tech-
niques however result in lower savings when compared to
CDC-based schemes. Our results show that storage savings
of fixed-block deduplication techniques are comparable to
the arithmetic mean of storage savings from CDC-based and
file-based deduplication techniques.

5.2 Anonymity Sets
We now evaluate the size of the anonymity sets and the

uniqueness of the deduplication fingerprints for the various
studied deduplication techniques. As the size of the anony-
mity set heavily depends on the file size, we filter the datasets
according to the file sizes. For each deduplication algorithm,
we measure average anonymity set size (AAS) as well as the
percentage of files that are uniquely identified by their dedu-
plication fingerprint for: (i) the complete dataset, (ii) files
with bigger size than half the average block size (where ap-
plicable), and (iii) files bigger than 1 MiB.

Our results are detailed in Tables 2 and 3, and summarized
in Figure 6. Our results indicate that, in the case of file-based
deduplication, larger files tend to have smaller anonymity
sets and a higher percentage of unique deduplication fin-
gerprints. Notice that fixed-sized deduplication techniques
achieve almost identical anonymity sets (and percentages of

File Sizes #Files AAS Unique

File-Based
All 219,578 3.403 18.9%

≥ 2 KiB 150,214 2.404 27.6%
≥ 1 MiB 7,704 1.204 78.6%

Fixed 4 KiB
All 219,578 3.402 18.9%

≥ 2 KiB 150,214 2.403 27.6%
≥ 1 MiB 7,704 1.200 78.9%

CDC 4 KiB
All 219,578 1.728 54.4%

≥ 2 KiB 150,214 1.201 79.5%
≥ 1 MiB 7,704 1.004 99.3%

CDC 8 KiB
All 219,578 2.142 41.8%

≥ 4 KiB 120,437 1.224 91.5%
≥ 1 MiB 7,704 1.004 99.3%

CDC 1 MiB
All 219,578 3.339 19.6%

≥ .5 MiB 11,525 1.023 96.5%
≥ 1 MiB 7,704 1.017 97.3%

Table 2: Average Anonymity Sets and Unique Deduplication
Fingerprint Percentages for Dataset 1.

File Sizes #Files AAS Unique

File-Based
All 13,646,344 17.698 3.4%

≥ 4 KiB 6,827,413 8.902 6.8%
≥ 1 MiB 526,720 1.762 49.9%

Fixed 8 KiB
All 13,646,344 17.642 3.4%

≥ 4 KiB 6,827,413 5.774 10.6%
≥ 1 MiB 526,720 1.740 50.3%

CDC 8 KiB
All 13,646,344 2.881 3.23%

≥ 4 KiB 6,827,413 1.442 64.5%
≥ 1 MiB 526,720 1.089 88.4%

CDC 16 KiB
All 13,594,861 3.428 26.7%

≥ 8 KiB 5,497,203 1.438 63.9%
≥ 1 MiB 526,921 1.092 87.9%

CDC 32 KiB
All 13,609,646 4.092 21.9%

≥ 16 KiB 4,341,011 1.440 62.8%
≥ 1 MiB 526,755 1.097 87.3%

CDC 64 KiB
All 13,604,132 4.790 18.3%

≥ 32 KiB 3,366,832 1.425 62.6%
≥ 1 MiB 527,787 1.103 86.6%

Table 3: Average Anonymity Sets and Unique Deduplication
Fingerprint Percentages for Dataset 2.

unique fingerprints) to file-based techniques. Therefore, we
list only one example for fixed-sized techniques in Tables 2
and 3. As outlined in section 4.3, the different anonymity set
sizes of file-based and fixed-sized deduplication techniques
are due to intra-file deduplication.

CDC-based schemes exhibit significantly smaller anony-
mity sets and higher percentages of unique fingerprints. In
particular, for files bigger than 4 KiB, 91.5% and 64.5% of
files in Datasets 1 and 2, respectively, are uniquely identi-
fied by their deduplication fingerprints. This is significantly
more than the 34.4% and 6.8% (for Dataset 1 and 2, respec-
tively) that are measured in the case of file-based dedupli-
cation and fixed-block-based deduplication. Notice that half
the average block size corresponds to the minimum block
size, and is thus the minimum threshold for performing dedu-
plication.

