
A Secure Algorithm for Outsourcing Matrix Multiplication
Computation in the Cloud

Shaojing Fu
College of Computer

National University of Defense
Technology

Changsha,China
Sate Key Laboratory of

Cryptology
Beijing,China

Science and Technology on
Information Assurance

Laboratory
Beijing,China

Yunpeng Yu
∗

College of Computer
National University of Defense

Technology
Changsha,China

yuyunpeng@nudt.edu.cn

Ming Xu
College of Computer

National University of Defense
Technology

Changsha,China

ABSTRACT
Matrix multiplication computation (MMC) is a common sci-
entific and engineering computational task. But such com-
putation involves enormous computing resources for large
matrices, which is burdensome for the resource-limited clients.
Cloud computing enables computational resource-limited clients
to economically outsource such problems to the cloud serv-
er. However, outsourcing matrix multiplication to the cloud
brings great security concerns and challenges since the ma-
trices and their products often usually contains sensitive in-
formation. In a previous work, Lei et al. [1] proposed an al-
gorithm for secure outsourcing MMC by using permutation
matrix and the authors argued that it can achieve data pri-
vacy. In this paper, we first review the design of Lei’s scheme
and find a security vulnerability in their algorithm that it
reveals the number of zero element in the input matrix to
cloud server. Then we present a new verifiable, efficient, and
privacy preserving algorithm for outsourcing MMC, which
can protect the number privacy of zero elements in origi-
nal matrices. Our algorithm builds on a series of carefully-
designed pseudorandom matrices and well-designed privacy-
preserving matrix transformation. Security analysis shows
that our algorithm is practically-secure, and offers a higher
level of privacy protection than the state-of-the-art algorith-
m.

Categories and Subject Descriptors
D.4.6 [Operating systems]: Security and Protection—
Security kernels, Verification ; G.1.3 [Numerical Anal-

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCC’17, April 02 2017, Abu Dhabi, United Arab Emirates
© 2017 ACM. ISBN 978-1-4503-4970-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3055259.3055263

ysis]: Numerical Linear Algebra—Determinants, Sparse,
structured, and very large systems (direct and iterative meth-
ods)

General Terms
Design, Security, Algorithms

Keywords
Cloud computing; Privacy-preserving;Matrix multiplication;
Outsourcing computation

1. INTRODUCTION
With cloud computing becoming more widely utilized,

more and more users with computational resource-constraint
devices tend to outsource their computing needs to the cloud
server which has plenty of computing resources in a pay-per-
use manner, relieving the clients from computation burden.
However, directly outsourcing computation to the cloud in-
evitably brings in new security concerns and challenges[2, 3].
The first concern is the privacy of input and output data.
Data privacy has become a critical issue for cloud users when
they host their data on remote and untrusted cloud storage.
To protect the privacy of sensitive data, the client should
encrypt the sensitive data before outsourcing and decrypt
the returned results from the cloud after outsourcing. The
second concern is the verification of the outsourcing com-
putation results. The cloud is not fully trusted. For exam-
ple, for the financial incentives, the cloud may decrease the
amount of the computations and then return invalid result-
s. Consequently, the client needs to verify the correctness
of the returned outputs. The third concern is efficiency of
outsourcing computation. In the outsourcing process, the
computation on the client side must be substantially small-
er than performing the original computational problem on
its own.

Over the past few years, many computational tasks have
been designed for secure outsourcing. For example, secure
outsourcing large-scale systems of Modular Exponentiation-
s[4, 5], bilinear pairings[6, 7], Attribute-based encryprion[8,

