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ABSTRACT
We consider the situation, where an adversary may learn the ephe-
meral values used by the prover within an identification protocol,
aiming to get the secret keys of the user, or just to impersonate the
prover subsequently. Unfortunately, most classical cryptographic
identification protocols are exposed to such attacks, which might
be quite realistic in case of software implementations. According
to a recent proposal from SECIT’2017, we regard a scheme to be
secure, if a malicious verifier, allowed to set the prover’s ephemer-
als in the query stage, cannot impersonate the prover later on.

We focus on the Okamoto Identification Scheme (IS), and show
how to make it immune to the threats described above. Via reduc-
tion to the GDH Problem, we provide security guarantees in case of
insufficient control over the unit executing Okamoto identification
protocol (the standard Okamoto protocol is insecure in this situa-
tion).
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1. INTRODUCTION
Proving one’s identity is the very first functionality triggered

when entering many cyber systems. It is also an indispensable
part of more complex protocols, e.g. secure Authenticated Key Ex-
change (AKE). Due to increasing proliferation and globalization of
cyber systems, the number of interacting parties rapidly increases.
At the same time the average prior trust level between the partners
seem to decline. Among others, this is due to the fact that more
and more frequently the interactions are not limited to local closed
computing environments, but take place in systems such as remote
cloud platforms.

From the practical point of view the situation gets even more
complicated due to heterogeneity of the systems. On one hand,
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especially in the world of IOT, we might have to deal with cheap
micro-controllers, delivered as black box devices, with limited tam-
per resistance, low level security certificates (if any), no security
test features, etc. On the other hand, the protocols may be run in
a virtual environment created by powerful servers, within a com-
plex internal system with multiple users running their processes
concurrently. Despite powerful security mechanisms, we cannot
exclude leakages of sensitive data between processes due to, e.g.,
cache attacks. Moreover, providing relevant security guarantees via
certification process, e.g. within the Common Criteria framework,
would imply huge costs due for instance to the documentation size.

Identification Protocols - General Outline.
In general, an Identification Scheme (IS), allows one party - called

a prover (or Alice) - to prove its identity against the other party -
called a verifier (or Bob). Typically, this functionality takes ad-
vantage from an existing Public Key Infrastructure (PKI), and the
party holding a secret key proves its knowledge in front of the ver-
ifier holding the corresponding public key and its certificate. There
are several general approaches to construct an IS. Protocols exe-
cuted between the prover and the verifier can have two, three or
more rounds. The prover and the verifier can use, apart from long
term secret and public keys, some temporary values, called ephe-
meral keys, whose secrecy might have critical impact on security of
the whole construction.

A typical protocol consists of three phases: In the first phase the
prover chooses an ephemeral secret at random and sends its com-
mitment to the verifier. In the second phase the verifier replies with
an unpredictable random challenge. In the last phase the prover
sends a response to the verifier. Security of such schemes is usu-
ally based on zero-knowledge arguments: on one hand it should be
infeasible to respond to challenges in a correct way without knowl-
edge of the secret key, while on the other hand, a verifier should
not gain any advantage in learning the secret key, compared to the
situation when he does not interact with the prover and holds only
the public key of the prover.

In some cases the IS schemes are required to possess some ad-
ditional features, like deniability. It means that the protocol can be
simulated without the knowledge of the secret key - thus making a
protocol transcript useless as a proof of interaction with the secret
key owner, when presented to a third party.

Protocol security in practice.
Arguments about security of identification protocols are usually

based on abstract and somewhat idealistic models. This is quite ev-
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ident in case when we confine ourselves to the standard “Alice and
Bob” framework. Unfortunately, for practical IS implementations,
the situation is far more complicated. The user does not perform the
identification protocol himself, but instead uses a computing device
that interacts with the verifier on behalf of its owner. In particular,
the device holds the private keys attributed to the owner. The same
situation may occur on the side of the verifier: while he might be
honest (and for instance wishes to generate the challenges at ran-
dom), his device might be in fact behaving maliciously, aiming to
attack the prover.

In principle, the prover should fully control the device execut-
ing the protocol on behalf of himself. In reality, the situation is
more complicated and most of the power may remain in hands of
the manufacturers providing software and hardware used, as well
as in hands of the system administrator. Therefore, implementation
security matters a lot and it becomes a critical issue to what ex-
tent one can examine whether the protocol runs exactly as declared.
Unfortunately, in a standard case the possibilities to inspect a unit
executing cryptographic protocols (even by the owner) is very lim-
ited. This follows from the sheer reason that the inspection itself
might be malicious aiming to retrieve the private key stored by the
inspected unit.

Unfortunately, there are many opportunities for a practical at-
tack, even for the best and provably secure cryptographic protocols.
According to the famous Third Law of Computer Security by Adi
Shamir Cryptography is typically bypassed, not penetrated. Unfor-
tunately, not only the attacks can be mounted, but at the same time
they may be well hidden so that the users remain totally unaware
about the situation. For instance, one of the key features of many
schemes, based on the discrete logarithm problem, is use of ephe-
meral values that are generated independently at random for each
protocol execution. The protocol descriptions, as well as the formal
security proofs, typically assume that the source of randomness is
ideal and in particular unpredictable for the verifier. Does it match
reality? And what are the consequences, if the randomness turns
out to be poor? The answer for the second question is pessimistic:
the security of the scheme may collapse entirely. In particular, this
is the case for ElGamal, Schnorr and DSA signatures, where know-
ing the random value used to generate the signature and the signa-
ture itself enables the attacker to derive immediately the secret key
of the user.

