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ABSTRACT
The high mobility of Army tactical networks, combined with their
close proximity to hostile actors, elevates the risks associated with
short-range network attacks. The connectivity model for such short
range connections under active operations is extremely fluid, and
highly dependent upon the physical space within which the ele-
ment is operating, as well as the patterns of movement within that
space. To handle these dependencies, we introduce the notion of
“key cyber-physical terrain”: locations within an area of opera-
tions that allow for effective control over the spread of proximity-
dependent malware in a mobile tactical network, even as the ele-
ments of that network are in constant motion with an unpredictable
pattern of node-to-node connectivity. We provide an analysis of
movement models and approximation strategies for finding such
critical nodes, and demonstrate via simulation that we can identify
such key cyber-physical terrain quickly and effectively.

1. INTRODUCTION

1.1 Motivation
Army tactical networks in the field face a unique set of security

considerations not found in either more conventional wireless net-
works or fixed infrastructure networks. While much previous work
in analyzing the spread of malware in networks (including tacti-
cal networks) focuses on the logical connectivity of the graph over
time, these logical connectivity paths are often dominated by long-
range tactical links which introduce some degree of stability to the
logical connectivity graph. However the close proximity of Army
tactical networks to adversarial networks introduces new consid-
erations in the form of spatial properties of the network: which
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units are in close proximity to each other and at what times. This
form of connectivity is particularly relevant in the case of attacks
that restrict themselves to short-range wireless communications –
such as through 802.11 or Bluetooth network stacks – which may
be more difficult to detect due to their failure to cross more con-
ventional security boundaries or higher-resource nodes capable of
fielding more sophisticated intrusion detection systems.

The short range of these attacks means that – at any given instant
– the communications graph available to the malware is effectively
disconnected, and it is only the mobility of the infected compo-
nents over time that brings new victims into range and allows it
to propagate. In addition, detection or remediation of such infec-
tions may be prohibitively difficult to perform in the field, perhaps
involving detailed scans, or simply complete reimaging or replace-
ment of any potentially compromised devices, and so only carried
out at particular locations. Furthermore, while standard defensive
measures are effective against known malware and minor variants,
novel (“zero-day”) attacks may be specifically developed for and
deployed against military mobile networks. This malware may not
be detectable, and so understanding how to bound the potential im-
pact of such malware, even when not specifically alerted to its pres-
ence, is an important problem.

The notion of mobility over time, combined with the regulari-
ties in deployment and mobility of individual Army components
(such as regular patrols, movement along roads and highways, and
so forth), and limited capabilities to detect or remediate such at-
tacks, leads us to our notion of key cyber-physical terrain: critical
points in the spatio-temporal graph which can be exploited to limit
the spread of short-range malware. Identifying such critical points
turns out to be surprisingly difficult in practice and so we explore
several methods – from simple graph-theoretic approaches to dy-
namical system approximations to full simulation – that capture
different aspects of this problem.

1.2 Related Work
Mathematical models of virus spread were first developed in the

context of biological epidemics, primarily compartmental models
which assume homogeneous interaction rates within the popula-
tion, such as the well-known SIR (Susceptible-Infected-Recovered)
model [7] and its numerous variants. Kephart and White apply
compartmental models to study the dynamics of malware spread
in cyber networks, additionally using simulation to evaluate un-
der which assumptions the compartmental models are most accu-
rate [6]. They consider several network topologies, such as Erdos-
Renyi random graphs, connected regular graphs, and sparse graphs
with a high clustering coefficient. In all of these topological mod-
els they study the number of infected nodes in the population over
time and how various factors affect convergence to a steady state,
finding that in many cases there exists a sharp epidemic threshold.
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Others have extended such models to additional network topologies
and contexts. For example, Boguna et al. [1] and Dezső et al. [3]
focus on epidemic models for power-law networks.

Marvel et al. propose a framework to evaluate cyber agility, but
they focus on scenarios in which either a specific vulnerability or
infected node is known to exist, and attempt to optimize the patch-
ing and isolation process in the network to preserve network in-
tegrity under various constraints including connectivity and power
usage [8]. Huber et al. examine a similar problem using a decision
support system in a small network of 10 active nodes [5]. Both
cases assume malware with complete access to the network stack,
which both allows longer-distance propagation than the local model
we consider, and significantly increases the probability that the ad-
versary will be detected.

