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ABSTRACT
With its high penetration rate and relatively good clock ac-
curacy, smartphones are replacing watches in several market
segments. Modern smartphones have more than one clock
source to complement each other: NITZ (Network Identity
and Time Zone), NTP (Network Time Protocol), and GNSS
(Global Navigation Satellite System) including GPS. NITZ
information is delivered by the cellular core network, indi-
cating the network name and clock information. NTP pro-
vides a facility to synchronize the clock with a time server.
Among these clock sources, only NITZ and NTP are up-
dated without user interaction, as location services require
manual activation.

In this paper, we analyze security aspects of these clock
sources and their impact on security features of modern
smartphones. In particular, we investigate NITZ and NTP
procedures over cellular networks (2G, 3G and 4G) and Wi-
Fi communication respectively. Furthermore, we analyze
several European, Asian, and American cellular networks
from NITZ perspective. We identify three classes of vulner-
abilities: specification issues in a cellular protocol, configu-
rational issues in cellular network deployments, and imple-
mentation issues in different mobile OS’s. We demonstrate
how an attacker with low cost setup can spoof NITZ and
NTP messages to cause Denial of Service attacks. Finally,
we propose methods for securely synchronizing the clock on
smartphones.
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1. INTRODUCTION
The convergence towards smartphones, and the new mar-

ket opened by wearables integrated several devices into
them, including wrist watches. According to CNET, the
popularity of smart watches negatively affected the sales of
traditional wrist watches [43]. Like wrist watches, they are
designed to be carried every day, providing accurate time in-
formation. While watches require manual adjustment when
the battery has been changed or when there is a change
regarding DST (Daylight Saving Time)1, smartphones au-
tomatically retrieve current time information from multiple
sources and propagate it to connected wearables like smart
watches. Moreover, a clock mismatch or a DST adjustment
is automatically corrected in the smartphone by periodic
clock synchronizations. In contrast, watches require manual
adjustment when the same happens.

Today’s smartphones obtain clock2 information from mul-
tiple sources and interfaces. Smartphones without Internet
connectivity can use cellular network provided NITZ (Net-
work Identity and Time Zone) information, and Internet-
capable smartphones can synchronize clock information over
the Internet using protocols like NTP (Network Time Pro-
tocol). Other integrated devices like GNSS (Global Navi-
gation Satellite System, including GPS and GLONASS) are
also capable of providing clock information. It is up to the
smartphone manufacturers and OS (Operating System) de-
velopers’ policy to utilize and assign priorities to each clock
source. Besides smartphones, M2M (Machine to Machine)
and IoT (Internet of Things) devices also rely on these clock
sources [22].

When the “Automatic clock update” is enabled in mobile
OS, it will fetch clock information from multiple sources.
The way this information is fetched depends on OS and
manufacturer policies, and varies among smartphones. Fur-
thermore, it is also unclear how smartphones manage these
different clock sources. NITZ is an optional message carry-
ing network name and clock information on 2G, 3G and 4G

1Although a few higher-end watches are capable of auto-
matic clock synchronization based on external signals, they
are not widely used in the market.
2In this paper, we use the term clock referring both time and
date. Time is used when usage of time is explicitly required.
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cellular network. NTP utilizes the Internet connection to
synchronize with a time server, and most mobile OS includ-
ing Android and iOS are capable of clock synchronization via
NTP. Unlike NITZ and NTP, GNSS services must be man-
ually turned on by the user to retrieve clock information.
Therefore we only discuss NITZ and NTP in this paper, as
they are updated without explicitly asking the user.

In this paper, we show that it is possible to spoof clock in-
formation on modern smartphones by any third party, or an
attacker with a rogue base station and Wi-Fi access point.
We highlight that due to the lack of standard timekeep-
ing methods among vendors and OS developers, unintended
consequences arise on mobile OS and apps. We also discuss
interesting problems with smartphones using 32-bit and 64-
bit that lead to OS crashes.

To this end we make the following contributions:

• We systematically analyze security aspects provided
to NITZ feature in the 3GPP (Third Generation Part-
nership Project) specifications of 2G, 3G, and 4G net-
works. The analysis indicates a lack of authentication
and integrity protection in 2G networks.

