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ABSTRACT
Improvement in the security and availability is important for
the success of the Internet of Things (IoT). Given that recent
IoT devices are likely to have multiple functionalities and
support third-party applications, this goal becomes challeng-
ing to achieve. Through an in-depth investigation of existing
IoT frameworks, we focused on two inherent security flaws
in their design caused by their device-centric approaches: (1)
coarse-grained access control and (2) lack of resource isolation.
Because of the coarse-grained access control, IoT devices suf-
fer from over-privileged applications. Furthermore, the lack
of resource isolation allows the possibility of Denial-of-Service
attacks.

In this paper, we propose a functionality-centric approach
to managing IoT devices, called FACT, which has two design
goals, namely, the principle of least privilege and the avail-
ability in terms of device functionalities. FACT isolates each
functionality of the device using Linux Containers and grants
a subject the privilege to access for each required functional-
ity. We provide the overall framework and detailed working
procedures between components that constitute FACT. We
built a prototype of FACT on IoTivity and show that it
accomplishes secure and efficient linkages between applica-
tions and functionalities of IoT devices through analysis and
experiments.
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1 INTRODUCTION
The Internet of Things (IoT) has emerged as a leading tech-
nology, and the scale of its expansion is overwhelming. It
is only a matter of time until connecting every device to
the Internet would become natural. The International Data
Corporation (IDC) forecasts that 28 billion IoT devices (or
things)1 will be installed by 2020 [19]. Many companies (e.g.,
Google, Samsung, and Qualcomm) establish their frameworks
and standards (e.g., AllJoyn, Android Things, IoTivity, and
SmartThings), and release various IoT devices to dominate
the IoT market [27].

Security is one of the most important requirements of
the IoT systems. Among the 184 requirements issued by
Internet of Things Architecture (IoT-A), 52 requirements
(roughly 30%) are relevant to security [28]. In practice, how-
ever, IoT devices hardly support existing security mechanisms
originally designed for servers, personal computers, or even
smartphones, because of not only their constrained resources
but also their diverse features (e.g., smart TVs with payment
and social networking supports). Accordingly, IoT devices
are becoming easy and attractive attack targets [8]. Thus,
security mechanisms that consider the features of IoT devices
have become imperative.

Furthermore, we observe the following two trends in the
recent IoT developments. First, the number of supporting
1We use the terms ‘device’ and ‘thing’ interchangeably throughout
this paper.
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functionalities of IoT devices are increasing. Second, IoT
devices tend to interact with third party applications. For
example, a healthcare IoT device can have many sensors
(e.g., pace and pulse sensors) and interact with diverse third
party applications to for logging or alarming. Previous IoT
frameworks adopt a device-centric approach that gives a user
or an application either all or no permissions to use IoT de-
vices because they usually have single or a few functionalities.
Without selectively controlling accesses to each functional-
ity (i.e., without satisfying the principal of least privilege),
IoT devices would suffer from over-privilege and Denial-of-
Service (DoS) attacks performed by third-party applications.
We need a new access control approach for IoT devices to
come up with their recent development trends providing and
controlling multiple functionalities.

In this paper, we first conduct a case study to know how
two popular IoT frameworks, SmartThings and IoTivity,
implement access control mechanisms. We confirm that they
suffer from the over-privilege and DoS problems we mentioned
since their access control mechanisms are based on a device-
centric approach. Motivated by the case study results, we
propose FACT, a functionality-centric access control system
to manage IoT devices securely.

In FACT, the basic unit of control and usage is not the
device, but the functionality. This functionality-centric ap-
proach resolves the security problems of the existing IoT
frameworks. First, FACT examines whether an application
has the privilege to access the functionalities it requests to
prevent unauthorized access. Users no longer have to worry
about security problems derived from unprivileged applica-
tions. Second, FACT isolates each functionality of IoT devices
to maximize the overall availability of the functionalities. De-
spite the attack of a malicious or compromised application to
a functionality (e.g., DoS attack), the isolation prevents the
attack from affecting the remaining functionalities such that
the functionalities can be provided to other applications.

We implement a prototype of FACT on IoTivity, which is
one of the popular open-source IoT frameworks. The evalua-
tion results confirm that FACT satisfies our security goals
with minimal overhead.

This work makes the following contributions:

• Novel study. To the best of our knowledge, FACT
is the first functionality-centric approach to protect-
ing IoT devices from third-party applications. Given
that recent IoT devices are likely to have many func-
tionalities and interact with third-party applications,
our approach is necessary for fostering a secure IoT
environment.

• Fine-grained access control. FACT prevents unau-
thorized applications from using any disallowed func-
tionalities of IoT devices. Malicious or compromised
applications are restricted from accessing the unau-
thorized functionalities of IoT devices.

• Functionality Isolation: FACT separates each func-
tionality, which restrains the functionalities from

affecting each other. Thus, resource exhaustion at-
tacks on a functionality cannot harm the availability
of the other functionalities.