Mickens et al. study device-to-device spreading of malicious soft-
ware in mobile ad-hoc networks (MANETs) by explicitly model-
ing node mobility [9, 10]. Valler et al. develop a framework for
analyzing malware spread in MANETs under the SIS (Susceptible-
Infected-Susceptible) model [14]. Su et al. perform simulations
using trace data drawn from real-life sampling of over 10,000 de-
vices in a commuter train station to examine the propagation dy-
namics of Bluetooth worms, showing that Bluetooth worms can
infect a large population of vulnerable devices relatively quickly in
an urban environment [11]. On the other hand, Wang et al. model
the spread of malware across networks of mobile phone users and
observe that Bluetooth-based malware spreads slowly due to the
short range of Bluetooth and therefore the relatively low contact
rate between devices [15]. This highlights the fact that the dynam-
ics of malware spread in MANETs varies significantly based on the
properties of the underlying movement patterns. In particular, the
highly-structured movement often seen in military contexts differ-
entiates mobile tactical networks from civil MANETs and impacts
the propagation of malware in such settings [13]. In this work,
we explore how to leverage the structured mobility patterns of mo-
bile tactical networks to develop more effective defense strategies,
modeling tactical operations over a geographical region containing
towns connected by a road network, and proposing computational
methods to determine how to best allocate defensive resources.

1.3 Contributions and Outline
The main contributions of this work are:
• Model and problem formulation highlighting the need for

improved security in cyber-physical tactical operations
• Three computational approaches for deciding where to place

remediation stations to best control the spread of malware
• Evaluation and comparison of the three approaches

In Section 2 we describe our tactical model and propose three
computational approaches to determine the optimal defender strat-
egy. In Section 3 we perform experiments to evaluate and compare
the effectiveness of the approaches. We conclude with some dis-
cussion and directions for future work in Section 4.

2. METHODS

2.1 Model and Problem Statement
We consider a scenario in which tactical units of soldiers are

deployed to towns in the same geographical region, connected by
a road network. As time goes on, a unit may get redeployed to
another town, at which point it travels from its current town to the
designated town through the road network.

Each soldier is equipped with a mobile device that facilitates
short-range wireless communication, such as Bluetooth, on the bat-
tlefield. Each device regularly scans the environment for nearby

Figure 1: An example road network. Towns D and E may be the
most central according to many metrics, but the best pair of towns
would likely include one of {A,B,C} and one of {D,E}.

friendly devices. When friendly devices come within communica-
tion range, they automatically connect, enabling data transmission.

Enemy forces may attempt to infiltrate the allied cyber network
by infecting allied devices with self-propagating malware, for ex-
ample by infecting the device of a captured soldier or by deploying
cyber hacking teams that can infect allied devices remotely. When a
soldier with an infected device comes within range of a friendly sol-
dier with an uninfected device, the malware spreads. The malware
could, for example, give the enemy access to sensitive information,
or the capability to corrupt data on infected devices.

To protect their cyber network from attack, allied forces may es-
tablish some towns as remediation zones; any allied units entering
such towns pass through a checkpoint where their devices are re-
set, replaced, or otherwise cleaned of malware. However, resources
are limited, so judiciously choosing locations at which to establish
remediation zones is critical.

Objective: Given knowledge of the road network, situational
awareness of the location of enemy strongholds, and an assessment
of remediation resources currently available, determine the optimal
placement of remediation zones to minimize the fraction of devices
that are infected with malware.

Below, we explore three approaches to addressing this problem:
centrality analysis, dynamical systems, and agent-based modeling.

2.2 Centrality Analysis
In the centrality-based approach, we represent the road network

as a graph and use network centrality analysis to identify the towns
at which to establish remediation zones. The intuition is that the
most central vertices are the most important, either visited most
frequently or located at important junctures. LetG be an undirected
graph with vertex set V (G) = {v1, . . . , vn} corresponding to the
towns and edge set E(G) ⊆

(
V
2

)
corresponding to the roads. A

centrality metric assigns weights to the vertices in a graph based
on how central they are. For a given centrality metric µ, we let
µG : V (G) → R denote the mapping from the vertices of G to
their corresponding values under the centrality metric.