27

9], linear equations [10, 11, 12, 13], large matrix inversion
[14], large Matrix Determinant [3] and linear programming
[15]. Matrix multiplication computation (MMC) of the form
XY is one of the most basic algebraic problems in common
scientific and engineering computing task. MMC is widely
used in many applications, including sliding mode analysis,
discriminant analysis, 3D graphics simulations and so on.
In practice, MMC requires too much computation resources
for the resource-constraint clients. Despite the tremendous
benefits of cloud computing, directly outsourcing MMC to
the cloud inevitably brings in new security challenges [2].
The original matrices X and Y usually contain sensitive in-
formation, but the cloud is not fully trusted. Therefore, it is
very important for the clients to efficiently outsource MMC
to the cloud while preserving the data privacy.
In recent years, many secure outsourcing algorithms have

been proposed for solving MMC. Atallah et al. [16] first
investigated the problem of secure outsourcing for solving
MMC. However, directly utilizing their scheme for large
MMC will cause large amount of memory overhead and their
scheme reveals too much sensitive information to the un-
trusted parties. Benjamin et al. [17] proposed a secure al-
gorithm for outsourcing MMC to two non-colluding servers
which cannot resist the collusive attack. Atallah et al. [18]
proposed an algorithm for securely outsourcing MMC to the
cloud, using Shamir ↪aŕs secret sharing technique. But it re-
quires extremely heavy communication overhead and only
works over finite field Zp. Recently, Lei et al. [1] designed
an algorithm to securely outsource MMC by introducing per-
mutation matrix to preserve the data privacy. We show that,
however, the security arguments given for Lei et al’s work do
not hold, the cloud can obtain the number of zero elements
in original matrix from the encrypted matrix. Therefore, we
are motivated to design a new algorithm that enables clients
to outsource privacy-preserving large-scale matrix multipli-
cation computation to the cloud server while apparently re-
lieving the client of its high computation burden.
Our algorithm is designed to meet the efficiency and secu-

rity requirements under the computation outsourcing mod-
el. Our design delegates the most expensive computation for
MMC to the cloud to get rid of computation costs. To pro-
tect the data privacy, the original matrix is hidden by well
designed privacy-preserving matrix transformation. Securi-
ty analysis proves that our algorithm can properly protect
the privacy of input/output data of outsourced MMC. The
contributions of this paper can be summarized as follows:

1) We formulate the problem of privacy-preserving MMC
outsourcing. We examine the state-of-the-art algorith-
m and show its security weakness when meeting the
practical needs under the MMC outsourcing model.

2) We propose a privacy-preserving algorithm for secure
outsourcing of MMC in cloud systems, which reduces
the computation burden on the client side. And the
computation complexity for the client is no more than
O(n2).

3) Through a series of disguise-based techniques, our al-
gorithm can protect data privacy of MMC, especially
the number of zero elements in the original matrix.

4) We provide extensive theoretical analysis and exper-
imental evaluation to demonstrate its high efficiency
and security compared to the previous works.

Figure 1: A secure system model for outsourcing
MMC

The rest of this paper is organized as follows: In Section
2, we present the system and threat model together with the
design goals of our scheme. Section 3 gives the preliminaries
and notations that are used in our paper. In Section , we
provide a close overview of the MMC proposed by Lei et al.
[1], and identify its security weaknesses. Section provides
the detailed construction of our scheme together with the
theoretical analysis. Section analyzes the performance of
our scheme in experiments. Finally, we conclude our work
in Section 8.

2. PROBLEM FORMULATION
In this section, we present the system and threat model

for secure outsourcing of MMC, and introduce our design
goals.

2.1 System Model
We consider an asymmetric computing outsourcing archi-

tecture involving two different parties, as shown in Fig.1.
The cloud server contains the unlimited computing resources
in a pay-per-use manner. Meanwhile, the computational
resource-limited client cannot carry out the heavy computa-
tion of MMC locally, where the complexity is usually O(nρ)
(2 < ρ 6 3). Therefore, the client can outsource the MMC to
the cloud server. During the outsourcing process, the clien-
t outsources the most expensive computation to the cloud
server and retrieves the solution from the returned results.
And the client has to preserve the input and output data
privacy.

In this work, we pay more attention on finding a scheme to
securely and effectively outsource the MMC for X ∈ Rm×n

and Y ∈ Rn×s. Instead of directly sending the original X,Y
to the cloud server, the client first uses k (k is a small integer)
random vectors to transform the X,Y into the encrypted
version X ′, Y ′. The encrypted version X ′, Y ′ is sent to the
cloud server. After receiving the returned result of encrypted
matrix multiplication X ′Y ′ from the cloud server, the client
should be able to first verify whether the result is correct. If
the returned result is correct, the client then uses the secret
k random vectors to get the desired solution for the original
computation.