This paper is organized as follows. Section 2 provides the
investigation of existing IoT frameworks and their problems.
Section 3 presents the security flaws in the existing IoT
frameworks, threat models, and our design goals. Section 4
presents the overview and detailed working procedures of
components that constitute the proposed FACT framework.
We present the implementation and evaluation results in
Section 5. Sections 6 and 7 provide discussion and related
works. Finally, we conclude in Section 8.

2 EXISTING IOT FRAMEWORKS
In this section, we investigate how the existing IoT frame-
works establish a connection between a host and an IoT device.
We classify the IoT frameworks into two types: commercial
IoT frameworks and open-source frameworks. For each type,
we select the most dominant framework: SmartThings2 and
IoTivity3. We analyze the frameworks with respect to access
control models and the basic units used for binding between
the subject and the object, which is summarized in Table 1.

2.1 SmartThings
Overview. SmartThings is a commercial IoT framework that
integrates heterogeneous IoT ecosystems. It supports around
170 IoT devices and communication protocols (e.g., Zigbee
and Z-Wave). A simple form of the SmartThings architec-
ture consists of SmartThings hub, SmartApps, and Device
handlers.

• SmartThings hub: acts as a gateway for connected
IoT devices by connecting devices directly to a home
network router. The hub is compatible with diverse
communication protocols such as Zigbee, Z-Wave,
and IP-accessible devices.

• SmartApp: provides the interface that allows users to
operate the functionalities of connected IoT devices.
A user can download and use it on smartphones,
called SmartThings Mobile.

• Device handler: represents the virtual wrapper of
physical devices.

SmartThings supports a web-based programming environ-
ment where app developers and device vendors can implement
SmartApps and Device handlers.

Capability. A capability in SmartThings is the basic unit
of authorization. It consists of two elements, namely, a set of
attributes and commands. Attributes represent the properties
of a device. Commands are ways that a user can control the
device. For example, a door control capability has a door
status attribute and two commands, open() and close(). A
SmartApp has to declare a capability to connect with a
device. Then, the system scans for the Device handlers that
support the requested capability and asks the user to select

2https://www.smartthings.com/
3https://www.iotivity.org/
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Table 1: Summary of access control mechanisms in IoT frameworks

Framework Access Control (AC) Connection Unit
Binding Units

Subject Object

SmartThings Account-based AC Capability SmartApp Device handler

IoTivity Device-based AC Resource Client device Resource

a device from the scanned devices for binding. In this model,
we consider a capability as the basic unit of connection.

Access Control. SmartThings provides a hierarchical frame-
work for its security. Accounts (i.e., SmartThings users) are
at the top of the framework. Under accounts, there are loca-
tions such as an office or a home. In general, SmartThings
hubs are located in these locations. Under location, there are
groups that represent physical spaces such as rooms. Finally
at the bottom, there are devices that belong to a certain
group. Once a user logs into a SmartApp with his account
and grants the location permission on the host device, the
application automatically gains access to a specified device
through a SmartThings hub, which is bound to a location.

Most of the SmartApps contain the capability lists defined
in their code. Once a SmartApp is installed via SmartThings
Mobile, it asks a user to select one among the devices (De-
vice handler) that contain the requested capability, and the
selected device would be bound to the SmartApp.

2.2 IoTivity
Overview. IoTivity is an open-source IoT framework that
enables seamless device-to-device connectivity to address the
emerging needs of the IoT. It follows the Open Interconnect
Consortium (OIC) standard specifications4 and is available
on various platforms [32]. The IoTivity architecture contains
servers, clients, and resource hosting devices.

• Server: represents an IoT device or a hub device
that aggregates the data of connected IoT devices. A
server provides various functionalities of IoT devices
to clients.

• Client: represents a user or a user device that at-
tempts to access IoT devices (servers).

• Resource hosting device: helps clients to discover
the address of servers and monitors server status. In
general, this role is taken by gateway devices (e.g.,
routers for Wi-Fi communication).

IoTivity developers implement client and server applica-
tions with IoTivity API. A server application called a resource
runs on an IoT device and handles requests from client ap-
plications on external devices.

Resource. The unit of connection and control is a resource
in IoTivity. A resource consists of three elements: identity,
property, and attribute. Identity is a uniform resource identi-
fier that consists of each device’s address and path. Property

4https://openconnectivity.org/resources/specifications

includes each device’s resource type or name defined by a
server, and its interface type, (e.g., the Internet and Blue-
tooth). Attribute is a key-value data of functionalities (e.g.,
temperature, humidity, and an air circulation mode).

Access control. To determine whether a client has the right
to access a server’s resource, a server maintains security in-
formation such as an access control list (ACL). Each access
control entry (ACE) in an ACL consists of subject ID, re-
source, and permission. Subject ID is the identity of a client
device. Resource is the resource type of the server. Permis-
sion is a type of the client’s privilege (e.g., read only, write
only, or both read and write) to access the server’s resource.

When the server receives a request from the client, the
policy engine in the server conducts the following procedure.
First, it looks up ACL with the subject ID in the request.
Next, it searches the ACE that matches with the resource in
the request, and checks whether the matching subject (client)
has the permission. Finally, it either grants or denies access
to the client.