We study the effect of the block sizes on the leakage in
Figure 7. Here, we plot the AAS w.r.t. the size of files in
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Figure 7: Anonymity set sizes plotted as a function of the
file size. We compare three deduplication techniques over
Dataset 2. Smaller anonymity sets result in higher leakage.

Dataset 2.2 While we see a clear difference between the file-
based and the CDC-based AAS, the two CDC-based plots
mostly differ for file sizes between 4K and 32K; for files
smaller than this threshold, the algorithms translate to stan-
dard file-based deduplication algorithms (due to the mini-
mum deduplication threshold).

Our experiments confirm our analysis in section 4.3. Name-
ly, CDC-based deduplication techniques exhibit a signifi-
cantly smaller anonymity sets and therefore higher leakage
when compared to those of fixed-block and file-based al-
gorithms. The latter algorithms result in similar informa-
tion leakage since we assume that the adversary cannot ob-
serve any intra-file deduplication. We discuss the influence
of intra-file deduplication in section 6.1.

5.3 Cross-Dataset Validation
We now evaluate information leakage due to deduplica-

tion without knowledge of the storage domain. To this end,
we acquire all files from Dataset 1, compute their dedupli-
cation fingerprints and their content hashes and check them
against the storage graph of Dataset 3. For each file out
of Dataset 1 we record the number of candidates in Data-
set 3, and determine whether the file was actually stored,
i.e., whether the content hashes match the content hashes of
a candidate. This allows us to measure the true and false
positives associated with deduplication fingerprints.

In Figure 8, we plot the success rate of using different
deduplication fingerprints as distinguisher, w.r.t. different
minimal file sizes. The success rate is defined as the ratio
of true positives over the number of candidates, i.e., as the
percentage of candidates that are correctly identified. Using
file-based deduplication fingerprints as distinguisher, yields
a low success rate as all files with the same file size are
possible candidates. Notice that the success rate for using
fixed-sized block-based deduplication fingerprints as a dis-
tinguisher is similar to that of file-based deduplication fin-

2We chose Dataset 2 since it is the biggest available dataset.
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Figure 8: Cross-Dataset Validation of deduplication finger-
prints as storage distinguishers. CDC-based deduplication
fingerprints with 4 KiB blocks are best distinguisher.

gerprints for small files; for large files the precision is slightly
bigger due to intra-file deduplication.

For CDC-based deduplication fingerprints, we observe a
higher success rate for larger files. In particular, for files
above 32 KiB, we obtain a success rate above 90%. This
means that if a candidate for such a file is found, then it is
highly likely that the file is actually stored. This conforms
with our analysis in Section 4.3.3. As shown in Figure 8,
the success rate of the storage prediction significantly in-
creases between 2 KiB and 10 KiB owing to the decrease of
the collision probability of CDC-based deduplication finger-
prints. However, we also observe that there are a few false
positives for larger files. Namely, there are three collisions
for files larger than 100 KiB. Such collisions would be ex-
tremely unlikely given our analysis in Section 4.3.3. Notice
that this analysis assumes randomly chosen files of a certain
size. We believe that this discrepancy in the number of colli-
sions originates from the fact that those particular files were
quite similar (e.g., different versions of the same library).
However, we could not verify this assumption since we did
not have access to the plaintexts of Dataset 3.

Overall, we conclude that even without knowledge of the
storage domain, A can reliably infer whether large files are
stored on S, since deduplication fingerprints provide a good
distinguisher for stored files. Furthermore, most false pos-
itives obtained for large files often result from the fact that
these files are similar (e.g., identical files with different cre-
ation timestamps).

5.4 Template Attacks
In this section, we evaluate the impact of template attacks

(cf. Section 4.2.1), in which the adversary possesses addi-
tional information about the storage domain.

Here, we evaluate the following scenario. A company
stores employment contracts on the cloud storage. Each
contract consists of a PDF of two pages comprising a fixed
part and variable parts. The variable parts correspond to em-
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ployee names, salaries, the contracts’ start dates, and some
internal PDF variables.