2.2 Threat Model
The security threats faced by the outsourcing computa-

tion system model primarily come from the behavior of the
cloud server. There exist two levels of threat models in out-
sourcing: honest but curious (semi-honest) cloud model and
malicious cloud model[19]. In the honest but curious cloud
model, the cloud server is guaranteed to properly conducts

28

the process specification. However, the cloud may try its
best to derive sensitive information from the input data and
the result of its own computations. In the malicious cloud
model, the cloud server behaves unfaithfully or intentional-
ly sabotage the computation for a rational economic agent,
e.g. to return an erroneous result to save its computing re-
sources, while hoping not to be detected by the client.
In this paper, we can view the threat model may behave

two levels of threat models. That is, the cloud server which
can be attacked/compromised may attempt to retrieve sen-
sitive information from the original matrix, and the multi-
plication XY . The cloud may also behave unfaithfully to
return an erroneous result to save the computing resources.
We also assume that the cloud knows the outsourcing algo-
rithm. Specifically, the privacy threats for MMC come from
the sensitive information in the original matrixX,Y , and the
multiplication XY . Our algorithm should be practically-
secure and handle result verification against the malicious
behave of the cloud.

2.3 Design Goals
In this paper, we identify the following goals that the out-

sourcing scheme should achieve:

1) Correctness: If the client and the cloud honestly follow
the scheme, the cloud should return the correct solu-
tion and the client can obtain the correct result of the
original MMC.

2) Security: The cloud cannot derive any sensitive in-
formation of the original matrix X,Y from the trans-
formed X ′, Y ′ , including the number of zero element
in the original matrix.

3) Efficiency: The local computation done by the client
(including key generation and transformation compu-
tation) should be substantially less than the original
MMC on his own. In particular, the overall computa-
tional complexity for the client is no more than O(n2).

4) Verification: The returned solution from the faithful
cloud server must be decrypted and verified success-
fully by the client. No erroneous solution from the
cheating cloud server can pass the verification with a
non-negligible probability.

3. PRELIMINARIES AND NOTATIONS
In this section, we describe some preliminaries and nota-

tions that are used in this paper.
Kronecker delta function: In mathematics, the Kro-

necker delta function is a function of two variables, usually
just positive integers. The function is 1 if the variables are
equal, and 0 otherwise:

δx,y =

{
1, x = y
0, x ̸= y

(1)

Random permutation: Random permutation function
is well studied in Combinatorial mathematics and group the-
ory. In Cauchy’s two-line notation, there are the preimage
elements in the first row, and the image elements of the
preimage elements in the second row. The random permu-
tation function can be expressed as:

π :

(
1 · · · n
p1 · · · pn

)
(2)

where π(i) = pi(i = 1, · · · , n). We define π−1 as the inverse
function of π. When the condition satisfies π(i) = i, the per-
mutation is called identical permutation denoted by I. The
description of random permutation generation is as follows:

Algorithm 1 Random Permutation generation

1: set π = I
2: for i = n : 2 do
3: select a random integer j where 1 ≤ j ≤ i;
4: swap π(i) and π(j);
5: end for

Computational indistinguishability: To enable the
client to securely delegate computing tasks to the cloud
server, the outsourced data should appear random. The no-
tion of privacy is defined as computational indistinguishabil-
ity[20]. The notion of computational indistinguishability is
central to the theory of cryptography. Informally speaking,
two probability distributions are computationally indistin-
guishable if no efficient algorithm can tell them apart (or dis-
tinguish them). Two probability ensembles X = {Xn}n∈N

and Y = {Yn}n∈N are computationally indistinguishable if
for every probabilistic polynomial time distinguisherD there
exists a negligible function negl such that

|Pr[D(Xn) = 1]| − |Pr[D(Yn) = 1]| < negl(n) (3)

The probability ensemble is consisted of a series of random
variablesX1, X2, · · · , and is denoted byX = {Xn}n∈N . The
notation D(Xn) denotes that x is distinguished from distri-
bution Xn. Distinguisher D(X) outputs 1 if it can distin-
guish x form distribution Xn in a probabilistic polynomial-
time.