2.3 Problems in Frameworks
We discuss the problems in two frameworks.

SmartThings. Fernandes et al. [13] analyzed the design of
SmartThings and found several security flaws related to over-
privilege and sensitive data (event) leakage. Furthermore, we
investigate other design flaws of SmartThings. We concentrate
on three problems among the identified security defects.

• SmartApp can access all capabilities of the imple-
mented by Device handler of the selected devices,
not only the requested capability.

• SmartApp can monitor any event data published by
the Device handler.

• With the location permission on the host device,
SmartApp gains access to location-bounded devices
through the SmartThings hub.

IoTivity. We investigate the design of IoTivity access con-
trol and find three security flaws.

• Resource, the unit of connection and control, has
a number of attributes, and IoTivity cannot grant
different access policies to each attribute.

• All attributes data of the resource are stored in the
same process or file system.

• Subject ID in the ACL maps to a client device, not
an application. Thus, IoTivity cannot grant different
access policies to each application in the client device.
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3 DESIGN FLAWS AND GOALS
3.1 Design Flaws
We organize a number of security flaws in IoT frameworks
and focus on the design flaws that cause the over-privileged
application and the availability problems in SmartThings
and IoTivity.

3.1.1 Coarse-grained Access Control. The two IoT plat-
forms implement the following access control models: an
account-based access control and a device-based access con-
trol, which result in account-to-device and device-to-device
authentication respectively. These models make an access
control decision by checking whether a subject (an account
or a host device) who sends a request has the privilege to
access the corresponding device (a thing). Thus, we call this
security model as a device-centric approach.

In the device-centric approach, the basic unit of control
and usage is a device. Fig. 2 shows a conventional device-
centric access control model in which a user has an IoT device
providing three functionalities and aims to use it via a client
application or device. The user can either allow or disallow
an application to access the IoT device depending on their
functionalities. Note that the device-centric access control
takes an all-or-nothing approach; therefore, the user cannot
specify which functionalities the client can use.

The device-centric access control is suitable for devices
that have a single functionality. In the past, most IoT devices
(e.g., sensors) have a single functionality; therefore, they did
not require any fine-grained access control mechanisms in
terms of the functionality. However, given the prevalence
of devices with multiple functionalities (e.g., smartwatches),
the coarse granularity of the device-centric access control
introduces security problems. For example, in Fig. 2, a user
wants to use the fnc functionality. If the user binds the
Client with T hingc, which has a single functionality, fnc,
no over-privileged problem will occur. However, if the Client
connects to T hinga with multiple functionalities, the Client
will be granted access to all functionalities defined in T hinga,
which include not only fnc but also other functionalities fna

and fnb that do not correspond to the user’s original inten-
tion. Furthermore, the device-centric access control disallows
an application to access a device to protect privacy-sensitive
functionalities, resulting in utility degradation. For example,
if a user disallows an application to access one of the pri-
vacy sensitive functionalities, then the application will be
restricted from accessing all of the functionalities declared
in the application including the privacy-insensitive function-
alities (e.g., clock, temperature, and humidity). Given that
IoT devices deal with both public and private information
simultaneously, this becomes a serious problem.

3.1.2 Lack of Resource Isolation. An IoT device conceptu-
ally separates functionalities to provide only the requested
access to the subject. Nevertheless, some concerns remain
regarding availability, because most IoT frameworks and de-
vices hardly support any resource isolation techniques. For
example, a malicious application can exhaustively request a

certain functionality to an IoT device (a type of DoS attack).
These requests can exhaust the resource (e.g., CPU, mem-
ory, and storage) of the devices by running a computation-
intensive process or abusing a log system. Moreover, because
of developers’ inexperience in mobile and IoT fields, recently
released applications exhibit disruptive behaviors such as
checking the status of the device too frequently and causing
the devices’ processor keep spinning [18]. Considering that
the IoT hubs or devices do not have sophisticated request
handling mechanisms, these malicious attempts can eventu-
ally damage the availability by freezing or shutting down a
device [25].

3.2 Threat Models and Design Goals
3.2.1 Threat Models. By exploiting the problems derived

from the design flaws in the existing IoT frameworks, we
consider two types of attacks, called misusing the functionality
and reducing the functionality, can be performed against IoT
devices. Note that we target application-level attacks on the
IoT frameworks; therefore, other types of attacks including
network and hardware attacks are out of the scope of this
paper.

First, over-privileged applications can abuse the function-
alities of IoT devices. An attacker attempts to access unau-
thorized functionalities of the IoT devices using a malicious
or compromised application. For example, we assume a smart
doorlock that has 1) battery status monitoring, 2) door sta-
tus monitoring (open or closed), and 3) door locking and
unlocking functionalities (Fig. 1a). A user wants to check
a smart doorlock’s battery status through an application;
therefore, he/she grants the application the privilege to access
the smart doorlock (e.g., the SmartApp declares a battery
capability for SmartThings, and the client is registered to the
ACL of the smartLock resource for IoTivity). Unfortunately,
the application is malicious and has a backdoor to exploit
other functionalities of the attached doorlock. While showing
the battery status information to a user to fulfill the original
objective, the application can check the lock status of the
door and even stealthily unlock the door when it is locked.