Of course, majority of implementations involve some kind of
self-control over the random number generator used. For this pur-
pose randomness tests (such as NIST tests [16]) are frequently
used. However, we need to be aware that such tests detect only
rough errors due to, for instance, substantial implementation errors
or aging effect of cryptographic hardware. They do not detect the
subversion cases, where the (pseudo)random number generator is
designed in a clever way to remain undetected. In fact, apart from
sophisticated attacks such as hardware Trojans [3], there are trivial
attacks based on pseudorandom number generators (PRNG), where
it suffices to know the seed in order to learn all (pseudo)random
values used. Sometimes even a subtle subliminal adversarial inter-
ference, such as the reset of the internal state and/or randomization
source of the prover’s device, can have influence on the produced
values.

So in practice, it seems that we are already defenseless against
certain kinds of attacks and we need not to wait until post-quantum
era to experience lack of firm cryptographic protection. Should we
therefore give up?

There are two general strategies to respond to this situation: the
first one is to create a framework where there is a watchdog check-
ing whether the device is behaving as declared – in particular whether

the software and hardware has not been subverted by the adversary.
However, one of the problems with a watchdog approach is the
old question who will guard the guards? Moreover, constructing
a watchdog that inspects a complex system, and not an isolated
unit, seems to be very hard. The second strategy is to rebuild the
protocol in order to eliminate or significantly reduce the effects of
implementation weaknesses.

For many IS protocols, the whole execution of the prover is de-
terministic apart from choosing ephemeral secret values. There-
fore our goal might be to rebuild the protocol so that the advantage
of the adversary is still negligible even if the ephemeral values on
both sides are compromised: the adversary should not be able to
impersonate the prover in subsequent protocol executions, even if
he managed to learn, modify or even fully determine the ephemeral
values used by the prover’s device.

Goal of the Paper.
The goal of this paper is to show that protection mechanisms

may be built on the cryptographic level into the Okamoto iden-
tification scheme [17]. The Okamoto IS, based on the hardness
of DLP, is regarded as an important building block for more com-
plex designs, e.g. [8]. Notably, a signature scheme based directly
on the Okamoto identification scheme [6] has been included into
a suite of protocols for personal identification documents (the eI-
DAS token) by the Federal Office for Information Security (BSI)
in Germany. Unfortunately, the Okamoto IS does not withstand the
ephemeral leakage attack, just like the previous Schnorr IS and sig-
nature schemes. Therefore, for our Okamoto modification, we aim
to make - from the design - the secrets to be more protected than in
the traditional case, even if the device used for identification con-
tains subverted random number generator.

In this paper we continue the work done in [14], where the sim-
ilar solution was proposed for the Schnorr IS. We use a security
model for the ephemeral secrets from [14], as well as we use a sim-
ilar notation.

Paper contribution.
The contribution of the paper is the following:

• We refine the security model from [14]. Particularly we an-
alyze the architecture of the computational platform of the
prover, which consist of two parts: a security module of
minimal functionality (storing the secret key, exponentiation
with the secret key), and the less protected part that provides
all the rest computational functionality required by the prov-
ing algorithm. Such a separation enables outsourcing a part
of the computation to the third party services.

• We propose a modification of the Okamoto authentication
protocol [17], which makes it immune to malicious setting
of the ephemeral values for the adversary’s advantage.

• We prove the security of the modified Okamoto IS according
to the model of [14] with our refinements, by reduction to the
GDH problem.

The paper is organized in the following way. In Sect. 2 we recall
the Okamoto identification protocol. In Sect. 3 we recall the secu-
rity model from [14]. In Sect. 4 we propose a modified version of
Okamoto IS, and prove its security.

Previous Work.
The general problem of security threats regarding cryptographic

products has recently drawn more and more attention. On the side
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of the industrial design, there have been a lot of efforts to design
devices that are tamper resistant and resistant to side channel anal-
ysis. Most of this development is regarded as an industrial secret
and protected by non-disclosure agreements. The similar situation
concerns access to information about the attack methods.

On the side of academic research there have been efforts to model
the leakage from cryptographic devices. In the bounded retrieval
model we assume that the number of information bits leaked by
a cryptographic device is limited (see e.g. [1]). Among others,
this has to model the capabilities of side channel attacks that, pre-
sumably, can betray only a partial information of the internal state
of the device. Unfortunately, this does not apply to the situation,
where we are forced to implement cryptographic protocol in soft-
ware, with no strict separation offered by dedicated devices.

Even in case of hardware implementation, the bounded retrieval
does not cover the case of complete compromise of a random num-
ber generator used to create ephemeral random elements. Unfor-
tunately, such a situation cannot be excluded for twofold reasons:
first, as already mentioned, a trapdoor can be hidden in the hard-
ware in an undetectable way ([3]). Second, there are sophisticated
ways to build a random number generator that yields an output in-
distinguishable from a random one, and yet containing a trapdoor
for a malicious party holding a certain secret key (see e.g. [20]).