Moreover, the notation can be extended to the case where
a distinguisher D has access to multiple samples of the vec-
tors X and Y. That is, to distinguish two matrices[12].

Definition 1. Let R ∈ Rn×n be a random matrix with
elements in its jth column with interval [−Rj , Rj] (∀j ∈
[1, n]). Matrices R and Q ∈ Rn×n are computationally in-
distinguishable if for every probabilistic polynomial time dis-
tinguisher D(·), there exists a negligible function negl such
that

|Pr[D(ri,j) = 1]| − |Pr[D(qi,j) = 1]| ≤ negl (4)

where i ∈ [1, n],j ∈ [1, n], ri,j is the element in the ith row
and jth column of R, and qi,j is the element in the ith row
and jth column of Q. Distinguisher D(·) returns 1 when it
identifies the input as a uniform distribution in the range
[−Rj , Rj].

4. REVIEW OF THE ALGORITHM PRO-
POSED BY LEI ET AL.

In this section, we first describe the secure algorithm pro-
posed by Lei et al. The input data of MMC is a matrix
X ∈ Rm×n and a matrix Y ∈ Rn×s.

The completed algorithm proposed by Lei et al.[1] con-
tains five sub-algorithms, namely KeyGen, MMCEnc, MM-
CSolve, MMCDec, ResultVerify. The detail of the algorithm
as follow:

KeyGen: Given a security parameter 1λ, which speci-
fies key space Kα,Kβ and Kγ , the client selects three set-

29

s of non-zero random numbers: {α1, α2, · · · , αm} ← Kα,
{β1, β2, · · · , βn} ← Kβ , {γ1, γ2, · · · , γs} ← Kγ . Then, the
client generates three random permutation: π1 ← RandP (1,
· · ·m), π2 ← RandP (1, · · ·n), π3 ← RandP (1, · · · s).
MMCEnc: The client first generates invertible matrices

P1, P2, P3, where P1(i, j) = αiδπ1(i),j , P2(i, j) = βiδπ2(i),j ,

P3(i, j) = γiδπ3(i),j . Then, the client computesX ′ = P1XP−1
2

and Y ′ = P2Y P−1
3 . Later, the encrypted MMC problem

ΦK(X ′, Y ′) will be outsourced to the cloud. For P1, P2 and
P3, their inverse matrices can be calculated as follows:

P−1
1 (i, j) = (αj)

−1δ
π−1
1 (i),j

P−1
2 (i, j) = (βj)

−1δ
π−1
2 (i),j

P−1
3 (i, j) = (γj)

−1δ
π−1
3 (i),j

MMCSolve: Given the MMC problem ΦK(X ′, Y ′), the
cloud can call any method to compute Z′ = X ′Y ′. Then
the cloud sends matrix Z′ back to the client.
MMCDec: Given the returned matrix Z′ from the cloud,

the client computes Z = P−1
1 Z′P3.

ResultVerify: The client computes P = X×(Y ×r)−Z×
r, where r is a random vector. If P = (0, · · · 0)T holds, the
client accepts Z as the correct solution; Otherwise, rejects
it and claims a failure to the cloud.
Security Requirements is the privacy for the input/

output data of the computation task of the client C. Infor-
mally, it means that the server S cannot learn anything from
outsourcing process in the protocol in the sense of indistin-
guishability argument.
In the following theorem, we will show the privacy are not

protected well in Lei ↪aŕs algorithm scheme, since it reveals
the number of zero element in the input matrix to cloud
server.

Theorem 1. In Lei et al.’s scheme, the number of zero
element in matrix X ′ (Y ′) is the same as that in matrix X
(Y) .

Proof. Let

X =

 x1,1 · · · x1,n

...
. . .

...
xn,1 · · · xn,n

 ,

P1(i, j) = αiδπ1(i),j , one can obtain

P1X =

α1xπ1(1),1 · · · α1xπ1(1),n

...
. . .

...
αixπ1(i),1 · · · αixπ1(i),n

...
. . .

...
αnxπ1(n),1 · · · αnxπ1(n),n

 .

Note that P−1
2 (i, j) = (βj)

−1δ
π−1
2 (i),j

, this leads to

X ′ = P1XP−1
2

=

α1
β1

xπ1(1),π2(1) · · ·
α1
βj

xπ1(1),π2(j) · · ·
α1
βn

xπ1(1),π2(n)

...
. . .