Second, an attacker can freeze or cease the IoT devices.
We revisit the smart doorlock case (Fig. 1b) to illustrate
this attack scenario. The user runs two applications on his
smartphone; App1 requests a functionality to monitor battery
status. App2 asks functionalities to (un)lock the doorlock.
However, if App2 repeatedly requests the smart doorlock
device to lock and unlock, App1 would have no way to monitor
the battery status.

3.2.2 Design Goals. To solve the problems derived from
the design limitations in the existing IoT frameworks, we aim
to provide a novel access control mechanism that encompasses
multiple functionalities of IoT devices with the following
design goals.

• The principle of least privilege: The access control
mechanism has to be able to grant privileges to a
subject as least as it requests to an object.
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(a) Challenges in device security because of application backdoors that abuse
unauthorized functionalities

(b) Challenges in device availability because of lack of functionality separation

Figure 1: Attack scenarios induced by design flaws of existing IoT frameworks

Figure 2: Device-centric access control in IoT frameworks
(Client: client application or device, fn: functionality, and
T hing: device)

• Availability: The access control mechanism has to
guarantee the availability of an IoT device even when
it suffers from a subject’s disruptive requests.

4 FACT
In this section, we propose FACT, a fine-grained functionality
centric access control system for IoT frameworks. FACT is
deployed on IoT devices, hubs, and clouds to achieve the
goals defined in Section 3.2.2. It allows IoT frameworks to
grant a subject the least privilege by providing only the
requested functionalities. Furthermore, FACT isolates the
functionalities from each other so that any disruption in one
functionality would not affect the availability of the other
functionalities.

4.1 Overview
Components. FACT mainly consists of six components (Fig. 3).

• Functionality Request Handler (FRH): A component
to securely connect the application with authorized
functionalities by interacting with Policy Manager
and Functionality Manager shown below.

• Policy Manager: A component to manage the func-
tionality permission information of each application.

• Functionality Manager: A component to manage the
overall functionalities of currently registered IoT de-
vices.

Figure 3: Overview of FACT. (ACL: Access Control Lists, App:
Application)

• Application-FACT Interface (AFI): An interface be-
tween applications and FACT to register applica-
tions and demanded functionalities.

• Thing-FACT Interface (TFI): An interface between
IoT devices and FACT to manage IoT devices and
process-requested functionalities.

• FACT Configurator: An administration application
to manage the overall settings of FACT.

Procedure. The overall procedures of FACT are as follows.
First, an IoT device is registered to FACT through the Func-
tionality Manager. The Functionality Manager identifies the
functionalities that the attached IoT devices provide and
initiates a server for each functionality. Next, the user regis-
ters his application to FACT through the Policy Manager,
which checks the functionalities requested by the application.
Then, it asks the user to select a device with the requested
functionalities he/she prefers to use with the application.
Once the user selects a device, the Policy Manager asks the
user to permit the applications to use the requested function-
alities in the selected device. Finally, the application sends
a request to the FRH. To check if the request is valid, the
FRH searches for the applications’ permission stored in the
ACL of the Policy Manager. If the request is valid, the FRH
communicates with the Functionality Manager to approve
the actions corresponding to the request.
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4.2 Functionality
FACT uses a functionality as a minimal object unit that
represents an independent service entity. Functionalities are
comprised of two types: sensing and actuating. A sensing
functionality has only one method that receives sensor’s
data or status information. An actuating functionality can
have multiple methods (e.g., lock and unlock in a smart
doorlock device). To provide a fine-grained access control,
FACT grants a client application different policies on different
functionalities. For example, recall the smart doorlock, which
has three functionalities, i.e., battery, door status, and lock.
FACT can authorize client applications only to read lock’s
status, while prohibiting access to other functionalities.

4.2.1 Requesting Functionalities. To simplify the applica-
tion registration process and reduce the developer’s burden,
we propose the FACT policy language (FPL). An application
developer has to write all the required methods corresponding
to the desired functionalities in FPL form and include it in
the application’s description. When a user or a system wants
to register a client application to FACT, it finds things that
support the requested functionalities.

Grammar. FACT adopts the Backus-Naur Form (BNF) no-
tation [23] for context-free grammar that effectively expresses
the clients’ requested methods.

We define the syntax of FPL as shown below:

〈policy rule〉 ::= ∅ | 〈 functionality list〉

〈functionality list〉 ::= 〈functionality〉 |
〈functionality〉‘,’ 〈functionality list〉

〈functionality〉 ::= 〈sensing〉 | 〈actuating〉

As mentioned previously, FACT considers two types of
functionalities, namely, sensing and actuating. A sensing-type
functionality represents an action to detect any occurrence of
events or change of status. An actuating-type functionality
represents an action that causes the device to move its com-
ponent or change its status. To reflect these characteristics,
each functionality can have different methods according to
its type as follows:

〈sensing〉 ::= 〈sensing name〉 ‘<’〈sensing method〉‘>’
〈sensing name〉 ::= string

〈sensing method〉 ::= ‘getStatus’

A sensing functionality has only one method which is
receiving its sensor’s status data. Note that functionality is a
minimal object unit such that a sensor functionality cannot
cover more than one sensor’s data.