We consider two common centrality metrics:
• PageRank centrality [2] - favors vertices with connections to

other well-connected vertices
• Betweenness centrality [4] - favors vertices that lie on short-

est paths between many other pairs of vertices

The choice of metric may be context-specific. For example, PageR-
ank centrality has a natural correspondence with the frequency of
vertices being visited under a mobility model where units perform
a random walk on the road network, i.e. choosing the next town
to visit uniformly at random from the set of neighboring towns.
On the other hand, Betweenness centrality naturally corresponds
with vertex frequency under a random waypoint mobility model,
i.e. where units choose a town uniformly at random from the set of
all towns and then traverse a shortest path to get there.
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Algorithm 1 Centrality-based algorithm

Input: A graph G, a centrality metric µ, and an integer k ≥ 1.

Output: A subset V ∗R ⊆ V (G) of size k corresponding to the
towns at which to establish remediation zones.

Initialize G0 := G

For 1 ≤ i ≤ k:

• Compute µi−1 = µGi−1

• Set vi := max
v∈V (Gi−1)

µGi−1(v)

• Set Gi := Gi−1 − vi
Return V ∗R = {vi : 1 ≤ i ≤ k}

If there are only resources for a single remediation zone, central-
ity metrics offer a straight-forward way to choose where to place it:
at the town corresponding to the vertex with the highest centrality
score. If there are resources for k > 1 remediation zones, however,
the natural solution of choosing the towns corresponding to the ver-
tices with the k highest centrality values may not be a very good
strategy. For example, consider the graph in Figure 1 with k = 2.
Vertices D and E have the top two centrality scores for PageRank
and Betweenness centrality, yet a better strategy would likely be
to choose one vertex in {A,B,C} and one vertex in {D,E} be-
cause that would cut the graph into two similarly-sized subgraphs
between which malware could not propagate.

To address this problem, we present an iterative algorithm, de-
scribed in Algorithm 1. The algorithm computes centrality scores,
deletes the vertex with the highest score, and repeats until k ver-
tices have been deleted. The remediation zones should be placed at
the towns corresponding to the deleted vertices.

However, there are still times when this does not produce the
desired behavior. For example, there is no clear way of incorporat-
ing situational awareness of which towns are controlled by the en-
emy and therefore most likely that allied devices will get infected
with malware. This is a severe drawback of any centrality-based
algorithm, since they are based solely on the network topology and
are not sensitive to the locations of enemy strongholds. Next we
consider an approach from the field of dynamical systems that ad-
dresses this problem.

2.3 Dynamical Systems
In the dynamical systems approach, we begin by modeling the

movement of each unit as a continuous-time Markov chain, where
states correspond to towns and roads, and transitions correspond
to changes in location in response to new tactical orders. When
deployed at a town, a unit stays there for some deployment time
until it receives new orders to travel to a neighboring town. When
it receives the travel order, it transitions to the road between the two
towns, and remains there for the duration of the travel time, which
may depend on the distance, terrain, weather conditions, etc.

Let Si denote the state corresponding to town i, and let Si,j de-
note the state corresponding to traversing a road from town i to
town j. We define the average wait time wi for state Si to be equal
to the average deployment time for town i. We define the average
wait time wi,j for state Si,j to be equal to the average travel time
from town i to town j.

There are two types of transitions: from a state Si to a state Si,j ,
corresponding to departure from town i along a road to town j; and
from a state Si,j to a state Sj , corresponding to arrival at town j
along a road from town i. Assuming that units leaving a town have

Figure 2: Markov chain for simple example scenario

Figure 3: Modified Markov chain for simple example scenario

the same likelihood of traveling to each of the neighboring towns,
the transition rates are as follows:

(∀ i, j : (vi, vj) ∈ E(G)) T (Si, Si,j) =
1

wi · di

(∀ i, j : (vi, vj) ∈ E(G)) T (Si,j , Sj) =
1

wi,j

The Markov chain for an example scenario is illustrated in Figure 2.
Next, we describe the movement of all units collectively using

a compartmental model corresponding to the Markov chain de-
scribed above, capturing the fraction of units in each state and the
flows between them with a set of differential equations. These
equations can then be used to solve for the fraction of units in
each state at equilibrium, indicating which towns will be most fre-
quently visited, which could be good candidates for remediation
zones. Due to space constraints, we refer the reader to [12] for a
more detailed technical description of this approach.