• We built an experimental real network to demonstrate
attacker’s capabilities to spoof NITZ information and
investigate their impact against both mobile and base-
band OS. Furthermore, we discover NITZ configura-
tion issues in several deployed cellular networks. We
present a class of Denial of Service attacks by exploit-
ing weaknesses in a 3GPP specification, device and
cellular network configurations, and implementation
issues in few baseband operating systems.

• We propose countermeasures for Denial of Service at-
tacks and present best practices for mobile OS and app
developers to maintain clock accurately.

2. RELATED WORK
We divide related work into three categories: rogue base

station, NTP attack, and timekeeping on smartphones.
Rogue base station attack. A fake base station can be

used to passively attack nearby mobile users. Due to spec-
ification and implementation flaws, numerous private infor-
mation leakage and malicious information injection attacks
were proposed. An example of an information leakage is the
location leak, which Kune et al. [34] and Shaik et al. [51]
discovered on 2G and 4G network respectively.

Message injection attacks using fake base stations have
been proposed in several works. Mulliner et al. [42] pre-
sented SMS injection attacks, which resulted in a system
crash in some cases. Weinmann [55] showed GSM control
plane message injection attacks, causing various impacts.
Alecu [13] proposed an SMS-based attack to exploit SIM
card applications. Work of Shaik et al. [51] also contains
message injection using a fake LTE base station. They
mainly use messages related to location leaks. To the best
of our knowledge, there are no studies evaluating risks as-
sociated with clock spoofing via a fake base station in the
literature.

NTP attack. Because NTP lacks authentication and
integrity protection by default, and some NTP commands
could be used maliciously, both attacking NTP itself and
using NTP as an attack vector are proposed. Being an
UDP/IP based protocol, any generic attack like spoofing

and redirecting on UDP and IP in addition to NTP-specific
attacks can be performed.

There are a number of reported NTP server vulnerabilities
which could be used to affect NTP availability and time ac-
curacy, including one from Röttger [49]. Malhotra et al. [35]
presented several attacks on NTP. Attacks presented in their
work are targeting both the NTP server and the transmis-
sion channel to the client. Time-shifting attacks can alter
any device that solely relies on NTP as a clock source. We
are not focusing on the NTP attack itself. Instead, we eval-
uate how NTP and other clock sources are used in smart-
phones and how spoofing one or more of them affects the
system behavior.

Klein [33] showed the impact of attacking clock sources
on multiple platforms, including Android and applications
on it. Czyz et al. [23] analyzed NTP amplification attacks,
an attack vector utilizing NTP. CloudFlare and other online
games were among the victim of this attack. Goodin [25]
found this attack can cause DoS ranging up to 100Gbps.
CloudFlare published details of how 400Gbps DDoS attack
towards their infrastructure was possible via NTP amplifi-
cation [46].

Furthermore, NTP servers could be configured to fetch
clock information from either another NTP server or high-
precision clocks like GPS, radio and an atomic clock. NTP
servers fetching clock information directly from precise clock
sources is called Stratum 1 server, which takes a higher level
in the NTP server hierarchy and is used as a clock source
of lower stratum servers. Zheng et al. [57] proposed an at-
tack on radio clock signals used by some active Stratum 1
servers. Compared to this work, our work directly targets
smartphones which receive time information from a cellular
network or an NTP server.

Timekeeping on smartphones. Several crashes and
bugs were discovered related to internal time keeping of mo-
bile OS. Straley found the regression on Apple iOS devices,
when the device date is set to January 1970 [53]. Kelley
and Harrigan reproduced the same bug using NTP via Wi-
Fi [32], using DNS spoofing on Apple’s NTP server. Apple
acknowledged the problem and fixed it in iOS 9.3 and 9.3.1
update [17].

3. BACKGROUND
In this section, we briefly describe different types of clock

sources used by OS’s in smartphones. Among those sources,
we only cover NITZ and NTP in detail. Further, we discuss
how each OS obtains and synchronizes the accurate time on
smartphones.

3.1 Timekeeping in Smartphones
Smartphones are running two different operating systems:

one on the application processor and the other on the base-
band processor. Although they are interconnected via a
communication stack on mobile OS (e.g. Android Radio
Interface Layer), they maintain separate clocks.