〈actuating〉 ::= 〈actuating name〉 ‘<’〈actuating methods〉‘>’
〈actuating name〉 ::= string

〈actuating methods〉 ::= ‘all’ | 〈method list〉
〈method list〉 ::= ∅ | ‘getStatus’ | ‘setStatus’ |

〈method name〉‘,’ 〈method list〉

〈method name〉 ::= string

An actuating functionality has multiple methods (a set
of operations). It may contain vendor-defined methods, for
an action which cannot be controlled through simply setting
the status of the actuator. The FPL supports the vendor-
defined methods by allowing a method type as a string (line
6). Furthermore, an application developer can conveniently
declare device’s own methods for the actuating functionality
by adding ‘all’. With this command, the developer does not
need to register all methods of the target functionality (line
3).

4.2.2 Examples. In our previous example, the smartLock
device has three functionalities, namely battery, doorStatus,
and (un)lock. In FACT, the functions to obtain battery and
door status information (battery, doorStatus) are sensing
functionalities, while the actions to lock and unlock the door
((un)lock) are actuating functionalities.
Sensing. 1) battery - method: getStatus (battery remaining
percentage), 2) doorStatus - method: getStatus (whether
door is open or closed)
Actuating. 1) lock - method: setStatus (lock and unlock)

For a battery monitoring application, it needs to know the
battery status only.

1 d e s c r i p t i o n {
2 battery<getStatus>
3 }

With this description, FACT can show a user the list of
devices that have battery functionality that retrieves battery
status. Then, the user selects one of the devices from the list
to register the application to FACT. After registration, the
application can access only the battery status of the selected
device.

For an auto-lock application, the application locks a door
when the door is closed and unlocked. To perform this job,
the application requires a set of functionalities including the
retrieval of the door and lock statuses as well as to lock the
door.

1 d e s c r i p t i o n {
2 doorStatus<getStatus >,
3 lock<getStatus , s e tStatus>
4 }

In the case of an administration application, it requires all
methods of functionalities.

1 d e s c r i p t i o n {
2 battery<getStatus >,
3 doorStatus<a l l >,
4 lock<a l l >
5 }
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Figure 4: The procedures of how an IoT device and its func-
tionalities are registered to FACT

Table 2: Functionality DB (Func ID: Functionality ID)

Thing ID Func ID State

smartLock lock Active
smartLock battery Active
smartBulb switch dormant
smartBulb lightColor dormant
temperatureSensor temperature Active
humiditySensor humidity Active

4.3 Management of Functionalities
4.3.1 Functionality Isolation. To isolate each functionality

from others, FACT applies Linux Containers (LXC) [16], one
of virtualization techniques. LXC makes programs portable
and isolated by packaging them in containers. It solves some
problems such as dependency conflicts and platform differ-
ences, but we focus on its security benefits that isolate a
container from a host and other containers. LXC virtual-
izes at the operating system level, whereas hypervisor-based
techniques virtualize at the hardware level. Thus, LXC re-
quires less computing and memory overheads than other
hardware-level virtualization [11]. Therefore, LXC is a suit-
able isolating technique for the IoT frameworks, which fits
for low-computing power devices. FACT creates some con-
tainers according to the number of functionalities. Given that
FACT makes one functionality server run on each container,
the container sandboxes its contained functionality from the
other functionalities.

4.3.2 Managing Thing Functionalities. We explain how the
Functionality Manager enables a user to register and update
functionality information of his/her IoT devices (Fig. 4).

Ê The thing registration process is initiated periodi-
cally. If the process is initiated by a user, it skips
Ë-Ì which are device discovery processes, and goes
to Í.

Figure 5: The procedure of how an application and its func-
tionality demands are registered to FACT

Table 3: Access control lists

App ID Func ID Methods

lockapp lock SetStatus
lockapp battery GetStatus
bulbapp switch SetStatus
bulbapp lightColor SetStatus
airConapp temperature getStatus
airConapp humidity getStatus

Ë In the case of periodical registration, the Function-
ality Manager scans nearby IoT devices via TFI to
discover new devices.

Ì The Functionality Manager asks a user’s consent to
register the discovered devices.

Í If the user approves, the Functionality Manager cre-
ates some containers according to the number of
functionalities and sets the default amount of re-
sources (e.g., CPU, memory, and storage) to the
containers automatically if the user does not assign
specific values to them.

Î Functionality servers establish a connection with
the selected device. These servers can interact with
external things via TFI.

Ï After the establishment, the Functionality Manager
updates the functionality DB that stores the pro-
vided thing ID, functionality ID, and connection
states as shown in Table 2.

In the case when the firmware is updated, an IoT device
may obtain new functionalities. To handle the added func-
tionalities, the Functionality Manager needs to update its
DB. The update procedure is the same as the registration
process except that it only deals with the new functionalities.
Thus, we do not explain its details.
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Figure 6: The procedure of how an application’s functionality
request is checked and delivered to an selected device

Some low-power IoT devices may not provide detailed
information and malfunctioning devices may provide mis-
information. Therefore, to obtain the complete and exact
information of IoT devices, the Functionality Manager needs
to interact with the external trusted server.