...
. . .

...
αi
β1

xπ1(i),π2(1) · · ·
αi
βj

xπ1(i),π2(j) · · · αi
βn

xπ1(i),π2(n)

...
. . .

...
. . .

...
αn
β1

xπ1(n),π2(1) · · ·
αn
βj

xπ1(n),π2(j) · · ·
αn
βn

xπ1(n),π2(n)

Thus, we have

X ′(i, j) = (αi/βj)X(π1(i), π2(j))

for any i, j. Then for X(π1(i), π2(j)) = 0, we have X ′(i, j) =
0 .

We give an numerical example to illustrate the inherent

flaw. Assume that X =

[
1 0 2
0 3 4

]
, the client generates

the secret keys: {α1, α2} = {1, 2}, {β1, β2, , β3} = {3, 4, 5},
π1 = [2, 1], π2 = [3, 1, 2]. Then the client has that P1 =[

0 1
2 0

]
, P2 =

 0 0 3
4 0 0
0 5 0

, P−1
2 =

 0 1
4

0
0 0 1

5
1
3

0 0

. The

client computes X ′ = P1XP−1
2 = =

[
4
3

0 3
5

4
3

1
2

0

]
. Thus,

the number of zero element of X ′ is same as that of matrix
X.

We prove that the privacy of X of MMC is not protected.
Let matrices P1, P2, P1

′, P2
′ be four matrices generated by

C, where P1(i, j) = αiδπ1(i),j , P2(i, j) = βiδπ2(i),j , P1
′(i, j) =

α′
iδπ′

1(i),j , P2
′(i, j) = β′

iδπ′
2(i),j . Given two matrices X =

(xi,j) and X ′ = (x′
i,j) which are chosen by the adversary A,

C computes T = P1XP−1
2 and T ′ = P1

′X ′P ′
2
−1

where

T (i, j) = (αi/βj)X(π1(i), π2(j))

and

T ′(i, j) = (αi
′/βj

′)X(π′
1(i), π

′
2(j)).

According to the number of zero element in matrices X and
X ′, the adversary A can distinguish T from T ′.

Similarly, we can prove that the number of zero element
in matrix Y ′ is the same as that in matrix Y and the privacy
of X of MMC is not protected. Thus, the cloud can obtain
the number of zero element in matrices X and Y in Lei et
al.’s scheme [1] and the client cannot protect the privacy of
the original matrices X and Y .

5. THE PRIVACY PRESERVING SCHEME
FOR OUTSOURCING MMC

In what follows, we describe our new proposed privacy p-
reserving scheme for outsourcing MMC which can hide the
numbers of zero element in matrix from the cloud. We first
describe the notation that is used in this letter.
Privacy-preserving Matrix Transformation allows the
client to hide the data of the matrix in the sense of compu-
tational indistinguishability. Specifically, assume that the
values of matrix A are within the range [−K,K], where
A ∈ Rn×n and K = 2l(l > 0) is a positive constant. Then
the client hides the privacy of matrix A by adding a ran-
dom matrix as Â = A + Z, where the random matrix Z is
constructed as follows:

Z =
[
u1 u2 · · · uk

]

vT1
vT2
...
vTk

 (2 ≤ k ≪ n)

where u1, u2, · · · , uk ∈ Rm×1 are the vectors of uniformly
distributed random variables ranging from −2p and 2p (p >
0), v1, v2, · · · , vk ∈ Rn×1 are the vectors of arbitrary positive
constants ranging from 2l and 2l+q (q > 0).

30

Our scheme is also consisted of five stages, namely Key-
Gen, MMCEnc, MMCSolve, ResultVerify, MMCDec.
KeyGen: The client specifies a positive integer k (2 ≤
k ≪ min(m,n, s)) and then picks 4k vectors {a1, · · · , ak ∈
Rm×1}, {b1, · · · , bk ∈ Rn×1}, {c1, · · · , ck ∈ Rn×1}, {d1, · · · , dk
∈ Rs×1}, where {a1, · · · , ak}, {c1, · · · , ck}, {b1, · · · , bk, and
d1, · · · , dk} are constructed as shown u, v in the notion
Privacy-preserving Matrix Transformation, respective-
ly.
MMCEnc: The client first calculate two matrices Z1 and
Z2 as follows.