The mobile OS clock could be set either by using infor-
mation received from the baseband, or (Internet) data con-
nection using NTP. This clock is used by all applications
running on the OS. Due to the lack of standard methods, it
is up to the OS and device manufacturers to select any of
the available clock sources.

The baseband OS clock is usually set by the cellular net-
work using NITZ information. This clock is also supplied to
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mobile OS; however, it can decide whether or not to use this
clock. Normally the baseband uses this clock as a timestamp
for the diagnostic messages and is invisible to users.

Most OS’s are keeping their clock as monotonically in-
creasing value since a fixed epoch (e.g. 1st January 1970 on
Android and iOS), and using a fixed sized variable to repre-
sent the clock value. (time_t on Android and iOS) Windows
has different epoch and clock storage methods [37, 39].

3.2 NITZ
3GPP specifications define signaling messages for carry-

ing NITZ information, called MM Information and GMM
Information for both 2G and 3G [9] and EMM Information
for 4G [11]. NITZ consists of time, time zone, date, and
operator name. Time information in NITZ should be accu-
rate in minute level, and the message itself has a minimum
precision of one second, according to [9].

3.3 NTP
NTP [41] requires a time server to supply an accurate

clock source, and communicates with the smartphone us-
ing UDP/IP. Information acquired over NTP contains date
and time. Smartphones may use either public NTP pool
servers [3], or OS or device vendors can operate their own
NTP server.

4. SPOOFING ATTACKS VIA NITZ AND
NTP

In this section, we describe the threat model and attacks
against NITZ and NTP methods. Further, we conduct prac-
tical experiments to investigate configurational issues in sev-
eral cellular networks. Finally, we present spoofing attacks
via a rogue base station and Wi-Fi access point.

4.1 Threat Model
The attacker is capable of operating a rogue 2G, 3G or

4G base station. To achieve this, he or she has access to
the radio hardware and related software to impersonate the
user’s serving cellular operator network. Further capabili-
ties include the knowledge of 3GPP and NTP specifications.
Additionally, attacker can also operate rogue Wi-Fi access
point allowing open access to the mobile devices nearby.

4.2 Experimental Setup
Figure 1 shows our experimental setup. For NITZ, our

hardware consists of a host PC and a USRP B210 device,
connected via USB 3.0. The host PC runs all the software
required to operate a cellular network, available from vari-
ous open source projects: OpenBTS [47] for 2G, OpenBTS-
UMTS [48] for 3G, and OpenLTE [56] for 4G. We modified
these software stacks to operate as rogue base stations. We
have selected popular smartphones from various baseband
and OS manufacturers for our test purposes.

Additionally, we built a custom tool by reverse engineering
a baseband to capture 2G, 3G, and 4G network messages
from the test phones. In particular, we analyzed control
plane messages and baseband timestamps.

For NTP, we operate a Wi-Fi access point based on Open-
WRT, and a custom NTP server based on busybox-ntpd [21].
We configured access point to connect every smartphone
nearby.

Figure 1: Our experimental setup, showing the
USRP (left), a Wi-Fi access point (center, dotted
square), and our test phones.

Ethical concerns. 2G, 3G and 4G network experiments
are performed inside a faraday cage to obey to legal regula-
tions and avoid interference with other phones. The name
of the Wi-Fi network is clearly indicated as an experimental
network. Further, we responsibly informed all the affected
mobile OS and smartphone vendors and our reports were
acknowledged by them.

4.3 Attack Background
We now discuss the security procedure defined for NITZ

features in 3GPP and evaluate how cellular network opera-
tors deploy these features in practice. We also analyze the
management of NITZ and NTP clock sources, and their ef-
fect on the mobile OS. We will later utilize these aspects to
design our attacks.

4.3.1 Security Issues in 3GPP Specifications
Although the content of NITZ messages is similar in all

the network generations, their security requirements are dif-
ferent and are discussed below. These security requirement
means the way NITZ messages are transferred between the
base station and the mobile device.

2G

The 2G specification [9, 8] defines ciphering as an optional
feature, but lacks mandatory mutual authentication and in-
tegrity protection on signaling messages including NITZ.
Thus, an attacker can masquerade himself as a real network
operator and send spoofed NITZ information to phones.