Recently, the concept of subversion resilience for digital signa-
tures has been expressed explicitly [2]. It has been assumed that
an adversary can replace the original algorithm by a new one that
behaves in the same way from the point of view of a user, but cre-
ates a trapdoor for an attacker. The paper [18] extends the scope
of subversion resilience to the process of generating signing keys.
A kind of general solution for this problem for certain protocols
using PRNG has been announced in [15].

The main difference, when comparing our approach to the above
subversion model, is that we assume that the prover’s computa-
tion platform is divided into two subcomponents: a secure unit
that stores and operates on the secret key, and the remaining in-
secure part of the system (hardware, memory, software) exposed
to setup and subliminal attacks. The adversary can replace the
code/algorithms of the insecure part, but cannot access the secure
unit otherwise but through predefined interfaces. In this context
the leakage of bits of the secret key from subversion model, cannot
be simply implemented, as the replaced code cannot just refer to
the secret key variable located in the secure unit. From our point
of view, the attacks presented in [2] can be regarded as mounting
a subliminal channel for the secret key leakage by the malicious
program code which has access to the secret key storage. The ad-
versary just hides the subsequent bits of the retrieved secret in the
randomized part of the result produced by the attacked scheme (e.g.
randomized parameters of the signature). In our model we just as-
sume that undetectable subliminal channels could exist for every-
thing but the plain secret key from the secure unit. The particular
example of such a subliminal channel we analyze, is the possibility
to set/get values of ephemeral keys from the insecure part. In this
model one can see major difference between the regular Okamoto
(which allows compromising the long term secrets from protocol
messages once the ephemerals are leaked) and our modified ver-
sion (where long term keys are secure regardless of ephemeral key
leakage).

Issues regarding particular cryptographic protocols and attacks
against them have been considered in a number of papers. The
problem of security of identification schemes under reset attacks on
ephemeral secrets was raised in [7] in the context of zero-knowledge
proofs. Later, the paper [4] presented constructions for making the
identification protocols immune against reset attacks: the reset-

secure identification protocols based on a deterministic, stateless
digital signature scheme, the reset-secure identification protocols
based on a CCA secure asymmetric encryption scheme, the reset-
secure identification schemes based on pseudorandom functions
and trapdoor commitments. Each of them has a certain drawback
compared to the Okamoto identification scheme: the first one leaves
an undeniable proof of interaction, the second one is not directly
compatible with the Diffie-Hellman key exchange protocols initi-
ated with the prover’s ephemeral public key, the third one requires
more than 3 rounds.

Historically, in the PKI setup we have the following fundamental
IS, which suffer from the same problem - compromised ephemeral
values lead to derivation of the verifier’s secret key: 1) RSA based
[10, 9, 11]; 2) three-round DLP based schemes of Schnorr [19] and
Okamoto [17]. Recently in [14] the solution for the above stated
problem for the Schnorr IS was proposed. Our goal is to do the
same for the Okamoto IS.

Note that the problem with ephemerals in identification schemes,
inflicts by analogy the signatures, constructed when Fiat-Shamir
transformation is used. Unfortunately, the same applies to the so-
called Pseudonymous Signature designed for electronic personal
identity documents by the German Federal Office for Information
Security [6].

Finally, one has to draw attention to the fact that a lot depends
on the implementation details, even if the protocol itself has been
fixed. An example of this situation is CAM protocol from ICAO
standard [13]. It turns out that the protocol can be either imple-
mented in the way that the ephemeral values reveal a secret key
[5], or they bring no advantage to the adversary [12].

2. OKAMOTO IDENTIFICATION SCHEME

2.1 Preliminaries and Notation
We loosely follow the notation from [1]: x1, . . . , xn ←R X

means that each xi is sampled independently and uniformly at ran-
dom from the set X . We shall use a group generation algorithm G
such that if G(1λ) = (q, g,G), then G is a group of a prime order
q and a generator g. We assume the following:
Existence of a Bilinear Map: We assume that one can find a bilin-
ear map ê : G×G→ GT into a group GT of order q. That is, the
following conditions hold:
1) bilinearity: ∀a, b ∈ Zq : ê(ga, gb) = ê(g, g)ab,
2) non-degeneracy: ê(g, g) 6= 1,
3) computability: ê is efficiently computable.
The discrete logarithm (DL) Assumption: For any probabilistic
polynomial time (PPT) algorithm ADL it holds that:
Pr[ADL(G, gx) = x | G←R G(1λ), x←R Zq] ≤ εDL(λ),
where εDL(λ) is negligible.
The computational Diffie-Hellman (CDH) Assumption: For any
probabilistic polynomial time (PPT) algorithm ACDH it holds that:
Pr[ACDH(G, gx, gy) = gxy | G ←R G(1λ), x ←R Zq, y ←R

Zq] ≤ εCDH(λ), where εCDH(λ) is negligible.
The decisional Diffie-Hellman oracle (ODDH) denotes an oracle
which for G←R G(1λ), x ∈ Zq, y ∈ Zq, z ∈ Zq and
ODDH(G, gx, gy, gz) = 1 iff z = xy mod q.
The gap computational Diffie-Hellman (GDH) Assumption: For
any probabilistic polynomial time (PPT) algorithmAODDH

GDH that has
access to decisional Diffie-Hellman oracle ODDH it holds that:
Pr[AODDH

GDH (G, gx, gy) = gxy | G ←R G(1λ), x ←R Zq, y ←R

Zq] ≤ εGDH(λ), where εGDH(λ) is negligible.