4.3.3 Managing Application Functionalities. The Policy
Manager registers a newly installed application that is aware
of FACT as shown in Fig. 5.

Ê The application contacts the Policy Manager via
AFI to register itself with a list of functionalities it
demands.

Ë The list can contain functionalities a user’s IoT de-
vices do not support, i.e., not-available functionalities.
To exclude them from the list, the Policy Manager
asks the Functionality Manager about the currently
available functionalities.

Ì The Policy Manager displays the filtered list to the
user and lets the user selectively grant permissions
to the application.

Í The Policy Manager updates the ACL according to
the user’s decision. The DB records the application
ID, functionality ID, and the requested methods of
the functionality as shown in Table 3.

The Policy Manager updates its DB when an application
is updated, or a user wants to change the permission set-
tings. The update procedure is the same as the registration
procedure except that it only deals with new or changed
functionality information. Therefore, we omit the detailed
explanation on updating application information.

4.3.4 Processing Functionality Requests. We explicate the
process of how FRH securely delivers an application’s func-
tionality request to the selected IoT device as shown in Fig. 6.

Ê A client application sends a functionality request to
the FRH through AFI.

Ë The FRH connects to a container that includes the
server deals with the requested functionality.

Ì The FRH asks the Policy Manager whether a user
has permitted the application to access the requested
functionality.

1 Response requesthandler ( request ){
2 switch ( request .func. method ){
3 case " getStatus ":
4 if (! aclCheck ( request .AppID ,

getStatus ))
5 break ;
6

7 return server . getStatus ();
8

9 case " SetStatus ":
10 if (! aclCheck ( request .AppID ,

setStatus ))
11 break ;
12

13 return server . setStatus ( request .
setValue );

14

15 case default :
16 if (! aclCheck ( request .AppID ,

request .func. method ))
17 break ;
18

19 return server . action ( request .func.
method );

20 }
21 return error(" Access Denied ");
22 }
23

24 bool aclCheck (AppID , method ){
25 return pairMatch ( server .id , AppID ,

method );
26 }

Listing 1: Request handling process

Í If the application has a privilege to access the re-
quested functionality, the FRH conveys the function-
ality request to the device through TFI. Otherwise,
the FRH discards the request.

Î The device returns the result to the application.

Listing 1 shows a request handling process after the FRH
has accessed the requested functionality server. The FRH
determines whether the requested method is getStatus, set-
Status, or vendor-defined. Afterward, the FRH checks the
permission through the ACL of the Policy Manager. These
procedures are described in Lines 4, 10, and 16 of Listing 1. If
the ACL has no matching ACE with the application’s request,
then the FRH returns an error message to the application
(Line 21). If the request is legitimate, the FRH interacts with
the things via the functionality server.

5 IMPLEMENTATION AND EVALUATION
In this section, we elaborate on how we implemented a proto-
type of FACT described in Section 4 and evaluate its security
effectiveness and performance overhead.
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5.1 Implementation Details
We implemented a prototype of FACT on Raspbian Jessie5
with IoTivity version 1.2.1. We developed two IoT devices,
one for a server and the other for a client device. For the
server, we used RaspberryPi 3 connected to an ultrasonic
sensor, a temperature sensor, an infrared light motion sensor,
and a Phillips Hue smartbulb, which has switch and color
change functionalities. The sample server applications that we
have built were running on the device. The total components
of the server consisted of 472 Source Lines of Code (SLoC).
The SLoC associated with the functionality registration and
method checks were 75 and 95 respectively. The server stored
the ACLs in Samsung 32GB EVO Class 10 Micro SDHC Card
(MB-MP32DA/AM). For the client, we built applications on
another RaspberryPi 3 device. The total components of the
client applications consisted of 196 SLoC. The SLoC related
to the functionality discovery and functionality requests were
110 and 86 respectively.

To separate each functionality from the other functional-
ities, we adopt Docker6 [24] to apply container techniques
for functionality isolation. Using Docker, FACT can insulate
each functionality server in each container and regulate the
amount of resources for the container.

5.2 Security Evaluation
In our security evaluation scenario, a device owner wants to
permit a client application to access the ultrasonic sensor, the
temperature sensor, and the smartbulb’s switch functionality,
whereas disallow access to the infrared light motion sensor
and the smartbulb’s color change functionality. The owner
has recorded corresponding permission rules in the ACLs
according to above scenario (Table 4). We tested whether
FACT can protect the IoT device from unpermitted func-
tionality access. Furthermore, we conduct application-level
DoS attacks on IoT devices, which apply FACT.