However, the same problems encountered under the centrality-
based approach above still remain: choosing a set of towns based
on each town’s individual value may not yield the best results col-
lectively; and we have not leveraged knowledge of the location of
enemy strongholds.

To address these problems, we consider a modified Markov model
that splits each previous state into two dual states, corresponding to
whether the unit is clean or infected. We denote this by states SC

i ,
SI
i , SC

i,j , and SI
i,j . Let VI denote the set of vertices corresponding

to enemy strongholds, and let VR denote the set of vertices corre-
sponding to towns with remediation stations, with VR ∩ VI = ∅.
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Algorithm 2 Monte Carlo algorithm

Input: A graph G representing towns connected by a road net-
work, a subset of vertices VI ⊆ V (G) corresponding to enemy
strongholds, a function f : 2V (G) → R mapping vertex subsets
VR to the resulting fraction of infected units if remediation zones
were established at the corresponding towns, an integer s indicat-
ing how many random samples to take at the corresponding point
in the algorithm, and an integer k ≥ 1 indicating the number of
remediation zones for which resources are available.

Output: A subset V ∗R ⊆ V (G) of size k corresponding to the
towns at which to establish remediation zones.

1. Initialize V (0)
R := ∅

2. Initialize V ∗R := ∅

3. Initialize f∗ := 0

4. For 1 ≤ i ≤ k:

• For v ∈ V (G)− V (i−1)
R :

– Initialize F sum[v] = 0

– Initialize F count[v] = 0

• for 1 ≤ j ≤ s

– Randomly select a subset V ′ ⊆ V (G) − V (i−1)
R

of size k − (i− 1)

– Set V ′′ := V
(i−1)
R ∪ V ′

– For v ∈ V ′:
∗ Update F sum[v] := F sum[v] + f(V ′′)

∗ Update F count[v] := F count[v] + 1

– If f(V ′′) < f∗:
∗ Set V ∗R := V ′′

∗ Set f∗ := f(V ′′)

• Set vi := min
v∈V ∗

R
−V

(i−1)
R

F sum[v]
F count[v]

• Set V (i)
R := V

(i−1)
R ∪ {vi}

5. Return V ∗R = V
(k)
R = {vi : 1 ≤ i ≤ k}

We assume that any unit entering a town in VI will become infected
with malware, and any unit entering a town in VR will become
clean. In addition, we assume that a clean unit entering a town with
at least one infected unit will become infected, and also that a clean
unit traversing a road with at least one infected unit traveling in the
opposite direction will become infected. The goal is to determine
the optimal set VR of size k, given VI . The modified Markov chain
for the example scenario is illustrated in Figure 3.

Similarly to above, the movement of all units collectively can be
captured by a set of differential equations, which, given VI and VR,
can be solved efficiently for the equilibrium fraction of units in each
state (see [12] for details). In this modified model, however, we
have a way of quantifying the effectiveness of a proposed solution:
the total fraction of infected units at equilibrium. The remaining
challenge is in finding the set VR that minimizes that value.

If n, the number of towns, and k, the desired number of remedi-
ation stations, are small, then an exhaustive search may be feasible.
Otherwise, we propose two algorithms: one which simply samples
from the space of possible solutions and chooses whichever solu-

Figure 4: Agent-based model for simple example scenario

tion gives the best result; and one which is based on more sophisti-
cated Monte Carlo methods, described in Algorithm 2.

The dynamical systems approach addresses some of the prob-
lems with the centrality-based approach; in particular, it explicitly
represents the presence of enemy strongholds. However, it is less
flexible than the centrality-based approach in accommodating dif-
ferent mobility models; the Markov property is fine for modeling
a random walk on the road network, but cannot easily represent
multi-hop paths such as traversing the shortest path between two
towns. In addition, the model makes several simplifying assump-
tions that could compromise the accuracy of the results.

Next, we present an approach that gives greater flexibility in
modeling and also permits a higher degree of realism.