Z1 =
[
a1 · · · ak

] bT1
...
bTk

 , Z2 =
[
c1 · · · ck

] dT1
...
dTk

Then, the client computes X ′ = X + Z1 and Y ′ = Y +
Z2. Later, the encrypted MMC problem ΦK(X ′, Y ′) will be
outsourced to the cloud.
MMCSolve: Given the encrypted MMC problem ΦK(X ′, Y ′),
the cloud can call any method to compute Z′ = X ′Y ′. Then
the cloud sends matrix Z′ back to the client.
ResultVerify: The client computes P = X ′ × (Y ′ × r) −
Z × r, if P = (0, · · · 0)T holds, the client accepts Z as the
correct solution; Otherwise, rejects it and claims a failure to
the cloud.
MMCDec: Given the returned matrix Z′ from the cloud,
the client computes XY = Z′ − S. The client computes S
as

S = (X + Z1)Z2 + Z1Y

= (X ′ [c1 · · · ck
]
)

dT1
...
dTk

+
[
a1 · · · ak

]
(

 bT1
...
bTk

Y)

Note that S is computed through matrix-vector multiplica-
tion and the complexity is O(n2).

Theorem 2. The proposed scheme is correct.

Proof. If the client and the cloud follow the scheme honestly,
we have

Z = Z′ − S

= X ′Y ′−S
= (X + Z1)(Y + Z2)− S

= XY + (X + Z1)Z2 + Z1Y − S

= XY

This implies that the decryption process will always yield
the correct result and hence the proposed scheme is correct.

6. SECURITY ANALYSIS
We prove the privacy for X of MMC. Let Z = (zi,j), Z

′ =
(z′i,j) be two matrices generated by the client. Given t-
wo matrices X= (ai,j), X

′= (a′i,j) which are chosen by the
cloud server, the client computes T = X + Z = (ti,j) and
T ′ = X ′ + Z′ = (t′i,j), where

tij = xij + zi,j

and

t′i,j = x′
i,j + z′i,j .

The Z, Z′ are constructed as shown Privacy-preserving
Matrix Transformation, thus ti,j and t′i,j are are compu-
tationally indistinguishable. Therefore, the advantage of the
cloud server to distinguish between T and T ′ is negligible.

Similarly, we can prove the privacy for Y of MMC. Since
matrices Z1 and Z2 are kept private by the client, the cloud
cannot derive any sensitive information about the element
of matrices X and Y from the transformed matrices X ′ and
Y ′.
Remark 1 : When k = 1, X ′ and Y ′ are computational-
ly indistinguishable from a random matrix. However, the
transform can leak the linear relation between the rows and
columns of Z if X or Y is a large sparse matrix. That is,
when k = 1, it leaks the numbers of the zero element. In
our scheme, let 2 ≤ k ≪ min(m,n, s)
Remark 2 : Note that Z1, Z2, r in our scheme can be only
used one time. Thus such parameters are freshly generated
for each time of outsourcing MMC.
Remark 3 : It is clear that Lei’s scheme reveals the rank
of the input matrix to cloud server since Rank(P1XP−1

2) =
Rank(X). Note thatRank(X+Z) ̸= Rank(X) andRank(X)−
kRank(X + Z) ̸= Rank(X) + k, Our scheme can hide the
rank of the input matrix in some sense.