3G

The 3G specification [6] introduced mandatory mutual au-
thentication and integrity protection for signaling messages.
Therefore, NITZ information should be processed only when
a security setup is present, i.e. after authentication, integrity
protection and the ciphering setup.

4G

The 4G specification [7] introduced further security en-
hancements, while retaining security requirement of NITZ
introduced in 3G. As a result, NITZ on 4G is only processed
after the authentication and establishment of integrity and
ciphering, like on 3G.

Unless the attacker breaks 3G or 4G authentication or
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Operator (Country) 2G/3G 4G

BASE (BE) · ·
Mobistar (BE) 3 3

Proximus (BE) 3 3

Vodafone (DE) · ·
E-Plus (DE) s s

Telekom (DE) · ·
O2 (DE) s ·

Yoigo (ES) 3 3

Bouygues (FR) 3 3

Nova (IS) · ·
Siminn (IS) 3 3

Vodafone (IS) 3 ·
NTT DoCoMo (JP) · s

SK Telecom (KR) 3 3

KT (KR) 3 3

AT&T (US) · 3

T-Mobile (US) 3 3

Table 1: Operator NITZ policy. Check sign: NITZ
is sent for all registration, triangle: NITZ is sent
inconsistently, dot: NITZ is not sent at all.

the baseband standard is implemented incorrectly, it is im-
possible to spoof NITZ messages by masquerading as a real
operator. We utilize implementation problems in certain
basebands later.

4.3.2 Cellular Network Operator Configuration Is-
sues

NITZ information is conveyed to the smartphone during
several instances such as when it successfully registers to
the network, moves to a different time zone and others men-
tioned in [10]. As sending NITZ is an optional feature, cel-
lular operators do not send NITZ information regularly to
smartphones. By using our custom tool, we analyzed real
network traces during the registration process to determine
which networks implement the NITZ feature.

Table 1 shows difference of NITZ configuration policies
deployed by several European, Asian and US cellular oper-
ators. Operators with check sign means that the network
is sending NITZ whenever the smartphone registers with it.
The rows indicated by a triangle represent the network op-
erators who do not have a consistent NITZ policy. In other
words, these operators are not sending NITZ during every
registration. The rows marked with a dot mean that the
network operators do not send NITZ information at all.

One of the European operators stated that, since most of
the smartphones today have an Internet connection, they re-
ceive their time information via NTP servers which restrains
them from sending NITZ. The fact that no NITZ informa-
tion is sent during registration causes clock synchroniza-
tion problems on smartphones. For example, in a scenario
where a user roams from T-Mobile USA (sending NITZ) to
Telekom Germany (not sending NITZ) will not be able to ac-
quire clock information automatically. Hence, sending NITZ
regularly or at least during registration can avoid these prob-
lems. In the absence of NITZ, smartphones require a data
connection to update the clock (via NTP). However manual
updates are still possible.

Phone
NTP →
NITZ

NITZ →
NTP

Apple iPhone 6S NITZ NITZ

Google Nexus 5 NITZ NITZ
Asus Zenfone 2E NITZ NITZ

HTC One E9 NITZ NITZ
HTC One M9 NITZ NTP

Huawei Honor 7 NITZ NITZ
LG Vu 3 NITZ NITZ

Samsung Galaxy Alpha NITZ NITZ
Samsung Galaxy S4 NITZ NITZ
Samsung Galaxy S6 NITZ NITZ

BlackBerry Z10 NITZ NTP
LG Fx0 NITZ NITZ

Microsoft Lumia 950 NITZ NTP
Samsung Z1 NITZ NTP

Table 2: Priorities of clock sources.

4.3.3 NITZ vs. NTP
Most smartphone OS’s such as iOS [1], Android [28, 29],

Windows Phone [36, 38]3 and Firefox OS [52] have multiple
clock sources. However, there is no clear standard describ-
ing their management. Hence we performed an experiment
using our setup in Section 4.2 to reveal the myths about the
management and priorities of NITZ and NTP in the test
smartphones.