In our evaluation, we generated the employee names by
choosing 50 randomly names out of the most common first
and surnames within the United States3. We assume that the
salary takes one of five possible values and that the start date
of employees is public knowledge (e.g., can be extracted
from social media). Finally, we assume that timestamps of
PDF files are integer numbers (at one-second precision) [11].
We further assume that the PDFs were created on the start
date of the contract between 8:00 am and 9:00 am, which
amounts to a total of 3,600 possible values.

Given the variables and their ranges, we generate Data-
set 4 with 900,000 files. These files have a joint size of
33 GiB. To evaluate the impact of template attacks for dif-
ferent deduplication techniques, we randomly chose one file
per employee name. Given these 50 files, we compute the
true positive rate for predicting the correct salary defined by
the ratio of correctly predicted salaries over 50. We indepen-
dently repeat this experiment ten times.

Our results indicate that CDC-based deduplication with an
average block size of 4 KiB exhibits the highest true positive
rate of 37.2%; here, we can predict 14.4% of the salaries
with 100% probability. This leakage is reduced by almost
30% when block sizes of 8 KiB or 1 MiB are used. Since Da-
taset 4 exhibited no intra-file deduplication, all fixed-sized
deduplication techniques exhibited the same leakage as file-
based deduplication. Namely, salaries were predicted with
a true positive rate of 30.08% and 7.8% of the salaries were
predicted with 100% probability.

Overall, we find that template attacks can result in a sig-
nificant privacy leakage. Although such attacks require knowl-
edge of the “template”, we argue that templates are often
public or can be easily extracted by observing public files.

6. DISCUSSION AND POSSIBLE COUN-
TERMEASURES

In this section, we discuss further insights with respect
to our findings and we explore the solution space to prevent
information leakage associated with existing data deduplica-
tion techniques.

6.1 Impact of Server-Side Deduplication
We start by analyzing the impact of server-side dedupli-

cation on our findings. Recall that when server-side dedu-
plication is used, the adversary acquires additional informa-
tion with respect to intra-file deduplication (i.e., the adver-
sary learns whether a given file contains duplicate blocks).
In case of client-side deduplication, duplicate blocks within
the same file are not uploaded onto the storage—effectively
hiding the size of the uploaded file. As such, intra-file dedu-
plication increases the difficulty for an adversary to correctly
estimate the size of the anonymity set if the file storage do-
main is not known beforehand. This also suggests that infor-
3Data extracted from https://www.ssa.gov/OACT/
babynames/ and http://www2.census.gov/topics/genealogy/
2000surnames/Top1000.xls

mation leakage is only expected to increase when server-side
deduplication is used.

As shown in Table 6 in the appendix, intra-file dedupli-
cation is more likely to occur in larger files. In particular,
in Dataset 2, 69.11% of files greater than 10 MiB exhibit
considerable intra-file deduplication. Additionally, dedupli-
cation schemes with smaller block sizes result in larger intra-
file deduplication rates. This is true for both fixed-sized
block-based and CDC-based schemes.

6.2 Querying for a Set of Files
So far, we have studied storage inference for single target

files. However, we argue that information leakage can be
further exacerbated if the adversary A wants to determine
whether a set of files F is entirely stored on S. In this case,
the Probability of Storage from Equation1 changes to:

PoS(F ,Go, Do) = P (F ⊆ X| G = Go, D = Do)

=

∑
Xp:F⊆Xp

P (X = Xp, G = Go, D = Do)∑
Xp

P (X = Xp, G = Go, D = Do)

Here, ifA cannot compute the Probability of Storage, due
to incomplete knowledge of the storage domain,A still ben-
efits from querying for a whole set of files at once. Firstly,
A generates a probe graph P , a storage graph containing all
files of F . Notice that the probe graph is not just the sum
of all the trees. If the files in F have shared objects, the
respective trees will be connected. Subsequently, A finds
the candidate set of P in G, i.e., A finds all isomorphisms
between P and a subgraph of G. We argue that the shared
objects (and the parallel query for all files) reduce the candi-
date set of P and provide a more reliable prediction whether
F is entirely stored on S when compared to the case where
the adversary queries for individual files.

