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ABSTRACT
In this paper, we propose a technique to detect phishing at-
tacks based on behavior of human when exposed to fake web-
site. Some online users submit fake credentials to the login
page before submitting their actual credentials. He/She ob-
serves the login status of the resulting page to check whether
the website is fake or legitimate. We automate the same be-
havior with our application (FeedPhish) which feeds fake
values into login page. If the web page logs in successfully,
it is classified as phishing otherwise it undergoes further
heuristic filtering. If the suspicious site passes through all
heuristic filters then the website is classified as a legitimate
site. As per the experimentation results, our application has
achieved a true positive rate of 97.61%, true negative rate
of 94.37% and overall accuracy of 96.38%. Our application
neither demands third party services nor prior knowledge
like web history, whitelist or blacklist of URLS. It is able to
detect not only zero-day phishing attacks but also detects
phishing sites which are hosted on compromised domains.
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1. INTRODUCTION
Phishing is an attack which targets online users for ex-

traction of their sensitive information such as username,
password and credit card information etc. According to
APWG (2016) report [6],there has been a significant increase
of phishing attacks in the first quarter of 2016. It has a
growth of 250% compared to last quarter of APWG (2015)
[5] comprising of 289,371 attacks. There are many tools [1,
4] which create a replica of entire website and are used for
hosting phishing attacks. This makes even a fresh phisher
to design phishing sites easily. But, when the phisher uses
an entire replica of website, there are more chances to get
caught by the anti-phishing tools. It is due to the presence
of website identity elements of legitimate site. Some of the
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website identity elements used are title, keywords, copyright,
anchor links, DOM etc.

Therefore, to bypass the anti-phishing techniques, attack-
ers try to copy only login pages followed by a login successor
page of his own or might redirect to target website. The
attackers also design phishing websites with website identi-
fiers removed or misspelled. The techniques which depend
on website identity elements may fail to detect above kind of
phishing websites [24, 13, 25]. The works which are depen-
dent on third-party services may fail to detect phishing sites
which are hosted on compromised legitimate domain [8, 29,
27, 20, 11]. Sometimes attackers may embed legitimate con-
tent in an Iframe of phishing page such that anti-phishing
techniques [27, 8, 25, 31, 29, 11, 17, 18] which depend on
source code of website could be bypassed. In this paper, we
address the detection of above mentioned phishing websites
with our FeedPhish application.

Traditional approaches like Blacklist [30, 19] and Whitelist
[7] techniques works efficiently until the given URL is on the
list. If the URL or website is not in the list, the techniques
fail to detect them. Those URLs which are out of the list
are called as zero-day phishing URLs. These kinds of attacks
are either countered by heuristic-based techniques [14, 9, 23,
22] or visual based techniques [10, 28, 12, 21].

Visual based techniques need a large database of images
for comparison of suspected website’s image with trusted
image database. As this comparison is very costly with re-
spect to time and space, we choose heuristic based detection
to detect the phishing websites.

Heuristic-based techniques are developed based on the fea-
tures involved in designing the phishing websites. The fea-
tures which are mostly common and unique in many of the
existing and old phishing websites are taken as parameters
to detect new phishing websites.

The Main contributions of our paper are as follows:

1. Identifying the phishing sites based on the login sta-
tus of a website when fed with fake credentials such as
username and password.

2. Detecting phishing pages which are hosted on compro-
mised domains.

3. Detecting phishing sites which use Iframe for embed-
ding imitated content.

To the best of our knowledge, our work is the first to
use Selenium WebDriver [3] to automate the login process
in each of the websites visited. Earlier works [26, 24, 16,
15] used Selenium or PhantomJS to capture screenshots of
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the visited websites or to crawl the website for anchor links,
plain text of the web page.

The paper is organized as follows. We discussed some
of the existing anti-phishing techniques and compared the
same with our work in Section 2. The Proposed work is
explained in Section 3. Experimentation and results are
given in Section 4. Limitations are discussed in Section 5.
We conclude the paper in Section 6.