We set up our test smartphones to retrieve clock infor-
mation from the base station, followed by the Wi-Fi access
point, and vice versa. We configured the base station and
NTP server to send different clock values to check which
clock is preferred. Our results are summarized in Table 2.

Smartphones like the Nexus 5 were reluctant to update
the clock received over NTP when the clock via NITZ is
already present and was received within the last 24 hours.
In other words, an NTP request is only triggered once in 24
hours. This behavior is defined in the NTP handling code
of the Android OS [29].

In contrast, certain smartphones are treating NITZ and
NTP with equivalent priority, setting the system clock with
the latest received information. For example, the HTC One
M9 updates the clock via NTP in spite of having recent
NITZ information. One of the reasons could be the cus-
tomized HTC Sense4 environment on Android OS. Although
the Lumia 950 also falls in this category, we found that some-
times it resets to the accurate clock even when both NITZ
and NTP are inaccurate. We assume that this is caused by
another clock source which we do not discuss in this paper.

Apple devices running iOS version 9.3.2 behaved differ-
ently from most of smartphones. While older version of iOS
preferred NITZ than NTP, newer iOS version changed time-
keeping method. It neither accepts new NITZ information,
nor issues an NTP request for certain amount of time after
the clock is set during initial setup or periodic time update.

To summarize, NITZ is given higher priority in most cases
since it is received in a secure authenticated channel and can
be trusted more than NTP.

3Prior to Windows Phone 8.1 Update 1 it lacked NTP
4HTC customized Android system
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OS (Architecture) time_t Size End Year

iOS (32-bit) [15] 32-bit 2038
iOS (64-bit) 64-bit Never

Android (32-bit)5 32-bit 2038
Android (64-bit) 64-bit Never

BlackBerry 10 [18] Unsigned 32-bit 2106
Windows [39] Custom 30827

Table 3: Timekeeping method of mobile OS.

4.3.4 Mobile OS issues
Mobile OS’s are using different ways to represent internal

clock information as stated in Table 3. For example, 32-bit
iOS and Android devices are only able to represent dates up
to January 2038 (231 − 1 seconds after UNIX epoch). Any
future date causes a clock overflow, and will roll back to the
past. Unintended consequences could happen.

Based on our experiments, sending a clock value (some
seconds before 2038-01-19 03:14:07 UTC) via NITZ causes
the mobile OS to crash on all 32-bit Android smartphones.
Using NTP to set that clock is not always possible because
NTP up to version 3 [40] can represent up to year 2036, and
most smartphones utilize NTP version 3. Additionally, 32-
bit iPhones like iPhone 5 also suffer from this problem [4].
Other 32-bit mobile OS like Firefox OS only rolled back its
internal clock without crashing. However, the clock on 64-
bit smartphones virtually never expires, as 263 − 1 seconds
are far beyond the age of the universe.

Baseband OS keeps its time separate from the mobile OS.
By using our custom tool we analyzed the baseband times-
tamps before and after sending a NITZ message. The Qual-
comm basebands has a wider date range than year 2038, but
it is not passed to Android due to limitations in the radio
communication stack. Other basebands like Samsung or In-
tel, do not include clock information in debugging messages.

4.4 Spoofing Attacks
In this section, we exploit 3GPP specifications and cellular

operator configuration issues to demonstrate clock spoofing
attacks in two ways: via a rogue base station and via a Wi-Fi
access point.

4.4.1 Via Rogue Base Station
We initially consider that a user’s smartphone is attached

to a legitimate base station. Then attacker forces the phone
to attach to the rogue one (2G/3G/4G), by impersonating
the user’s service provider. Upon detecting a new base sta-
tion the smartphone initiates a connection to it. As a re-
sponse the attacker sends spoofed clock information via a
MM/GMM/EMM Information message.

On 2G, all our test smartphones accepted spoofed NITZ
information and changed their baseband clock. For 3G and
4G, certain smartphones accepted NITZ and changed the
baseband clock in the absence of authentication, thereby vi-
olating 3GPP specifications. The received clock information
is forwarded to the mobile OS and used by apps.