2.2 Model of Identification Schemes
Below we recall a formal model for an identification scheme.
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DEFINITION 1 (IDENTIFICATION SCHEME). An identification
scheme IS is a system which consists of four algorithms (ParGen,
KeyGen, P , V) and a protocol π:

params← ParGen(1λ): inputs the security parameter λ, and out-
puts public parameters available to all users of the system
(we omit them from the rest of the description).

(sk, pk)← KeyGen(): outputs the secret key sk and the corre-
sponding public key pk of a prover.

π(P,V): denotes the protocol executed between the prover P and
the verifier V .

P(pk, sk): denotes the prover who interacts with the verifier V in
the protocol π and aims to prove his (or its) identity,

V(pk): denotes the verifier who interacts with the prover P in the
protocol π in order to check whether the prover’s identity is
the same as claimed.

We distinguish two stages of the scheme:

• Initialization: In this stage all parameters are generated:
params ← ParGen(1λ), and users are registered. E.g. on
behalf of the user of identity Â the procedure (a,A)←KeyGen()
yields the secret key a and the corresponding public key A.

• Operation: In this stage any user, e.g. Â, can demonstrate its
identity to a verifier by performing the protocol π(Â(a,A),
V(A)) related to the keys a,A. Finally the verifier outputs 1
for "accept" or 0 for "reject". For simplicity, π(P,V) → 1
means that P has been accepted by V via execution of π.

We require the scheme to be complete: for any pair of keys (sk, pk)
generated by KeyGen() we have that π(P(sk, pk), V(pk))→ 1.

Intuitively, an identification scheme is secure, if it is infeasible
for any adversary prover algorithmA, to be accepted by the verifier
unless A holds the secret key corresponding to A. That is, the
probability Pr[π(A(pk),V(pk))→ 1] must be negligible.

2.3 Okamoto Identification Scheme
In Fig. 1 we recall the Okamoto identification scheme from [17].

params← ParGen(1λ): Let G = (p, q, g,G) ← G(1λ),
s.t. DL Assumption holds. Set params = (p, q, g,G).
Choose g1, g2 ∈ G such that logg1 g2 is unknown.

KeyGen(): sk = (a1, a2)←Zq , pk=(g1, g2, A) where A =
g1
a1 ·g2

a2 . Output (sk, pk).

π(P(sk, pk),V(pk): The prover P(sk, pk) with identity Â
runs with the verifier V(pk) the following protocol:

1. P: chooses x1, x2 ∈ Zq at random, computes
X = g1

x1 ·g2
x2 and sends X to the verifier V .

2. V : chooses c←R Zq , and sends c to P .

3. P : computes s1 = x1+a1 ·c mod q, s2 = x2+
a2 ·c mod q and sends s1, s2 to the verifier V .

4. V : accepts P iff g1
s1 ·g2

s2 == X ·Ac.

Figure 1: The Okamoto identification scheme.

One of the key features of Okamoto protocol is simulatability
property recalled below. A passive adversary may observe protocol

executions. For each interaction the adversary learns its transcript,
that is, a tuple T = (X , c, s1, s2). However, the adversary may
be easily deceived in the following way. First, the simulator al-
gorithm chooses c̃ ←R Zq , (s̃1, s̃2) ←R Zq at random. Then it
sets X̃ = g1

s̃1 ·g2
s̃2/Ac̃. Then the simulator algorithm can replay

the precomputed transcript T̃ = (X̃ , c̃, s̃1, s̃2) in the correct or-
der, thus simulating an interaction between the prover and the ver-
ifier. The deception is perfect, since the tuples T = (X, c, s1, s2)

and T̃ = (X̃, c̃, s̃1, s̃2) are identically distributed. Consequently,
a protocol transcript has no proof value for a third party.

One can also see that if the prover can predict the challenge c
before it sends the commitmentX , then the security of the protocol
collapses – the prover can authenticate himself without the private
keys a1, a2.

3. OUR MODEL

3.1 Protocol
In this section we recall the security model for IS from [14],

where the active adversary possibly set the prover’s random values
in the query stage of the security experiment. Furthermore we as-
sume the active mode of the query stage: subsequent choices of
the adversary can be adjusted according to the responses from the
prover. We follow the notation:

• A = (P̃, Ṽ) is the adversary standing for a coalition of the
malicious prover and the malicious verifier,

• x̄ denotes the ephemeral secrets chosen by A,

• P x̄ denotes the honest prover P with injected x̄,

• π(P x̄i(sk, pk), Ṽ(pk, x̄i)) denotes the i-th protocol execu-
tion in the query stage,

• ` denotes the maximum number of executions of the protocol
π in the query stage,

• ~̄x(`) = {x̄1, . . . , x̄`} denotes all the adaptive choices of Ṽ
in the query stage,

• vP,Ṽ,
~̄x(`) denotes the view of the adversary – the knowledge

Ṽ can gain in the query stage.