2. RELATED WORK
In this section, we describe some of the existing heuristic-

based techniques used to detect phishing websites.
Varshney et al. [27] proposed a Lightweight Phish Detec-

tor (LPD) which detects phishing sites based on the results
of Google search engine. The domain is extracted from URL
of suspicious website and appended with title of the website
to form a search string. This search string is fed to search
engine using Google search API. The domain of suspicious
website is compared with top N results of search engine to
identify the legitimacy of a suspicious website.

Chiew et al. [8] proposed logo based technique to detect
phishing sites. Authors used machine learning algorithms
to extract logo from a suspicious website. The logo is fed
to Google image search engine to get the portrayed identity
of a suspicious website. Based on the domain comparisons
of search engine results and suspicious website domain the
legitimacy of a website is calculated.

Ramesh et al. [20] proposed a technique which performs
intersection operation on direct links set and indirect links
set of suspicious site to detect phishing behavior. The di-
rect links set is extracted from DOM of suspicious site where
as indirect links set is extracted from search engine results.
Target domain of phishing website is calculated from result
set of intersection. Target domain’s IP address is compared
with suspicious website’s IP address to calculate the legiti-
macy of website.

PhishWho[25] technique classifies websites based on the
difference between suspicious website identity and targeted
website. N-gram model is used to extract website identity
keywords from textual content of the website. These key-
words are fed to the search engine for evaluating the target
website domain from the search engine results. Comparison
of target website domain with suspicious domain is checked
to identify the legitimacy of a website.

Cantina [31] technique detects phishing sites based on the
textual content of website. It uses a well known data min-
ing algorithm called Term Frequency-Inverse Document fre-
quency for extracting highly important words from the web-
site content. TF-IDF assigns weights to each word in the
website and top most weighed words are fed to search en-
gine to identify the legitimacy of website.

Prakash et al. [19] proposed a black list based approach
to detect phishing sites. They proposed heuristic features
which predicts new phishing URLs based on the combina-
tions of existing URLs. They performed combinations op-
eration on IP address, top level domains (TLD), Directory
structure, Query string and Brand names of existing phish-
ing URLS to generate new phish.

Cantina+ [29] technique is an extension to cantina where
additional heuristic features are included to improve the ac-
curacy of a model. Unlike Cantina, authors in Cantina+
experimented their framework with a large dataset consist-
ing of 4883 legitimate and 8118 phishing websites. However,

as Cantina+ uses same TF-IDF and search engine based
features, it also faces the same limitations of Cantina.

Garera et al. [11] proposed an approach which uses struc-
ture of a URL as parameter to detect phishing sites. Authors
proposed features based on page rank, whitelist, URL ob-
fuscations and words. They studied structure of URLs of
various phishing websites and found that detection of phish-
ing sites is possible without the information of source code
of a web page.

Moghimi & Varjani [17] proposed a technique which uses
SVM DT algorithm to detect phishing sites. SVM DT is the
combination of support vector machine and decision tree al-
gorithm. SVM is used to train the model with the given
dataset and then rules are generated from input and output
relationship existing within the model. New rules are gen-
erated using decision tree algorithm C4.5. From these rules,
they are able to detect phishing sites which target bank-
ing applications. The authors concentrated on frequency of
secure HTTPS anchor links, secure images, secure scripts
and secure styles within a website. Higher the frequency of
secure objects, higher the chance to be a legitimate site.

Pan & Ding [18] proposed an approach which detects
phishing sites based on anomalies present in the web page.
Authors claim that there exists a discrepancy when phish-
ing sites attempts to fake visual similarity of a legitimate
site. The discrepancy may include website identity, HTTP
transactions and structure of the website. Anchor links, ti-
tle, DNS record, Form handler and SSL certificate are used
as features to detect the phishing sites.