7. EFFICIENCY ANALYSIS AND PERFOR-
MANCE EVALUATION

We first present the computational complexity analysis for
the proposed scheme in theory. Our efficiency analysis fol-
lows the methodology of Serigo et. al [12], which defines
the computational complexity of a party as the number
of floating-point (flops) operations (additions, subtractions,
multiplications, and divisions), bitwise operations and en-
cryptions that the party needs to perform. In the Key-
Gen, the client generates 4k vectors a1, · · · , ak, b1, · · · , bk
, c1, · · · , ck, c1, · · · , ck. To get b1, the client takes m · S
bitwise operations, where S is the number of bitwise oper-
ations to generate a random number by methods such as
Mersenne Twister[22]. Thus, to get 4k vectors, the client
takes k(m+ n+ n+ s) · S bitwise operations. In the MM-
CEnc, the client generates the matrices Z1 and Z2 which
takes k(mn + ns) floating-point operations, and computes
X ′ = X+Z1 and Y ′ = Y +Z1 which takes mn+ns multipli-
cations operations. Therefore, in the problem generation,
the computational complexity for the client is k(m+2n+s) ·
S+(k+1)(mn+ns) ·flops. The MMCSolve is conducted
by the cloud. In the ResultVerify, the client first generates
a random vector r, which takes s ·S bitwise operations, then
takes ns + mn + ms floating-point operations to compute
P = X ′ × (Y ′ × r) − Z × r. In the MMCDec, the client
computes S = X ′Z2 +Z1Y , which takes k(mn+ 2ms+ ns)
floating-point operations. Table 1 presents the comparison
of computation complexity for the client, privacy-preserving
between Lei et al. and our proposed scheme.
We evaluate the performance of our proposed scheme through
experiments. The algorithms are all programmed with Mat-
lab R2014a. The client-side workstation is configured as a
virtual machine equipped with a 64 GB RAM and 8 cores
(each runs at 2.1GHz). Fig 2 clearly illustrates the total
running time of the client of our algorithm with that of [1].
Each element in matrices and vectors randomly located in
(0, 1). Although accordance to our theoretical results, we
observe that the running time for the client of Lei et al.[1]

31

Table 1: Comparison of securely outsourcing Matrix Multiplication
Lei et al. Our Scheme

Problem
Generation

(m+ n+ s) · S+
(3(m+ n+ s) + 2mn+ 2ns)

k(m+ 2n+ s) · S+
(k + 1)(mn+ ns) · flops

Problem Verify s · S + ns+mn+ms · flops s · S + ns+mn+ms · flops
Problem Solve 2(mn+ ns) · flops k(mn+ 2ms+ ns) · flops

Privacy-preserving × X

2000 5000 8000 10000 12000 15000
0

5

10

15

20

25

dimension n

tim
e

 c
o

st
 (

se
co

n
d

)

k=2

k=50

k=100

Lei et al.[10]

Figure 2: The total running time of our scheme com-
pared with that of [1](m:n:s=4:5:6)

is more efficient than that of our scheme. The experimen-
t results demonstrate that our algorithm is more efficient
compared to that of [1].
Remark 3 : The choice of k is a tradeoff between security
and efficiency. In the proposed algorithm, we suggest that
the client can choose k as k ≤ 1%min(m,n, s).

8. CONCLUSIONS
In this paper, we have presented the security flaw of the algo-
rithm proposed by Lei et al. Although Lei et al. claimed that
their scheme is more efficient than others and can achieve
security, we have demonstrated that the algorithm cannot
protect the number of zero element in original matrices.
Therefore, the algorithm cannot preserve the privacy of the
outsourced data. We then propose a new privacy-preserving
algorithm for outsourcing matrix multiplication computa-
tion (MMC) to the cloud. By delegating the most expensive
computation of MMC to the cloud, our algorithm relieves
the client of its high computation burden. Moreover, with
a series of carefully-designed random matrices, our algorith-
m can properly protect the privacy of input/output data
of outsourced MMC. Particularly, it can hide the number
privacy of zero elements in the original matrix. Extensive
experiments demonstrate that our algorithm achieves higher
efficiency than the existing scheme in the client-side compu-
tation.

9. ACKNOWLEDGMENTS
This work is supported by the National Nature Science Foun-
dation of China (NSFC) under grant 61379144 and 61572026,
Open Foundation of State Key Laboratory of Cryptology
(No:MMKFKT201617)and the Foundation of Science and
Technology on Information Assurance Laboratory.

10. REFERENCES
[1] Lei X, Liao X, Huang T, et al. Achieving security,

robust cheating resistance, and high-efficiency for

outsourcing large matrix multiplication computation
to a malicious cloud[J]. Information Sciences, 2014,
280:205-217.