6.3 Leakage through Frequency Analysis
So far, our analysis has focused solely on information ac-

quired from the object size and timestamps. However, we
point out that the adversary can additionally infer how of-
ten and in which contexts deduplicated objects are upload-
ed/retrieved. For block-based deduplication techniques, A
can infer the number of files an object appears in. A can
perform such “frequency analysis” by measuring the node
degree of data nodes in the storage graph. Clearly, A can
combine the use of frequency analysis techniques with our
aforementioned techniques in order to infer additional infor-
mation with respect to the stored files.

For example, the “zero-block” is often the most frequently
deduplicated object [15]. In our setting, A can identify the
data node in the storage graph that refers to the zero-block
through frequency analysis. A can label the zero-block in
the storage graph and the trees of the target files. These la-
bels restrict possible isomorphisms, reduce candidate sets,
and make our attack even more precise. A can additionally
fingerprint other common data nodes such as recurring file
headers or footers if A can reliably infer them by means of
similar frequency analysis.
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6.4 Minimizing Leakage in Deduplicated
Storage Systems

In the previous section, we have shown that existing dedu-
plication schemes leak considerable information about the
encrypted stored files. Namely, existing public chunking al-
gorithms allow an adversary to construct deduplication fin-
gerprints and compare the simulated deduplication finger-
prints to those on the storage.

One possible way to prevent such leakage would be pad
objects with additional data in an attempt to effectively ob-
fuscate their size. However, such a solution would only in-
crease the storage overhead and effectively strip away the
benefits of data deduplication.

In order to truly hide the information leaked by dedupli-
cation fingerprints, clients could use a non-predictable se-
cret chunking function that exhibits sufficient entropy, e.g.,
AES with a secret key. Clearly, this key has to be shared
securely accross all clients—which is a challenging task.
A possible solution to realize this would be for clients to
perform content-based chunking by executing secure multi-
party computation (MPC) with the storage server. This would
clearly come at the expense of performance, since the fastest
known AES variant implementation of MPC requires around
3.9 ms per per 128-bit block [13]. This amounts to 86 hours
of computation per GiB of deduplicated data. Alternatively,
the chunking key could be protected using trusted comput-
ing. For example, the key could be pre-deployed on a tamper-
resistant smart card, or on a TPM chip.

Notice that our findings suggest that fixed-sized block-
based deduplication schemes offer a strong trade-off between
storage savings (cf. Section 5.1) and information leakage
(cf. Section 5.2).

7. RELATED WORK
Data deduplication has received considerable research at-

tention [16, 21].
Harnik et al. [10] describe a number of threats posed by

client-side data deduplication, in which an adversary can
learn if a file is already stored in a particular cloud by guess-
ing the hashes of predictable messages. This information
leakage can be eliminated through the reliance on Proofs of
Ownership schemes (PoW) [5, 9], which require a client to
prove full possession of the file.

Douceur et al. [6] introduced convergent encryption, where
the encryption key is derived from the plaintext to ensure
that identical plaintexts result in identical ciphertexts. This
allows clients that do not share any keying material to benefit
from cross-user deduplication. However, convergent encryp-
tion is not semantically secure [4] and only offers confiden-
tiality for unpredictable file contents. To remedy this, Bel-
lare et al. [3] proposed a server-side deduplication scheme,
DupLESS, which employs a key server to generate file-specific
keys and resist brute-force key search attacks. Stanek et
al. [20] presented an encryption scheme where unpopular
data is protected with semantic security while popular data is
deduplicated effectively using convergent encryption. Once
files become popular, they undergo a seamless transition.

Similarly, Puzio et al. [18] proposed PerfectDedup, a scheme
that detects the popularity of data blocks using perfect hash-
ing. PerfectDedup protects data confidentiality by encrypt-
ing unpopular data semantically secure and deduplicates pop-
ular data using convergent encryption. Armknecht et al. [1]
presented ClearBox, a system that performs transparent client-
side deduplication and allows clients to pay according to
their actual storage consumption.