DEFINITION 2 (CHOSEN PROVER EPHEMERAL – (CPE)).
Let IS = (ParGen, KeyGen, P , V , π) be an identification scheme.
We define security experiment ExpCPE,λ,`IS :

Init stage : Let params← ParGen(1λ), (sk, pk)← KeyGen().
The adversary A is initialized as a party that runs an algo-
rithm P̃ (when acting as a verifier) and runs an algorithm Ṽ
(when impersonating the owner of sk and acting as a prover).

Query stage : A runs a polynomial number ` of executions of the
protocol π(P x̄i(sk, pk), Ṽ(pk, x̄i)) with the honest prover
P x̄i , collecting vP,Ṽ,

~̄x(`), where x̄i ∈ {x̄1, . . . , x̄`} denotes
the adaptive choices of Ṽ injected to the prover P x̄i in the
ith execution.

Impersonation stage : A runs the protocol
π(P̃(pk, vP,Ṽ,~̄x(`)), V(pk)) with an honest verifier.

The advantage of A in the experiment ExpCPE,λ,`IS is defined as the
probability of acceptance in the last stage:

Adv(A, ExpCPE,λ,`IS ) = Pr[π(P̃(pk, vP,Ṽ,
~̄x(`)),V(pk))→ 1].
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The identification scheme is CPE-secure, if the advantage
Adv(A, ExpCPE,λ,`IS ) is negligible function in λ.

The Okamoto protocol, as well as many other cryptographic pro-
tocols, depends on the random choices. The step of generating ran-
dom numbers is one of the most risky ones concerning malicious
implementation as it is extremely difficult to check honest behav-
ior of a generator. In the worst case, the adversary may have full
knowledge of the random numbers generated during a protocol exe-
cution. For the Okamoto protocol this would have catastrophic con-
sequences – given s1, s2 as well as x1, x2 one can immediately de-
rive a1, a2 from the equations a1 = (s1−x̄1)/c, a2 = (s2−x̄2)/c
and afterwards impersonate the owner of the keys.

3.2 Architecture Model
We assume that the prover’s part of computation in the protocol

π(P x̄i(sk, pk), Ṽ(pk, x̄i)) is run on a system which is not fully
under the prover’s control. The prover cannot trust the hardware
and the OS software that run the code corresponding to prover’s
algorithm. However, the only part of that device the prover trust, is
the snippet of the platform, called here secure unit that stores the
long term secret key sk and performs with sk the minimal required
functionality. One may ask what such a functionality is, and how
it is defined. Here we assume that this is a secure function that
takes some mathematical parameters and produces the public key
from the secret key. Indeed, this is functionality which is required
during initial phase of the user/prover registration. Therefore from
that moment we will denote that secure functionality of the secure
unit as f(), and by f(a) we denote that this part of the device takes
the value a via its input interface, and returns the value ask through
its output interface. From now on we assume the secret key sk is
secure, i.e. it is not accessible in other form but as ask to other parts
of the system, nor is available to any subliminal hardware channel.
W.l.o.g we can regard f() as a separate computing unit of minimal
functionality which is under total control of the user. On the other
hand, the ephemeral values x̄i are under control of the adversary,
which has access to the memory part of the OS allocated to the
values x̄i, and controls the unit producing randomness for x̄i.

4. MODIFIED OKAMOTO SCHEME
The proposed modified Okamoto IS is shown in Fig. 2. The

general idea behind the modification is the following: We play
the game against the adversary which knows: the challenge c, the
ephemerals x1, x2, and which would compute the secret keys (a1,
a2) given s1 = x1 + a1 · c, s2 = x2 + a2 · c from the regular
Okamoto IS case. Thus, in the third message of the modified pro-
tocol, the prover sends the values S1 = ĝs1 , S2 = ĝs2 for the
generator ĝ = H(X|c) computed with the commitment X and the
challenge c. Subsequently, the verifier checks the linear equations
s1 = x1+a1 ·c mod q, s2 = x2+a2 ·c mod q in the exponent by
using the bilinear map: ê(S1, g1)·ê(S2, g2) = ê(ĝ, X ·Ac).

Referring to our device architecture model, the secure unit for the
proposed modified Okamoto IS runs the functionality f1(x) := xa1

and f2(x) := xa2 , i.e. the secure unit stores secret keys a1, a2 and
returns only the results of exponentiations with that keys. Observe
that the values S1 = ĝs1 , S2 = ĝs2 are computable in our device
model as S1 = ĝx1 f1(ĝc), S2 = ĝx2 f2(ĝc). Hereafter we assume
that the computation on the prover’s side are done in this particular
way.

In Fig. 3 we compare the original Okamoto scheme and our
proposition. As for the computational complexity our modification
has two exponentiations and one hashing more on the prover’s side.
The verifier has no extra exponentiation. In fact, it has even got rid

params← ParGen(1λ): Let q, g,G,GT ← G(1λ). LetH :
{0, 1}∗ → G be a hash function. Let ê : G × G →
GT be a bilinear map. We assume that GDH holds
in G, where ê plays the role of the ODDH oracle. Set
params = (q, g,G,GT ,H, ê). Choose g1, g2 ∈ G
such that logg1 g2 is unknown.

KeyGen(): sk = (a1, a2) ←R Zq , pk = (g1, g2, A) where
A = g1

a1 ·g2
a2 . Output (sk, pk).