We provide the summary of existing works in compari-
son to our work with five features in Table 1. The features
include detection of phishing sites hosted on compromised
domains; detection of phishing sites which use embedded ob-
jects (iframes) for displaying login page; detection of phish-
ing sites without the use of third-party services like Search
engine features, Page rank and WHOIS database, detection
of unidentified phishing sites(zero-day), method to identify
target website of a phishing site.

3. PROPOSED WORK
In this section, we present the working of our approach in

detecting phishing sites. This is achieved by feeding fake val-
ues into login fields, followed by further filtering process to
be either classified as a phishing site or legitimate site. The
entire work is divided into three modules which perform fil-
tering process at each level. Hence, we also term these mod-
ules as filters. The filters of our approach are LoginCheck ;
FeedFakeCredentials; and HeuristicsCheck. The flowchart of
our application is shown in Figure 1. To ease our discussion
we define the following terms.

• login page The web page which seeks sensitive in-
formation such as username and password.

• login successor page The resulting web page upon
submission of sensitive information.

• target website The website which is imitated by
the attacker to perform phishing attack.

• website identity The real brand name of a web-
site.

• compromised domain The domain which is hacked
by the attackers.
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Table 1: Comparison of existing works

Existing work
Third-party

independence
Compromised

domains
Zero-day attacks

Target website
detection

Embedded objects

Varshney et al. [27] no no yes no no
Chiew et al. [8] no no yes no no

Ramesh et al. [20] no no yes yes yes
PhishWho[25] no no yes yes no
Cantina [31] no no yes no no

Prakash et al. [19] no no no no no
Cantina+ [29] no no yes no no

Garera et al. [11] no no yes no no
Moghimi & Varjani [17] yes yes yes no no

Pan & Ding [18] no no yes yes no
our work yes yes yes yes yes

3.1 LoginCheck
This module checks for the presence of login page in a

given URL. We observed that login page can be found at
three locations. 1) Home page of URL. 2) Modal window. 3)
Iframes. Attackers use Iframes to load the imitated content
such that techniques which are dependent on source code of
the website will fail to detect. It is because the content in
Iframe is hidden from the source code of given URL. Hence,
to counter these kind of phishing attacks, we connect to each
Iframe of the given URL for the presence of login page unless
it is not found in previous locations. The flow chart of the
module is given in Figure 2.

Our application FeedPhish takes URL as input and in-
vokes Selenium WebDriver, which open Firefox browser ex-
ternally to perform browser like action as an automated pro-
cess. Selenium is a web browser automation tool which helps
in constructing browser-based regression automation suites
and tests.

Once the browser is opened, it navigates to the given URL
and checks for password field in the web page. If found,
FeedFakeCredentials module is initiated else it checks for
the modal window login pages. The anchor link texts are
compared with keywords set (signin or sign in or log in or
login) to identify login modal window. Once the password
field is found in modal window login page, FeedFakeCreden-
tials module takes the control otherwise the entire website
is crawled for Iframes n. Each Iframe i is navigated for the
presence of password field. If Password field is found Feed-
FakeCredentials module is initiated or else the website skips
detection process and is classified as a legitimate website.
We believe that attackers target online users for sensitive in-
formation which is mostly acquired from login pages. Hence
the web pages with no login forms are classified as legitimate
sites.

3.2 FeedFakeCredentials
This module is initiated, once the login page is detected.

The WebDriver identifies the input fields of username and
password with input selectors as identifiers. We automate
the process of feeding fake credentials into the input fields
with the help of Selenium WebDriver and Java programming
language. We submit fake values to the respective login page
with submit() method. We used submit() method instead
of click() because submit() method can be used on any in-
put field where as click() method has to be applied only on
button. This submit() method avoids client side validation

or JavaScript action attached to submit button leading to
submit invalid fake values to the websites.