[2] Ren K, Wang C, Wang Q. Security Challenges for the
Public Cloud[J]. IEEE Internet Computing, 2012,
16(1):69-73.

[3] Lei X, Liao X, Huang T, et al. Cloud Computing
Service: the Case of Large Matrix Determinant
Computation[J]. IEEE Transactions on Services
Computing, 2015, 8(5):688-700.

[4] Chen X, Li J, Ma J, et al. New algorithms for secure
outsourcing of modular exponentiations[J]. IEEE
Transactions on Parallel and Distributed Systems,
2014, 25(9): 2386-2396.

[5] Wang Y, Wu Q, Wong D, et al. Securely outsourcing
exponentiations with single untrusted program for
cloud storage[C]//European Symposium on Research
in Computer Security. Springer International
Publishing, 2014: 326-343.

[6] Chen X, Susilo W, Li J, et al. Efficient algorithms for
secure outsourcing of bilinear pairings. Theor.
Comput. Sci. 562: 112-121 (2015)

[7] Ren Y, Ding N, Wang T, et al. New algorithms for
verifiable outsourcing of bilinear pairings[J]. Science
China Information Sciences, 2016, 59(9): 99103.

[8] Lai J, Deng R, Guan C, Weng J. Attribute-based
encryprion with verifiable outsourced
decryptiončőIEEE Transactions on Informarion
Forensics and Security, 2013čň8(8)čž1343-1354čő

[9] Sherman S. M. Chow: A Framework of
Multi-Authority Attribute-Based Encryption with
Outsourcing and Revocation. SACMAT 2016: 215-226

[10] Wang C, Ren K, Wang J, et al. Harnessing the Cloud
for Securely Solving Large-Scale Systems of Linear
Equations[C] IEEE International Conference on
Distributed Computing Systems. 2011:549-558.

[11] Chen X, Huang X, Li J, et al. New Algorithms for
Secure Outsourcing of Large-Scale Systems of Linear
Equations. IEEE Trans. Information Forensics and
Security, 2015, 10(1): 69-78

[12] Salinas S, Luo C, Chen X, et al. Efficient secure
outsourcing of large-scale linear systems of
equations[C] Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE, 2015.

[13] Yu Y, Luo Y, Wang D, et al. Efficient, secure and
non-iterative outsourcing of large-scale systems of
linear equations[C]//Communications (ICC), 2016
IEEE International Conference on. IEEE, 2016: 1-6.

[14] Lei X, Liao X, Huang T, et al. Outsourcing Large
Matrix Inversion Computation to A Public Cloud[J].

32

IEEE Transactions on Cloud Computing, 2013,
1(1):1-1.

[15] Wang C, Ren K, Wang J. Secure and practical
outsourcing of linear programming in cloud
computing[C] INFOCOM, 2011 Proceedings IEEE.
IEEE, 2011:820-828.

[16] Atallah M J, Pantazopoulos K N, Rice J R, et al.
Secure outsourcing of scientific computations *[J].
Advances in Computers, 2002, 54(01):215-272.

[17] Benjamin D, Atallah M J. Private and Cheating-Free
Outsourcing of Algebraic Computations[C] Privacy,
Security and Trust, 2008. PST ’08. Sixth Annual
Conference on. IEEE, 2008:240 - 245.

[18] Atallah M J, Frikken K B. Securely outsourcing linear
algebra computations[C] Acm Symposium on
Information. ACM, 2010:48-59.

[19] Lindell Y, Pinkas B. Secure multiparty computation
for privacy-preserving data mining. Journal of Privacy
and Confidentiality, 25(2):761́lC766, 2008.

[20] Katz J. Introduction to modern cryptography, second
edition. Crc Press, 2014.

[21] Gennaro R, Gentry C, Parno B. Non-interactive
Verifiable Computing: Outsourcing Computation to
Untrusted Workers[C] Advances in
Cryptology-CRYPTO 2010, Cryptology Conference,
Santa Barbara, Ca, Usa, August 15-19, 2010.
Proceedings. 2010:465-482.

[22] Matsumoto, Makoto, Nishimura, et al. Mersenne
twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator[J]. Acm
Transactions on Modeling and Computer Simulation,
1998, 8(1):3-30.

33