Over-privileged access prevention. The executed applica-
tion on the device attempted to discover the resource and ac-
cess the ultrasonic, temperature sensors, and the smartbulb’s
switch functionality, as well as the restricted infrared light
motion sensor and the smartbulb’s color change functionality.
Without FACT, the IoT device could not distinguish the
unpermitted functionality access from the permitted access.
Even though the application only had access to the ultrasonic
or temperature functionalities, the application was able to
access all functionalities when the device owner granted the
applications the privilege to access the IoT device. With
FACT, the IoT device successfully differentiated access to
each functionality. When the application attempted to access
the device functionalities, the device checked the ACL to
prevent access to unpermitted functionalities. As a result,
the IoT device only granted access to the ultrasonic and
temperature functionalities, and access to the infrared light
motion functionality was successfully thwarted.

5https://www.raspberrypi.org/
6https://www.docker.com/

Table 4: Functionality permission rules in the scenario

App ID Func ID Methods

lockapp ultrasonic GetStatus
airConapp temperature GetStatus
airConapp infrared light motion 7

bulbapp switch SetStatus
bulbapp changeColor 7

Table 5: Effectiveness of FACT preventing attacks

Attack type Attack description Effectiveness

Misusing Over-privileged application 3

Reducing Resource exhaustion 3

Packet flooding 7

Availability. An application with a permission still can
cause problems by generating excessive access to the func-
tionality either by programming mistakes or with malicious
intention. We conduct storage exhaustion attacks on the tem-
perature functionality server by exploiting the sensor data
log system. Without FACT, it disrupts the device’s other
functionalities because the device’s resources are exhausted
by the attacks. With FACT, the functionality isolation allows
the device to confine how much resources of the device each
functionality can consume (e.g., CPU, memory, and storage),
and thus prevent the misbehaving functionality from disturb-
ing other functionalities. Therefore, our fine-grained access
control guarantees the availability of functionalities.

Furthermore, we conduct the UDP flood attack on a func-
tionality, which is one of the popular DoS attacks. FACT is
not able to protect an IoT device against the attack. How-
ever, this type of attack is out of scope because it is related
to a network layer, not an application. Several researchers
investigate the defending mechanisms against flooding-based
DoS attack [1, 3, 12, 34]. Thus, when these mechanisms are
combined with our system and applied to the IoT environ-
ments, the security and the availability of IoT devices can
be more robust and reliable.

5.3 Performance Evaluation
FACT handles multiple functionality servers and uses Docker
to apply container techniques for functionality isolation. We
measured the performance overheads caused by the manage-
ment of multiple functionalities in FACT.

We varied the supported functionalities of a device from
1 to 30 and checked the latency and memory overhead 10
times each in two cases: ‘without Docker’ and ‘with Docker’
cases. We considered the ’without Docker’ scenario because
currently some operating systems (e.g., Windows 7 and 8) do
not support container techniques yet. Nevertheless, FACT
without Docker can be applied on such OSes and still prevent
over-privileged applications. In the ‘Without Docker’ case,
we executed a server process per functionality to keep the
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Figure 7: Registration time according to the number of func-
tionalities

Figure 8: Discovery time according to the number of function-
alities

functionality-centric access control without containers. In the
‘With Docker’ case, we made a container per functionality and
executed a server in each container to separate the resources
from the other functionality containers.

Latency Overheads. We measured the amount of time it
took to register a thing, discover functionalities of the thing,
and access a functionality. The thing registration time in-
creased as the number of functionalities increased in both
cases (Fig. 7) due to multiple updates in the functionality
DB. Furthermore, Docker brings about 8 ms latency over-
head because a registration request goes through via Docker
bridges.

The functionality discovery time is constant (about 35 ms)
in the ‘without Docker’ case. In contrast, the discovery time
depends on the number of managed functionalities in the
‘With Docker’ case (Fig. 8). It should be note that as the
number of containers that a hub device contains increases,
the communication overhead between in and out of containers
also increases.

We also measured the request processing latency when a
client requires a functionality. The request processing latency
is 4.59 ms in the ‘without Docker’ case and 8.64 ms in the
‘with Docker’ case. However, the latency difference between

Figure 9: Breakdown of the overall communication latency
with 1,000 permission rules in ACL

0

50

100

150

200

250

1 5 10 15 20 25 30

M
e

m
o

ry
 u

sa
ge

(M
B

)

# of functionalities

Figure 10: Memory usage according to the number of func-
tionalities with Docker

the two cases has a low impact because the network latency
is the dominant latency (over 85%) among the overall latency
(Fig. 9).

Note that our experiments were performed in a small area
(about 1 m2). The network latency will increase in case of
distant scenarios, and the percentage of the overhead becomes
trivial compared to the entire latency in real situations.

Memory Overhead. Fig. 10 shows the memory usage with
the increased number of functionalities in the ‘with Docker’
case. The Docker system spent 28 MB of memory and it
spent an additional 8 MB of memory per container when
the number of functionalities increases. We argue that the
memory overhead of FACT is within acceptable limits for the
hub devices, because personal PCs, smartphones, and even
SmartThings hubs (contains 512 MB RAM) have enough
memory to afford the additional memory usages.

When we executed a simple server application in the host
and the container, the average memory usages of the server
application in the host and in the container case were 310 KB
and 344 KB, respectively. The container affects the additional
memory usage of the server application about 30 KB, which
is negligible for IoT hubs or clouds.
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6 DISCUSSION
In this section, we discuss heterogeneous communication chan-
nels, operating system dependency, and the hub necessity.