Once the fake values are submitted, the resulting page
i.e. login successor page is set as a parameter to detect
legitimacy of the website. The absence of password field
in login successor page is classified as a phishing website.
It should be noted that client side validation attached to
the form is not addressed in this work. Due to this, some
phishing sites which have validation check on the form are
able to bypass this filter.

The rationale behind this idea is that attackers never use
any database authentication while extracting sensitive in-
formation. Attacker’s main target is to collect the sensitive
information rather than validation of sensitive information.
We found 87.84 % of phishing sites identified under this cat-
egory. Some of the phishing websites, upon receiving the
sensitive information, redirects the login successor page to
legitimate web page. These kind of phishing sites are iden-
tified through the domain conflict checking i.e. primary do-
main of login page and its successor page is compared. If
comparison is unsuccessful then the website is classified as
phishing site. There are some other phishing sites which al-
ways respond with failure login page on submission of fake
credentials. The remaining 12.16 % of phishing sites comes
under above failure login page category. This kind of behav-
ior is as similar to legitimate sites. Because, legitimate sites
also respond with failure login page when wrong credentials
are submitted. The above category of websites undergoes
Heuristic filter process for identifying phishing behavior.

3.3 HeuristicsCheck
This module attempts to distinguish between phishing

and legitimate websites when they respond with failure lo-
gin page on submission of fake credentials. This module
addresses the problem with two features. It checks for the
presence of defined phishing features in the suspicious web-
site. If found it is classified as a phishing site else legitimate
site. The flow chart of the module is given in Figure 3.

3.3.1 Zero links in the body of source code:
This feature checks for the presence of anchor links in

body of source code. We observed web pages that seek sen-
sitive information have at least a single anchor link such as
“forgot password” or “help” or “contact us” or “about us”
etc. This feature counters the phishing sites which mimic
the legitimate site by replacing the entire text of legitimate
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Figure 1: Architecture of our application

content with a single image. So, the websites which have no
anchor links in the body of HTML is classified as phishing
otherwise it undergoes next filtering process.

3.3.2 Common Page Redirection ratio (CPRR):
This feature calculates the ratio of anchor links pointing

to common page out of total number of links. Attackers
may redirect a few or all of the links in login page to a
common page. The common page can be of his own suc-
cessful login page or current login page (null link) or may
redirect to target legitimate website. We believe that at-
tackers take less effort in designing phishing site by mim-
icking the login page and redirects all/some of the links

YES

YES

NO

NO

YES

YES

NO

YES

NO

NO

Figure 2: flow chart of LoginCheck module

to respective target website links or his own login succes-
sor page. Usually, null links are used to redirect a link
to its current page. Hence attackers use this technique to
make users stay on the same login page by assigning all or
some of the anchor links to the null value (#). For ex-
ample, < a href = “#′′ > forgotpassword < /a > or
< a href = “#someid′′ > contactus < /a >.

Also, some phishers try to bypass null links based anti-
phishing tools by replacing null links with its own page.
For example, a login phishing website with URL http://
www.signin.ebaye.com/secure/login/index.php has five an-
chor links in which all or most of its links may point to
its own successor page like http://www.signin.ebaye.com/
secure/loginsuccess/success.php. Usually, the anchor links
in legitimate sites point to different web pages of same lo-
cal domain. This fact of observation made us propose this
feature in detecting phishing behavior. We set a threshold
of 0.75 based on our experimental results to achieve better
results. {

alfw
alnw

if alnw > 0

0 otherwise
(1)

where alfw is frequency of most frequent anchor link and
alnw is total number of anchor links in a website.

3.4 TargetDomainCheck
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Figure 3: flow chart of HeuristicsCheck module

We compute identity of the website based on the frequency
of the domains in anchor links. The domain with maximum
frequency is declared as an identity of that website. This
module gives the target of a phishing site only when the
phishing site mimics anchor links of legitimate site. Hence,
the websites which gets identified by the Zero Links filter
will not undergo Target Domain Check process as shown in
Figure 3. For most of the legitimate sites, Target domain
and local domain will be same where as for the phishing
sites they are different. It should be noted that phishing
sites which contain more number of null (#) links or com-
mon page redirection also have same local domain and target
domain.