Puzio et al. [17] studied how to combine block-level dedu-
plication and data confidentiality. The authors proposes Clou-
Dedup which is based on convergent encryption and a proxy
server that adds an additional layer of encryption. The re-
sulting ciphertexts are then stored at the storage provider.

8. CONCLUDING REMARKS
Most existing cloud providers reduce their storage costs

by leveraging data deduplication when storing clients’ data.
Namely, existing cloud solutions store duplicate data up-
loaded by different users only once—thus significantly sav-
ing storage costs.

In this paper, we analyzed the information leaked to a cu-
rious storage server in systems that rely on client-side dedu-
plication and encryption. We showed that even if the encryp-
tion key is unknown to the storage server, the latter can still
acquire considerable information about the stored files. Our
results show that data deduplication offers a strong distin-
guisher for a curious storage server in guessing which files
are stored. We also showed that the information leakage
associated with deduplication is further exacerbated when
CDC-based deduplication techniques are used. We confirmed
our analysis by means of thorough experiments using four
different datasets.

Finally, our analysis shows that there are no bullet-proof
solutions to deter information leakage associated with the
use of data deduplication. We argue that the reliance on
fixed-sized block-based deduplication techniques emerges as
a strong trade-off between storage efficiency and privacy leak-
age. We therefore hope that our findings increase the aware-
ness of cloud providers and users with respect the privacy
risks associated with data deduplication.
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APPENDIX

Dataset 1 Storage
Savings

Object
Savings

#Objects Object
Size

Index
Size

File 5.3% 24.0% 219,578 133.8 GiB 25.0 MiB
Fixed 1 MiB 9.6% 19.2% 338,994 127.7 GiB 35.6 MiB
Fixed 4 KiB 12.2% 13.5% 31,997,908 121.6 GiB 2.5 GiB
Fixed 8 KiB 12.4% 12.8% 16,201,377 122.6 GiB 1.3 GiB
CDC 1 MiB 11.0% 19.9% 328,609 125.8 GiB 34.9 MiB
CDC 4 KiB 20.1% 21.6% 27,842,978 110.6 GiB 2.3 GiB
CDC 8 KiB 19.6% 20.3% 14,210,609 112.5 GiB 1.2 GiB

Table 4: Storage Savings due to different deduplication tech-
niques in Dataset 1.

Dataset 2 Storage
Savings

Object
Savings

#Objects Object
Size

Index
Size

File 52.4% 74.1% 13,646,344 6.4 TiB 3.0 GiB
Fixed 8 KiB 60.8% 61.7% 701,568,394 5.2 TiB 79.1 GiB
Fixed 16 KiB 60.0% 61.0% 365,965,683 5.3 TiB 41.2 GiB
Fixed 32 KiB 59.0% 60.8% 193,653,052 5.5 TiB 22.2 GiB
Fixed 64 KiB 58.2% 61.1% 104,375,784 5.6 TiB 12.5 GiB
CDC 8 KiB 70.6% 71.6% 535,997,134 3.9 TiB 75.3 GiB
CDC 16 KiB 69.7% 71.1% 333,162,476 4.0 TiB 46.5 GiB
CDC 32 KiB 68.8% 70.4% 231,535,026 4.2 TiB 32.0 GiB
CDC 64 KiB 67.8% 69.8% 181,628,779 4.3 TiB 25.0 GiB

Table 5: Storage Savings due to different deduplication tech-
niques in Dataset 2.

File Sizes All ≥1 MiB ≥10 MiB ≥100 MiB ≥1 GiB
#Files 13,594,861 526,720 66,224 4,508 535
Fixed 8 KiB 1.42% 18.98% 43.79% 46.27% 75.70%
Fixed 16 KiB 0.90% 13.48% 33.41% 38.07% 66.92%
Fixed 64 KiB 0.28% 5.29% 8.74% 26.15% 59.93%
CDC 8 KiB 2.81% 41.37% 69.11% 67.30% 84.89%
CDC 16 KiB 2.42% 35.93% 65.80% 65.96% 83.98%
CDC 64 KiB 2.02% 29.65% 58.32% 60.58% 83.52%

Table 6: Intra-File Deduplication for Dataset 2. For each
configuration we give the percentage of files in which intra-
file deduplication occurs.
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