Heterogeneous communication channels. Despite conduct-
ing our evaluation on Wi-Fi for communication, FACT can
adapt to other communication channels such as Bluetooth,
because most IoT frameworks serve APIs that cover hetero-
geneous communication channels. We only need to modify
the communication APIs or parameters (e.g., interface types)
associated with the communication channels.

Operating system dependency. The isolation technique of
FACT relies on Docker, which is LXC-based, such that the
operating system of the server devices should be a Linux-
based system (e.g., CentOS, Raspbian, or Ubuntu) to work
without any problems. However, Docker starts to support
MacOS and Windows. Recent Windows (e.g., 64-bit Windows
10 Pro) can use Docker, and we expect that its coverage would
expand in the near future.

Hub necessity. We show that FACT applies to hub-based
IoT frameworks only. However, we can adopt FACT to device-
to-device (distributed) environments if a thing that serves
functionalities has abilities to make containers and run server
processes. We expect that multiple functionality devices (e.g.,
smart watch) have sufficient computing power and memory to
satisfy those abilities. Thus, the devices could adopt FACT.

7 RELATED WORKS
In this section, we explain some studies related to FACT:
IoT security and over-privileged applications.

IoT security. Some researchers have proposed new IoT
systems that consider security. HomeOS [9] is an operating
system for a smart home, using a new type of abstraction to
provide extensibility and management. It considers all devices
in a home as peripherals. BOSS [6] is an operating system for
a smart building with many IoT devices. It focuses on how
to manage the relationship between components including
sensors, location, and time. SIFT [22] is a safety-centric
programming platform to build safe IoT environments. It
especially focuses on how to manage a large number of safety
rules while avoiding conflicts between the rules.

Given that smartphones are usually considered as the hub
of IoT systems, some researchers have enhanced smartphones’
security systems to secure the IoT systems. Dabinder [26]
was the first study that considered the security problem of
Android when managing external IoT devices. It has found
that malicious applications can access any IoT devices by just
obtaining a communication permission in the Android system.
SEACAT [7] provided an effective solution to the problem by
enhancing the Security-Enhanced Android (SEAndroid) [31]
to distinguish external resources when defining and enforcing
access control lists. Busold et al. [2] proposed context-aware
service mobility frameworks that enable users to securely
distribute the functionality of the application to mutually
untrusted smart devices on Android. Levy et al. [21] proposed
Beetle, a new hardware interface that allows many-to-many

secure connections between peripheral Bluetooth devices and
applications .

Furthermore, as the IoT becomes a reality, some studies
have analyzed the security defects of IoT devices and frame-
works, and how to protect them securely. Grant et al. [17]
examined the security of commercially-available smartlocks.
Ronen et al. [30] proposed extending the functionality attack
in the case of smart lights. Fernandes et al. [13] analyzed
the security design flaws of SmartThings. They have shown
that SmartThings applications, called SmartApps, support
capability-based device scanning, but allow to access the
whole capabilities of each scanned device because of coarse-
grained access control.FlowFence [14] is a system that requires
consumers of sensitive data to declare their intended data
flow patterns using Quarantined Module. ContexIoT [20] is a
context-based permission system for IoT platforms that pro-
vides contextual integrity by supporting context identification
for sensitive actions.

The current approaches of IoT frameworks continue to be
problematic because they do not consider each functionality of
IoT devices. Therefore, many IoT frameworks cannot satisfy
the principle of least privilege for IoT devices with multiple
functionalities. To the best of our knowledge, FACT is the
first functionality-centric approach that prevents applications
from abusing any disallowed functionalities of IoT devices.

Over-privileged applications. Many researchers have con-
sidered security problems due to over-privileged applications.
For example, researchers have discovered that many over-
privileged applications exist on application markets [4, 10].
Moreover, they can abuse other components, such as adver-
tisement libraries [15, 29, 35] and other benign applications
for privilege escalation [5]. Furthermore, Tuncay et al. [33]
raised the problems that originated in coarse-grained access
control of in-app embedded browsers. Note that the explained
studies have considered over-privilege problems within the
Android system. To the best of our knowledge, FACT is
the first approach to solving a new over-privileged problem
regarding device functionalities.

8 CONCLUSION
Given that recent IoT devices are likely to provide multiple
functionalities and interact with third-party applications, a
new security mechanism to protect sensitive functionalities ef-
fectively from malicious applications is crucial. In this paper,
we proposed a functionality-centric access control mecha-
nism for IoT frameworks, called FACT. In FACT, a user
can grant an application access to each functionality of IoT
devices to fulfill the principle of least privilege in terms of
device functionalities. Furthermore, FACT guarantees the
availability of IoT devices by isolating each functionality of
the device using LXCs from the other functionalities. The
novel functionality-centric access control system proves that
it can effectively guarantee the security and the availability
for IoT frameworks. We implemented a prototype of FACT
on IoTivity and showed that it satisfied our design goal with
minimal overhead.
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