π(P(sk, pk),V(pk)): The prover P(a,A) and the verifier
V(A) run the following protocol:

1. P: chooses x1, x2 ∈ Zq at random, computes
X = g1

x1 ·g2
x2 and sends X to the verifier V .

2. V: chooses c←R Zq , and sends c to P .

3. P: computes ĝ = H(X|c), S1 = ĝx1+a1·c, S2 =
ĝx2+a2·c and sends S1, S2 to the verifier V .

4. V: computes ĝ = H(X|c) and accepts the proof
iff
ê(S1, g1)·ê(S2, g2)=ê(H(X|c), X ·Ac).

Figure 2: Modified Okamoto identification scheme

of two explicit exponentiations – there is no need to compute g1
s1

and g2
s2 . However, as a price for that, the verifier computes a hash

value, three pairings, and a product of two elements in GT .

4.1 Correctness

THEOREM 4.1. The modified Okamoto protocol (Fig. 2) is com-
plete according to Definition 1, that is

Pr[params← ParGen(1λ), (sk, pk)← KeyGen() :

π(P(sk, pk),V(pk))→ 1] = 1 .

PROOF. For well generated keys used by the prover and the ver-
ifier the verification will yield the positive answer, as the following
equalities hold:

ê(S1, g1)·ê(S2, g2) = ê(ĝx1+a1c, g1)·ê(ĝx2+a2c, g2)

= ê(ĝ, g1
x1+a1c)·ê(ĝ, g2

x2+a2c)

= ê(ĝ, g1
x1+a1c ·g2

x2+a2c) = ê(ĝ, X ·Ac).

4.2 Simulatability
The modified Okamoto IS preserves the simulatability property

of its original version. A fake protocol transcript can be created as
follows. First one chooses s̃1, s̃2, c̃ at random, then computes
X̃ = (g1

s̃1g2
s̃2)/Ac̃ ,

ĝ = H(X̃|c̃) ,
S̃1 = ĝs̃1 , S̃2 = ĝs̃2 .

Obviously, the tuples (X̃, c̃, S̃1, S̃2) created in this way and the tu-
ples (X, c, S1, S2) resulting from the genuine protocol executions
are identically distributed.

4.3 Simulation in the CPE Model
In this section we provide arguments for security of our ver-

sion of the Okamoto scheme. We show that it is simulatable in
the proposed Chosen Prover Ephemeral (CPE) model. Assuming
programmable ROM (Random Oracle Model) we can simulate the
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the original the modified
Okamoto scheme variant

P(a,A = g1
a1g2

a2) V(A) P(a,A = g1
a1g2

a2)) V(A)

x1 ←R Zq x1 ←R Zq
x2 ←R Zq x2 ←R Zq
X = g1

x1 ·g2
x2 X = g1

x1 ·g2
x2

X−−−−→ X−−−−→
c←R Zq c←R Zq

c←−−− c←−−−
ĝ = H(X|c)

s1 = x1+a1 ·c mod q S1 = ĝx1+a1·c

s2 = x2+a2 ·c mod q S2 = ĝx2+a2·c

s1,s2−−−−−−→ S1,S2−−−−−−→
ĝ = H(X|c)

accept iff accept iff
g1
s1 ·g2

s2 = X ·Ac ê(S1, g1)·ê(S2, g2) =
ê(ĝ, X ·Ac)

Figure 3: Side-by-side comparison of the original Okamoto scheme and its modified version

protocol π(P x̄(pk), ṼOH(pk, x̄)) → 1 on behalf of the prover
P x̄(pk) without the secret key sk, using the injected ephemerals
x̄, and interacting with the active adversary ṼOH(pk, x̄), which in-
jects the ephemerals x̄ to the prover and performs adaptive choices
of challenges. Note that the adversary calls the oracle OH to com-
pute the hash value for the queried input.

THEOREM 4.2. The modified Okamoto protocol (Fig. 2) is sim-
ulatable in the CPE model (Definition 2).

PROOF. The simulator SCPE,π
IS () is defined in the following way:

For given (g1, g2, A) we choose a2 ←R Zq at random and set g1
a1

as A/(g2
a2). (Note that we do not derive a1.)

1) Hash queries OH: We use a ROM table for the hash queries
OH. The table has three columns I,H, r: for the input, the output
and the masked exponent, respectively. On each queryOH(Ii), the
oracle checks, if the answer has been it already stored in the hash
table - if so, then it returns the corresponding outputHi. Otherwise
it chooses ri ←R Zq , computes Hi = gri , places a new record
(Ii, Hi, ri) in the ROM table, and returns Hi.

2) Commitment X: When injected ephemerals (x̄1, x̄2) we use it
to compute X̃ = g1

x̄1 ·g2
x̄2 . The value X̄ is sent to the verifier

ṼOH(pk, (x̄1, x̄2)) in the first message.