2.4 Agent-based Modeling
In this approach, we develop an agent-based model to repre-

sent the movement of and interactions between tactical units. The
agents are the tactical units, each represented by a Unit object.
The environment consists of Town objects, represented by circular
regions, and Road objects, each connecting two Towns. Towns
can be ally-controlled, enemy-controlled, or neutral. This approach
can accommodate many different mobility models, including both
the random walk and the random waypoint models for traversing
the road network. An agent-based model for a simple example sce-
nario is illustrated in Figure 4.

When a Unit is deployed at or passes through an enemy-controlled
Town, we make the worst-case assumption that the enemy will be
able to infect at least one of the soldiers’ devices, and that relatively
soon thereafter the malware will spread to the whole Unit as the
soldiers interact with one another. In addition, we assume that if
two Units are deployed to the same Town simultaneously, or if
one Unit passes through the Town where the other is deployed,
or if two Units pass each other on a Road, there will be at least
some contact between the Units; therefore, if one of them is in-
fected, the other will also become infected.

As before, our goal is to determine the set of vertices VR at which
to place remediation zones so as to minimize the fraction of in-
fected units. An obvious way to evaluate a proposed solution, then,
is to run the simulation for a period of time and then count how
many of the units are infected. Because of random variation, the
result should be averaged over multiple trials. As with the dynam-
ical systems approach, the remaining challenge is in finding the
set VR that minimizes that value. For this, we propose using ei-
ther the simple random sampling method or the same Monte Carlo
algorithm proposed above, Algorithm 2, substituting the results of
the agent-based simulation for the solution to the dynamical system
when defining the function f .

The agent-based modeling approach has higher fidelity and ex-
pressiveness than the other approaches, but can also be more com-
putationally expensive. In the following section, we evaluate both
the effectiveness and computational efficiency of the three methods
in determining the placement of remediation stations to best limit
the spread of malware.
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Figure 5: Labeled screenshot of simulation in Repast Simphony

3. EVALUATION
We now perform experiments to evaluate and compare the per-

formance of the three approaches. Since the agent-based model has
the highest fidelity of the three approaches, we use it as an evalu-
ative metric to compare different recommended placement strate-
gies. Given that, one might expect that the agent-based modeling
approach would trivially yield the best results. However, as we will
see, due to computational limitations this is not necessarily true.

Before we proceed with the experiments, we provide details of
our implementation.

3.1 Implementation and Experimental Setup
All three of the approaches are implemented in Java. Solving

systems of equations for the dynamical systems approach was done
using the JAMA linear algebra package. Simulations of the agent-
based model can be visualized using Repast Simphony, a Java-
based agent-based modeling and simulation environment. Exper-
iments are conducted on an Intel Core i7 processor operating at
2.40 GHz with 16 GB of memory running Windows 10.

Figure 5 gives a screenshot of an example run of the agent-based
simulation. The black circles represent neutral Towns, the red cir-
cles represent Towns under enemy control, and the green circles
represent Towns under allied control. Units are depicted by a red
‘X’ when infected and a black ‘X’ when uninfected.

For the experiments presented here, we consider five tactical
units operating in a geographical area consisting of 35 towns con-
nected by a road network. Units move at a speed of 10 m/s, and
deployments last 2 hours. We vary the number of infected towns
and remediation zones. Simulations were run for 10,000 time steps.
Results were averaged over 20 independent trials.

3.2 Results
The results of our experiments are shown in Table 1. For a base-

line, we also record the average fraction of infected units when
remediation zones are chosen uniformly at random. Due to space
constraints, only the results for Random Waypoint are shown.

The best performers under the Random Walk mobility model
were the Iterative PageRank Centrality method and the Dynami-
cal Systems methods (either using simple random sampling or the
more sophisticated Monte Carlo algorithm). The other methods
performed significantly worse than those, and comparably to one
another, sometimes not even matching the results of the uniform
random baseline.

Under the more realistic Random Waypoint mobility model, It-
erative PageRank was the clear winner, performing even better than

under Random Walk. This was surprising, and ran counter to our
intuition that PageRank would perform best under Random Walk
because it has a natural correspondence to walks on graphs. Sim-
ilarly, we were surprised that Betweenness centrality did not per-
form better under the Random Waypoint model, given its natural
correspondence to graph paths. With the exception of the Iterative
Betweenness method, all methods out-performed the baseline.