4. EXPERIMENTATION AND RESULTS
Our application FeedPhish is implemented in Java plat-

form. It takes URL as input and outputs the status of web-
site as legitimate or phishing site along with target website.
We have used Selenium WebDriver for automation of feed-
ing fake credentials into login fields such as username and
password. Use of Selenium invokes a browser externally,
with input URL given by the user in the application. The
browser can be either a chrome or Firefox or opera or ex-
plorer. We have used Firefox as browser for opening the
URLs. Prior to this, validation of login page is performed
to apply the phishing detection process.

We used Jsoup library [2] for extracting hyperlinks of sus-
picious websites. Jsoup is a HTML parser which provides
convenient API for extracting, finding, manipulating data

Figure 4: Modal window LoginCheck failure

from a URL. Heuristic features such as zero links in the
body of HTML, Common Page Redirection ratio (CPRR),
and identity of the website are calculated using Jsoup API.

We have collected 2342 websites for checking the status of
legitimacy, out of which 1459 are phishing sites and 883 are
legitimate sites. We randomly picked legitimate sites from
50000 websites of Alexa database such that less traffic web-
sites are also been considered. The Attacker attempts to
hack the less traffic domains as it is less secured website and
easy to compromise the domain. Hence, to prevent biasing
on popular websites, we considered random websites from
a large database unlike considering from top 1000 or 3000
websites. All the URLS are collected from two well-known
streams. Phishing sites are collected from PhishTank repos-
itory and legitimate sites are collected from Alexa database
as shown in Table 2.

The performance of LoginCheck module is assessed in de-
tecting login pages of a given URL. The results are shown
in Table 3. 98.64% of legitimate login pages and 97.53%
of phishing login pages are correctly detected by this mod-
ule. The failure detection of login pages in both legitimate
and phishing sites is due to the different designs followed by
the websites. The websites which design their password field
with type=text input type instead of type=password are con-
sidered as non-login pages. This behavior is mostly found
in phishing sites and less reputed websites. These failure
cases can be reduced by searching for keywords of password
input fields in the websites. Websites with Modal window
seeking login information may not have any sign in anchor
link or button instead it may have an image or icon to ac-
cess the login modal window as shown in Figure 4. The at-
tempt to detect the login page for the above cases through
LoginCheck module are unsuccessful.

We considered only successful login page detected sites
as dataset for the experimentation in our application. We
have considered five metrics to calculate the performance of
our application in detecting phishing websites. True pos-
itive (phishing sites classified as phishing), True Negative
(legitimate sites classified as legitimate), False positive (le-
gitimate classified as phishing site), False negative (phishing
site is classified as legitimate), Accuracy (rate of correctly
classified instances. The performance results of our work is
given in Figure 5.

We achieved False positive rate (FPR) of 5.63 % due to
the following scenarios.

1. On use of submit() method on the form, we are able
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Table 2: Source of websites
Type Source Total instances Link

legitimate Alexa Global Sites 883 http://www.alexa.com/topsites
phishing PhishTank 1459 https://www.phishtank.com/developer info.php

Table 3: Result of LoginCheck module

Type
Total

instances
Successful
detection

Accuracy(%)

legitimate 883 871 98.64
phishing 1459 1423 97.53

Figure 5: Performance results of our FeedPhish ap-
plication

to bypass client side validation involved on submit but-
ton but due to which we also arrive with not found page
or undesired login successor page as shown in Figure 6.
For example, consider a login page of website with URL
https://bforexlogin.tradenetworks.com which seeks login
information as shown in Figure 6. When we submit the
sensitive information with click() method we get the out-
put as shown in Figure 6 (b) whereas if we submit the
login information with submit() method it results the un-
desirable output as shown in Figure 6 (d). We can find
login page before submit operation in (a) and URL of
website in (c).