3) Creating a proof for the verifier: upon receiving c̃ from the
verifier, we call OH(X̄|c̃). We check OH table for the input X̄|c̃,
locate and retrieve the corresponding gr and r. We set ĝ = gr .
Then we compute

S1 = g1
rx̄1(A/g2

a2)rc and S2 = g2
rx̄2+a2rc

Note that S1 = g1
rx̄1(g1

a1)rc = ĝx̄1+a1c and S2 = ĝx̄2+a2c.
Now, the verification test on the prover’s side yields the posi-

tive result: ê(S̃1, g1)· ê(S̃2, g2) = ê(ĝ, X ·Ac̃) for ĝ ← OH(X̄|c̃).
Moreover, the simulated transcript tuples (X̃, c̃, S̃1, S̃2) and the
real ones (X, c, S1, S2) are identically distributed.

4.4 Security Analysis
We follow the same methodology as in the case of the original

Okamoto IS. We show that a successful attack against our scheme

can be applied to break the underlying GDH problem with a non-
negligible probability. In order to use this attack given a GDH
instance, we have to build an environment for execution of our
scheme with the instance of the GDH problem injected. As not
all private keys are given in this case, we have to use the simula-
tion described in Sect. 4.3. Then we use the rewinding technique:
we run the impersonation stage twice for the same fixed commit-
ment X , but with different challenges c, c′ resulting with different
responses S1, S2, and S′1, S′2. The resulting tuples (X , c, S1, S2),
(X , c′, S′1, S′2) will enable us to break the underlying GDH prob-
lem. Rewinding is possible, as we are in full control of the process
breaking the scheme.

THEOREM 4.3. Let IS denote the modified Okamoto identifica-
tion scheme (as of Fig. 2). If IS is insecure (in the sense of Defini-
tion 2), i.e. the advantage Adv(A, ExpCPE,λ,`IS )) is non-negligible
in λ for an algorithm A, then there is an algorithm AGDH with
similar computational complexity that breaks GDH with a non-
negligible probability.

PROOF SKETCH. Suppose there is an adversary algorithmA =
(P̃, Ṽ) for which Adv(A, ExpCPE,λ,`IS )) is non-negligible. We use
it as a subprocedure of an efficient algorithm AGDH that breaks the
GDH: for a given instance gα, gβ it computes gαβ also with a non-
negligible probability.

Let us describe how we build an environment for running the
adversary A breaking the modified Okamoto scheme and run it in
order to break the GDH problem:

Init stage : We set params to be G = (q, g,G) from the GDH
problem, and let (gα, gβ) be an GDH instance in G. We
choose (a2, w)←R Zq . We set

g1 = g, g2 = gw, pk = A = gα .

Thus we have g1
a1 = A/(g2

a2) = A/(ga2·w).

The adversary A is given the public key pk. We initialize
a ROM table for hash queries OH. The table has columns
I,H, r for, respectively, the input, the output and the masked
exponent. The hash queries will be answered in the following
way: in the Query stage we will use the simulator SCPE,π

IS
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(according to the method described in the proof of Theorem
4.2). In the Impersonation stage the adversary gets the
value (gβ)ζ , where ζ is a random mask.

Query stage : We simulate in ROM a polynomial number ` of
executions of the protocol
π(P(x̄1,x̄2)i(pk), ṼOH(pk, (x̄1, x̄2)i) without the secret key,
interacting with the active adversary verifier, which injects
ephemerals x̄i by running the simulator SCPE,π

IS given by The-
orem 4.2.

Let vP,Ṽ,~̄x(`) be the view of the adversary collected in this
stage, where (x̄1, x̄2)i ∈ {(x̄1, x̄2)1, . . . , (x̄1, x̄2)`} = ~̄x(`)

denotes the adaptive choices of Ṽ injected as ephemerals to
the prover P(x̄1,x̄2)i during the ith execution.

Impersonation stage : In the ROM model we run π(P̃OH(pk,
vP,Ṽ,

~̄x(`)), V(pk)) serving the role of the honest verifier. We
use the rewinding technique: we fix the commitment X used
by the algorithm P̃ , and let P̃ interact twice with the veri-
fier, choosing each time a different random challenge, c and
c′, such that neither X|c nor X|c′ were the input to OH in
the Query stage, and setting ĝ = OH(X|c) ← (gβ)η , ĝ′=
OH(X|c′) ← (gβ)η

′
for η, η′ ←R Zq . These interactions

will result with (X, c, S1, S2, ĝ, η) and (X, c′, S′1, S′2, ĝ′, η′),
accordingly.

We proceed, if A is successful, that is the verification tests
yield the positive results: ê(S1, g1)·ê(S2, g2) = ê(ĝ, X ·Ac)
and ê(S′1, g1)·ê(S′2, g2) = ê(ĝ, X ·Ac

′
).

Let us notice that we can express S1, S2, A,X in the follow-
ing form:

S1 = ĝs1 = ĝx1+a1·c, S2 = ĝs2 = ĝx2+a2·c,

A = ga11 ·g
a2
2 , X = gx11 ·g

x2
2

Indeed, given (A, s1, s2, c) we fix x1 arbitrarily. Then we get
a unique a1 fulfilling s1 = x1 + a1c mod q, and a unique
x2 fulfilling X = gx11 ·g

x2
2 . Then we may derive a unique a2

for which s2 = x2 + a2c mod q. In this way all equations
are fulfilled, may be except for A = ga11 ·g

a2
2 . However, note

that the test equation is equivalent to:

gs11 ·g
s2
2 = gx11 ·g

x2
2 ·A

c

which in turn yields ga11 ·g
a2
2 = A. (Of course, we cannot

assume that the adversary A is aware of these exponents.)