Unlike other smartphones, Samsung smartphones (Galaxy
Alpha, Galaxy S4, S6, Z1) are changing the time zone of it
upon receiving broadcast information such as MCC (Mobile

5including other Linux-based mobile OS, e.g. Firefox OS,
Sailfish OS, Tizen

Mobile OS Default NTP Server

Android [0-3].android.pool.ntp.org
BlackBerry 10 time.blackberry.com

Firefox OS [0-3].pool.ntp.org
iOS time-ios.apple.com

Sailfish OS [0-3].sailfishos.pool.ntp.org
Tizen pool.ntp.org

Windows time.windows.com

Table 4: Default NTP address for each mobile OS’s.

Country Code) and MNC (Mobile Network Code) from a
base station before connecting to it. For example, based on
the MCC and MNC of Vietnam, the time zone is updated to
Indochina Time (UTC+07:00). This behavior is unreliable
due to the fact that broadcast messages are accepted by the
smartphone without having any security setup.

As shown in Section 4.3.3, after detaching from the rogue
base station the smartphone may or may not receive accu-
rate clock information via NITZ depending on the operator
policy. Also, an NTP update is unlikely due to the prefer-
ence of NITZ over NTP. As a result, we discover that to get
accurate clock some smartphones required a reboot, in some
cases even by toggling the automatic clock update feature.

4.4.2 Via Wi-Fi Access Point
Like a rogue base station, attacker can operate a rogue

Wi-Fi hotspot with the same name (SSID; Service Set ID)
as a legitimate one (e.g. public Wi-Fi). Upon discovery,
the smartphone connects to the rogue one and all Internet
traffic will be routed via the attacker.

We configured our Wi-Fi access point to redirect all pack-
ets towards UDP port 123 (default NTP port) to our rogue
NTP server. Upon receiving NTP requests from the smart-
phone, the NTP server replied with spoofed clock informa-
tion. Because of the wide varieties of NTP server addresses
among mobile OS’s as shown in Table 4, we use a port redi-
rection instead of DNS query spoofing for simplicity and
scalability of the attack. Since NTP does not mandate any
authentication, all our tested smartphones accepted spoofed
clock information.

Android has an NTP polling interval [29, 27] of one day by
default. Upon reception of the first NTP response packet,
Android will not issue further NTP requests until the NTP
polling interval had been rolled back. This is also true when
the user changes to the legitimate Wi-Fi network, making
recovery via NTP impossible at least for one day.

5. IMPACTS ON MOBILE OS AND APPS
In this section, we discuss how clock spoofing attacks af-

fect the operation of baseband and mobile OS and its apps.
We also examine the persistence of attacks and possible re-
covery methods.

5.1 Baseband Operations
We analyzed control plane messages in all 2G, 3G, 4G net-

works [9, 11] and found that only a small number of messages
contain current baseband or network clock information. As
a result, most cellular operations are not affected by the at-
tack. Other usage of the clock information on the baseband
is logging its diagnostic messages.

Signaling messages for telephone calls, both circuit switch
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Figure 2: Message details on Nexus 5, showing both
network and device timestamp.

based and VoLTE [31], do not contain clock information. As
a result, incoming and outgoing calls are logged on the phone
with the mobile OS clock and operators maintain their own
clock for call accounting.

Incoming SMS is one of the signaling messages contain-
ing network clock information when the message has been
sent [12]. It is up to the device developers to use the times-
tamp present in the incoming SMS or not. Figure 2 shows
an example of clock difference: network clock information is
included in the “Sent” field, the device counterpart is in the
“Received” field.

5.2 Mobile OS Operations
Clock spoofing can affect various components, ranging

from low level components like kernel and system programs
to higher level components like apps.

5.2.1 System Components
Any system component or app relying on clock informa-

tion will be vulnerable to spoofing attacks. Specifically,
when the attacker sends a date around year 2038 a mem-
ory overflow occurs causing a complete system crash. Fur-
ther, networking protocols such as TLS/SSL rely on accurate
clock information [35].

We concentrate on TLS/SSL as it forms a basis of higher
level protocols like HTTPS, and is widely used in mobile
environments. Once a secure connection is established using
TLS, the client performs a server certificate validity period
check. If the current clock is outside of the validity period,
the certificate is considered to be invalid. Depending on
the type of app, the secure connection gets terminated or
established nonetheless. We found that Android [30] and
iOS [16] enforce strict validity checks on TLS connections,
causing a Denial of Service on the smartphone when the
clock is incorrect.