We note that we configured the ABM method to use fewer MC
samples than the Dynamical Systems method (10 instead of 100)
to keep its runtime comparable, since it does an evaluation over 10
sample trials for each candidate strategy rather than just solving a
system of equations once. We suspect that the small sample size
resulted in a high variance across trials, which could explain why
the ABM approach performed so poorly.

Runtimes are shown in Table 2. For this setting of the param-
eters, the centrality algorithms each ran in about 12 seconds, Dy-
namical Systems ran in about 25 seconds, ABM with MC in about
60 seconds, and ABM with random sampling in about 75 seconds.

4. CONCLUSIONS
We have proposed the notion of “key cyber-physical terrain” to

describe the risk posed by short-range wireless attacks under the
dynamic connectivity graphs of field operations: specific physical
locations at which mobile devices can be examined and remediated
to minimize the ability of an adversary to maintain a presence on
the mobile network. As the exact solution to this problem is com-
putationally intractable, we have also proposed three approximate
methods of solving the associated minimization problem – central-
ity metrics, dynamical systems, and agent-based modeling – under
two different models of unit mobility. Some of their pros and cons
are listed in Table 3.

Our results suggest that the problem of malware propagating
through short-range wireless communications is potentially quite
significant, with a high prevalence of malware persisting on the
network, even when the remediation zones are placed strategically
in response to the locations of the infection zones. It is also worth
noting that simple algorithms based on network centrality metrics,
in particular PageRank centrality, can match and even outperform
more complex approximations, even under the more realistic Ran-
dom Waypoint mobility model. In either case, we obtain solutions
reasonably quickly, with average runtimes of about 1 minute even
for our most computationally intensive approach. We note, how-
ever, that the variance for the agent-based modeling is relatively
high, as the total number of potential trajectories through the com-
binatorial number of remediation zones is prohibitively large; re-
sults could be improved by increasing sample sizes in the Monte
Carlo algorithm, at the cost of longer runtimes, which would be
further exacerbated as the problem scales up. Methods to mitigate
this variance will be explored in future work.

Our current results show that both our centrality and dynamical
systems methods can approach the accuracy of the more computa-
tionally intensive agent-based modeling approach under the mobil-
ity models used. On the other hand, the agent-based approach pro-
vides much greater flexibility for representing more sophisticated
and realistic movement patterns and higher-fidelity models. For
example, instead of random deployments and shortest-path traver-
sals, simulations could be performed using real-world maps and
scenarios, and paths may intentionally avoid locations of enemy
strongholds. An alternative problem formulation could allow strate-
gies to simultaneously define the traversal paths between pairs of
towns as well as the locations of the remediation zones. This will be
explored in future work, as well as extensions to our tactical model
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Table 1: Experimental results under the Random Waypoint mobility model, in terms of the fraction of units infected, averaged over 20 trials

# Inf
Zones

# Rmd
Zones

Betweenness PageRank Dynam Sys Agent-based Uniform
RandomTop-k Iter Top-k Iter Basic MC Basic MC

5 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 1 0.743 0.793 0.852 0.743 0.779 0.779 0.878 0.878 0.940
5 3 0.543 0.673 0.640 0.446 0.526 0.556 0.717 0.621 0.758
5 5 0.461 0.581 0.520 0.345 0.403 0.395 0.561 0.489 0.624
3 5 0.321 0.474 0.385 0.203 0.289 0.238 0.373 0.312 0.455
1 5 0.112 0.252 0.160 0.068 0.122 0.096 0.148 0.088 0.214
0 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 2: Runtimes for the different approaches, in seconds, averaged over 20 trials

Betweenness PageRank Dynam Sys Agent-based Uniform
RandomTop-k Iter Top-k Iter Basic MC Basic MC

Runtimes 0.209 0.209 0.209 0.208 0.414 0.418 1.247 1.040 1.247

Approach Pros Cons

Centrality
metrics

can be efficient,
choice of metric
can accommodate
different contexts
or mobility patterns

does not capture
travel times, cannot
specify enemy
towns, not good for
multi-site selection

Dynamical
systems

efficient, good for
multi-site selection

assumes Random
Walk mobility
pattern because of
Markov property

Agent-based
modeling

very flexible and
expressive, most
realistic, good for
multi-site selection

not as efficient as
other approaches

Table 3: Pros and cons of the three approaches

in which enemy infection regions as well as remediation zones may
be dynamic or increase in number.
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