In a similar way we may express

S′1 = ĝ′x
′
1+a′1·c

′
, S′2 = ĝ′x

′
2+a′2·c

′
,

A = g
a′1
1 ·g

a′2
2 , X = g

x′1
1 ·g

x′2
2

We have that:
S1

(η−1)/S′1
(η′−1)=(gβ)(x1+a1·c)−(x′1+a′1·c

′) and

S2
(η−1)/S′2

(η′−1)=(gβ)(x2+a2·c)−(x′2+a′2·c
′).

So we have:

(S1
(η−1)/S′1

(η′−1)
)(S2

(η−1)/S′2
(η′−1)

)w

= (gβ)(x1+a1·c)−(x′1+a′1·c
′)(gβ)w(x2+a2·c)−w(x′2+a′2·c

′)

= (gβ)(x1+w·x2)−(x′1+w·x′2)(gβ)c(a1+w·a2)−c′(a′1+w·a′2)

= (gβ)(c−c′)α .

Thus we have
gβα = ((S1

(η−1)/S′1
(η′−1)

)(S2
(η−1)/S′2

(η′−1)
)w)((c−c′)−1).

5. FINAL REMARKS

5.1 Security assumptions
The original invention of the Okamoto protocol was to enable a

security proof that refers directly to a reduction to the Discrete Log-
arithm Problem. This is considered to be a much better guarantee
than the one given for the Schnorr IS.

On the other hand, the effort to fine tune the formal security proof
has negligible practical impact, if we forget about the critical is-
sue of securing the basic implementation details such as malicious
random number generator. In this light retreating to Random Or-
acle Model can be regarded as lesser evil than a strong argument
in a model that makes risky assumptions about device dependent
security features. Nevertheless, we hope that the Random Oracle
Assumption may be eliminated with a different reduction proof,
possibly for a different mutation of the Okamoto protocol.

5.2 Private key separation
One of the important features of the protocol proposed in this

paper is that one can implement the private key in a dedicated high
security unit and separated from the random number generation.
In our case this unit has to execute only one operation: computes
rx for an element r contained in the request and the private key
x stored in the unit. In the classical Okamoto protocol there is no
way to effectively separate the private key as long as the ephemeral
values are not encapsulated in the unit. Let us note that this kind of
separation has been already proposed in [12], however on the level
of internal protocol implementation.

Of course, the internal unit described above may serve as an or-
acle for raising to secret power x, which to some degree may ease
cryptanalysis for the adversary that takes control over the whole
system apart from the security unit. However, this is much better
compared with the case when the secret key is present in the plain
form in this compromised system.

In our opinion this mechanism of private key separation within
the protocol might be a very handy mechanism enabling much eas-
ier and more secure practical implementation. This concerns in
particular future PC architectures with the private key encapsulated
in future TPM units. This applies also to cloud systems, where
the processes run for the user would identify themselves on behalf
of the user and interact with an external user’s unit performing the
operations on the secret key. In such an architecture the whole iden-
tification process would look the same on the side of the user’s part-
ners, regardless how the user organizes his processes in the cloud
system.

5.3 Security situation for the eIDAS token
Let us shortly review the situation of the security of Pseudony-

mous Signature from eIDAS Token from [6]. The mechanism of
this signature is based directly on the Okamoto identification scheme
adjusted, via Fiat-Shamir heuristic, to the case of signatures. Each
signature corresponds to a pseudonym. The pseudonyms are cre-
ated ad hoc for any number of domains, so that for a given domain
only one set of identifiers can be created by a user. The major ad-
vantage of the scheme is no need for certificates and white-lists as
well as strong unlinkability across different domains.

On the dark side, the scheme is based on Schnorr-like signatures.
In particular, there are two components of the signature which are
linear transformations of the secret keys. Unfortunately, once the
adversary learns the ephemeral values used to define these transfor-
mations, the private keys of the user can be immediately derived by
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the attacker. Unfortunately, this is only the beginning of problems.
If the adversary succeeds to perform this attack for two different
users, then it remains to solve a system of two independent linear
equations in order to derive the system private keys. This in turn en-
ables the attacker to create any number of fake identities accepted
in the system.

Immunizing the Pseudonymous Signature against this kind of
threats is a challenge, unless we agree to use the strategies followed
in our paper – namely moving a signature component to the expo-
nent. The price to be paid is, however, the use of pairings.

6. CONCLUSION
We have shown that it is possible to redesign the Okamoto iden-

tification scheme in a way that makes it immune against an attacker
knowing the ephemeral values chosen by the prover during the pro-
tocol execution. Increasing the security level has its price – requires
pairings to be used on the side of the verifier. Nevertheless, it might
be plausible to design a version of the protocol without pairings. It
is an open question whether we can base security argument in this
case on such a firm assumption like GDH.

The proposed method can be regarded as a step in rethinking the
cryptographic protocols to be deployed without encapsulating them
completely in secure hardware units. Certainly, this may signifi-
cantly reduce security level, however the software implementation
might be the only available option. This involves in particular the
user (devices) communicating with the cloud services. We show
that at least some risks can be mitigated.
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