5.2.2 Apps
We studied the behavior of apps after the clock spoofing

on Android and iOS. Apps not utilizing clock information
or apps utilizing clock information locally are excluded from
our analysis, because the former is not affected at all and
tha later has no means of verifying accuracy of the clock.
However, apps utilizing clock information and require a data
connection are affected by the attack. We tested some of
the widely used apps and noticed three different behaviors:
explicitly noticing clock inaccuracy, showing a generic error

Figure 3: Best practice: screenshot of WhatsApp
indicating system clock spoofing.

message, and operate regardless of the clock spoofing.
Web browser, social networking, mobile messengers

mainly rely on TLS-based encryption. Specifically, What-
sApp (see Figure 3) and Google Chrome explicitly indicated
the system clock mismatch when clock spoofing was de-
tected. In this case, WhatsApp failed to operate normally
until the clock was reset to the accurate value.

Further, certain apps like OpenVPN did not distinguish
between clock spoofing and generic network errors. Figure 4
shows how OpenVPN presents an error when the current
system clock is outside of the certificate validity period. App
stores like the Google Play Store presented an option to retry
the connection, but this fails to work until the clock is reset.

Finally, certain apps operated regardless of clock spoofing
and showed no indication to the user. We observed this
behavior on apps handling mostly public information like
public transportation timetable, etc. Samsung Knox [50]
also falls into this category, as it allows unlocking and locking
the secure container regardless of clock spoofing.

5.3 Persistence and Recovery
We observed that majority of our test smartphones are

affected by the attack, and failed to receive accurate clock
information even after the attacker shuts down the rogue
base station or Wi-Fi access point. During this state, mobile
apps failed to operate normally, causing a persistent Denial
of Service on the smartphone.

In order to recover, the user needs to reboot the smart-
phone. In some cases it is enough to toggle the flight mode.
When the user is still in range of the rogue base station
or Wi-Fi access point, rebooting will likely pick up false
clock information again and cause apps to fail. Similarly,
when traveling accross time zone, rebooting the smartphone
is usually suggested when current clock information is incor-
rect [14].

Rebooting the smartphone would also be required after a
system crash caused by the year 2038 problem. Depending
on the smartphone, the clock resets back to the UNIX time
epoch (year 1970), or before the epoch (year 1901) until
receiving accurate clock information.
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Figure 4: Common practice: screenshot of Open-
VPN indicating network failure.

6. DISCUSSION
We now analyze the security implications that arise due

to inadequate timekeeping methods adopted by smartphone
and baseband manufacturers, and mobile OS developers.
Further, we propose effective mechanisms to handle clock
information inside each component of smartphones.

Baseband manufacturers. As the mobile OS prefers
to receive clock information over NITZ assuming that it
is acquired over a secure channel, baseband manufacturers
should abide by the security measures already implemented
in respective specifications for NITZ.

Moreover, as operating a rogue base station now became
easier [20], baseband manufacturers are required to apply
defensive programming regarding the data received from
the network provider. An example of defensive program-
ming would be to verify the received NITZ values. The
3GPP specification does not clearly define error handling
procedures when NITZ information contains an invalid clock
value [9, 12]. As a result, when the base station sends month
13, it could be interpreted as next year January or could be
ignored. Likewise, hour 25 could be interpreted as 01:00
next day. All these behaviors are accepted. Some baseband
accepted out-of-range values and interpreted them as a time
in the future, while some ignored those values. As the clock
information first arrives on the baseband processor, a sanity
check will release the burden of verifying the data inside the
mobile OS.

Mobile OS developers. OS need to provide consistent
and predictable policies on clock updates. As clock sources
have different availability and security, more available and
secure clock sources should always be preferred. Also, mo-
bile OS can provide interfaces to trigger manual updates of
the clock, and a minimal notification of the current clock
source when the clock source had been changed. For exam-
ple, BlackBerry has an option to ask the user about time
zone updates when a new time zone is detected [19]. This
can save the user from rebooting the phone when traveling
across time zones, and gives user the chance to use a manual
clock when some of the clock sources are not working.