2. On submitting fake credentials, some legitimate sites
resulted ”incorrect username or password”or reset anchor
link page as a login successor page in place of displaying
repeatable login page.

3. On performing submit() method on login modal win-
dow of some legitimate sites, we reach home page as login
successor page in place of arriving at modal window login
interface.

In the above cases, FeedPhish is classifying the website as
phishing resulting in false positive rate of 5.63 %. It should
be noted that, most of the legitimate websites which are clas-
sified as phishing are either less reputed or poorly designed
websites. We achieved 2.39% false negative rate (FNR) as
phishing sites bypassed all filters (FeedFakeCredentials, zero
links, CPRR) in the application.

Before discussing contribution of each filter, we explain
the selection of threshold (t) for CPRR. Out of total 2294

websites, 1276 websites are classified by feedFakeCredential
filter i.e. websites which have successfully logged in. 108 out
of remaining 1018 are filtered by zero links filter i.e. web-
sites which have no links. For the remaining 910 websites,
common page redirection ratio filter (CPRR) is applied with
different thresholds(t) ranging from 0 to 1 and correspond-
ing false positive rate (FPR) and false negative rate (FNR)
are calculated as shown in Table 4. It should be noted that,
for a better anti-phishing technique, FPR and FNR should
be as minimum as possible.

From Table 4, it is observed that, at threshold t=0.75,
all the remaining 910 websites are correctly classified with
an acceptable percentage of FPR and FNR of 1.56 % and
45.33% respectively. It is also observed that least misclassifi-
cation rate of 5.16 % is found at t = 0.75. We also found that
false positive rate (FPR) increasing on increase of thresh-
old and false negative rate (FNR) decreasing on decrease of
threshold. Misclassification rate is the number of misclassi-
fied websites out of total number of websites. Overall Accu-
racy measures total accuracy calculated with combination
of all three filters. Predicted Phish represents the number
of websites which are classified as phishing sites based on
the given threshold t. The websites which are above and
equal to t are classified as phishing otherwise legitimate. L
and P represents actual status of website as legitimate and
phishing respectively.

For instance, consider a threshold t = 0.75, 54 websites are
above or equal to t which are classified as predicted phish out
of 910 total websites. Remaining 856 (910-54) are classified
as legitimate sites. Out of 54 predicted phish, 13 legitimate
sites are misclassified as phishing and out of remaining 856
(910-54) predicted legitimate websites, 34 (75-41) phishing
sites are misclassified as legitimate site. Hence, total Mis-
classification rate with respect to CPRR filter leads to 5.16
% ((34+13)/910). The Misclassification rate for each fil-
ter is calculated and added to get the total Misclassification
rate (TMCR) for FeedPhish application. This parameter
(TMCR) is used to calculate the overall Accuracy of the ap-
plication. We observed that, FeedPhish achieved maximum
accuracy of 96.382 % at threshold 0.75.

Note that the threshold t = 0.75 is set just based on the
empirical experience. It is not guaranteed to be optimal
because attackers may employ different strategies while de-
signing the new phishing websites. Hence, the experimental
evaluation results distinct thresholds for different datasets.

The contribution of each filter in detecting phishing sites
is given in Figure 7. FeedFakeCredentials filter shared ma-
jor contribution with 87.84% in detecting phishing websites
followed by zero links filter with 6.89% detection ratio. We
also calculated the performance of each individual filter in
detecting phishing websites.