Recent Apple iOS 9.3 series introduced some of the san-
itization mentioned in Section 4.3.3. Contrary to iOS, our
test Android smartphones changed its clock when there were
a large clock drift. Although Android has some NITZ san-
itization procedures [28] but it only checks system uptime
upon receiving NITZ, not the content of NITZ information.
As a result, mobile OS clock changed in cases when we sent
a correct time value first (e.g. 1st July midnight), then a
time value of some days in the future or past (e.g. 10th July
or 20th June), and then again recovered the original time
(e.g. 1st July 00:10).

Although iPhone 5s opened the era of 64-bit smartphones
in July 2013, a large number of 32-bit smartphones and cel-
lular capable M2M and IoT devices will remain in operation
for an extended amount of time. Therefore, OS developers
should be aware of the year 2038 problem and need to pro-
vide fallback mechanisms without causing the OS to crash.
Although the problem itself was first reported on Android 5
years ago [2], the bug was virtually abandoned and remained
hidden for a long time.

Additionally, OS developers and/or device manufactur-
ers can implement secure NTP to protect users from NTP
spoofing attacks. NTP version 4 introduced cryptographic
authentication features, and there are studies proposing se-
cure NTP [24]. Authenticated NTP is already in operation
by NIST [44] and the US Naval Observatory [45]. Some
device manufacturers like Apple and BlackBerry are oper-
ating NTP servers themselves, and actively utilizing secure
containers in their respective mobile OS. They can provide
NTP with authentication as a premium service.

App developers. Among our set of test apps, What-
sApp and Google Chrome showed the best way to handle
the clock spoofing. Other apps using TLS did not distin-
guish correctly between errors caused by clock spoofing from
generic network errors. Unlike other network errors, errors
caused by clock spoofing are easier to detect and recover
from by the user. We therefore suggest app developers to
distinguish clock spoofing errors from other errors, unless
the app is not utilizing clock information.

Also, if clock information is extensively used inside an app,
operating a separate time server on the app developer’s side
can help making accurate timekeeping less of an issue inside
the application. Some time-critical apps like banking apps
are already following this.

App developers can differentiate certificate validity pe-
riod, compromising between security and maintenance cost.
Google set their certificate validity to 3 months, while Face-
book and Twitter used 2 years. As a result, Google apps are
stricter on clock spoofing attacks as compared to Facebook
and Twitter.

7. CONCLUDING REMARKS AND FU-
TURE WORK

Smartphones are utilizing multiple clock sources via cel-
lular network and Internet to ensure accurate clock infor-
mation. We have shown that the vulnerabilities we discov-
ered in cellular network (2G, 3G and 4G), NTP standards,
and implementations allowed clock spoofing attack towards
smartphone users. Our attacks were performed using open
source cellular network and NTP server software, with read-
ily available hardware and several smartphones with 6 differ-
ent mobile OS’s. We demonstrated Denial of Service attack
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leading to the malfunction of apps and complete mobile OS
crash. Baseband implementations, 3GPP standard issues,
and lack of consistent timekeeping methods in smartphones
are the root causes of these attacks. We proposed best prac-
tices to manage multiple clock sources in smartphones and
provide accurate clock to the user. We followed standard re-
sponsible disclosure methods of all affected manufacturers,
and we also notified the mobile app developers and OS de-
velopers. Google addressed the problem mentioned in this
paper in Android Security Bulletin, August 2016 [26, 5].

Our future work will cover the other clock sources we ex-
cluded or did not analyzed in this paper, and the other
components of mobile OS and apps. Although we explic-
itly excluded GPS in this paper, GPS spoofing including
clock information is already proposed [54]. While previous
work [35] mentioned that multiple protocols are affected by
clock spoofing attack, we only covered TLS/SSL in this pa-
per. We will also cover other network protocols and OS
components that is largely affected by clock spoofing attack.

We belive our attacks are not only true for smartphones
but also for IoT systems that derive from a mobile OS (for
example, connected cars). There is more protection and reli-
ability needed for maintaining an accurate time information
for these systems. Our research results exhibit that clock
spoofing attacks needs more attention in the age of digitally
connected world.
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