The Performance of individual filter in detecting phishing
sites is given in Table 5. FeedFakeCredentials filter has given
significant results than the other filters. The above filter is
able to detect 87.84% of total phishing sites followed by Zero
Links filter with a detection ratio of 52.35%.
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Figure 6: False positive case in our FeedPhish application

Figure 7: Contribution of each filter in detecting
phishing sites

Our application is independent of third-party services like
search engine, page ranking and WHOIS. Hence, it is able
to detect compromised domains too. Out of 1423 phish-
ing websites, our application found 239 compromised web-
sites. We used WHOIS database to calculate the age of a
domain of phishing site such that those websites with high
age are manually checked whether the phishing site is hosted
on compromised domain or not.

5. LIMITATIONS
This section explains the limitations of our application.

Firstly, our application is able to deal login modal window
which contains anchor text within the specified keyword set
(sign in, signin, login, log in) but it fails to handle if the
anchor text is replaced with an icon or an image.

Secondly, we did not consider Single Sign-On (SSO) web-
sites as they use JavaScript functions to handle different
login interface for different websites. However, JavaScript
actions can be executed through selenium but it increases
time complexity of the detection process as they are exe-
cuted at run time.

6. CONCLUSION
In this paper, we proposed a technique which detects

phishing sites based on automation of human behavior for
submitting sensitive information. It also identifies target
domain of a phishing website. It neither depends on third-
party services such as search engines, WHOIS or page rank
nor needs any prior knowledge of websites like history, train-
ing data, blacklist or whitelist. Due to which, it is able to
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Table 4: Calculation of Threshold value
Predicted Phish Threshold(t) L P FPR(%) FNR(%) Misclassification rate(%) Overall Accuracy(%)

8 1 5 3 0.59 97.33 8.46 95.075
9 0.95 6 3 0.72 97.33 8.57 95.031
12 0.9 7 5 0.84 93.33 8.46 95.075
44 0.85 11 33 1.32 56 5.82 96.121
49 0.8 11 38 1.32 49.33 5.27 96.339
54 0.75 13 41 1.56 45.33 5.16 96.382
55 0.7 14 41 1.67 45.33 5.27 96.339
64 0.65 23 41 2.75 45.33 6.15 95.99
68 0.6 27 41 3.23 45.33 6.70 95.772
74 0.55 33 41 3.95 45.33 7.36 95.511
109 0.5 67 42 8.02 44 10.99 94.072
112 0.45 69 43 8.26 42.66 11.09 94.028
130 0.4 86 44 10.29 41.33 12.86 93.33
191 0.3 144 47 17.24 37.33 18.90 90.94
323 0.2 268 55 32.09 26.66 31.64 85.88
514 0.1 454 63 54.37 16 51.21 78.12
910 0 835 75 100 0 91.76 62.04

Table 5: Performance of individual filter
Filters Phishing instances Phishing detections Ratio(%)

FeedFakeCredential 1423 1250 87.84
Zero link 1423 745 52.35

Common page redirection ratio 1423 575 40.41

detect phishing websites which are hosted on compromised
domains. It is also able to detect phishing sites containing
embedded HTML files which most of the existing techniques
fail to address. It also detects phishing websites which use
captcha verification in the login page. In the future, we in-
tend to include additional heuristics to detect phishing web-
sites which use JavaScript events on links or input fields.
We also would like to address the Single Sign-On phishing
websites.
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APPENDIX
A. PHISHING EXAMPLE

In this section, we present the demonstration of detection
of phishing site with an example. Figure 8 shows the inter-
face of our application which takes input as suspicious URL
and outputs the status of website as legitimate or phishing.
We consider a live phishing site from PhishTank database
and is fed to the FeedPhish application. The suspicious web-
site undergoes filtering process to be classified as a legitimate
or phishing site. In this example, on submitting the fake
values to a login form, the login successor page redirects
to target legitimate site. Hence, the website is classified as
phishing site based on the domain conflict of websites. We
can also find the primary domain of login page and login
successor page in Figure 9.The output interface of our ap-
plication is shown in Figure 10. The phishing site of our
example can be seen in Figure 11.
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Figure 10: Output interface of our FeedPhish application

Figure 11: Phishing site targeting Alibaba website
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