SecuRank: Starving Permission-Hungry Apps
Using Contextual Permission Analysis

Vincent F. Taylor
Department of Computer Science
University of Oxford
Oxford, United Kingdom
vincent.taylor@cs.ox.ac.uk

ABSTRACT

Competition among app developers has caused app stores
to be permeated with many groups of general-purpose apps
that are functionally-similar. Examples are the many flash-
light or alarm clock apps to choose from. Within groups of
functionally-similar apps, however, permission usage by in-
dividual apps sometimes varies widely. Although (run-time)
permission warnings inform users of the sensitive access re-
quired by apps, many users continue to ignore these warn-
ings due to conditioning or a lack of understanding. Thus,
users may inadvertently expose themselves to additional pri-
vacy and security risks by installing a more permission-
hungry app when there was a functionally-similar alternative
that used less permissions. We study the variation in per-
mission usage across 50,000 Google Play Store search results
for 2500 searches each yielding a group of 20 functionally-
similar apps. Using fine-grained contextual analysis of per-
mission usage within groups of apps, we identified over 3400
(potentially) over-privileged apps, approximately 7% of the
studied dataset. We implement our contextual permission
analysis framework as a tool, called SecuRank, and release
it to the general public in the form of an Android app and
website. SecuRank allows users to audit their list of installed
apps to determine whether any of them can be replaced with
a functionally-similar alternative that requires less sensitive
access to their device. By running SecuRank on the entire
Google Play Store, we discovered that up to 50% of apps can
be replaced with preferable alternative, with free apps and
very popular apps more likely to have such alternatives.

1. INTRODUCTION

The smartphone ecosystem is centered around large repos-
itories of apps, called app stores (or app marketplaces),
that provide millions of apps covering a broad spectrum
of functionality and quality. In order to provide their pre-
scribed functionality, apps may need access to sensitive re-
sources and private data on a smartphone. Some apps han-
dle a user’s sensitive data respectfully, but other privacy-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SPSM’16, October 24 2016, Vienna, Austria

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4564-4/16/10. .. $15.00

Do |http://dx.doi.org/10.1145,/2994459.2994474

43

Ivan Martinovic
Department of Computer Science
University of Oxford
Oxford, United Kingdom
ivan.martinovic@cs.ox.ac.uk

invasive apps and greyware/malware are known to abuse
their granted permissions to pilfer data or profile users [13,
35]. Many attempts to address the problem of permission-
abuse by apps have been explored in the literature, includ-
ing ways to determine suspicious apps from the permissions
they use |30l [26] and by analysing whether an app’s store
description reflects the permissions it asks for [24} 27} |31].

When a user searches for an app of particular function-
ality, the search engine returns a variety of suitable apps
for the user to choose from. Users, however, are known
to disproportionately favour the highest ranking search re-
sults [18], and may inadvertently expose themselves to ad-
ditional security or privacy risks, by choosing a permission-
hungry app when there was a functionally-similar alterna-
tive that required less sensitive access to their device. For
this reason, we study the Google Play Store to understand
the extent to which apps request only as many permissions
as they need to provide their functionality. That is, we
study the extent to which apps follow the principle of least
privilege [28]. On Android, following the principle of least
privilege limits opportunities for malicious actors to perform
privilege escalation, app collusion, and confused deputy at-
tacks [7].

On both Android and iOS, sensitive system APIs and data
are guarded by a permissions-based security model. With
the release of Android 6.0 (API level 23, code-name Marsh-
mallow), the Android platform now resembles that of Ap-
ple’s iOS where users are no longer forced to grant all permis-
sions at install time, but must now allow or deny permission
requests at runtimeﬂ [4]. This added power offers users addi-
tional options for protecting their privacy and security, but
many users continue to blindly accept warnings because of
conditioning and/or a lack of understanding of the ramifica-
tions of their actions [14} [12]. Indeed, Eling et al. [10] show
that 40.4% of users accept fine-grained, intrusive and un-
necessary run-time permission requests for minimal reward.
Moreover, a majority of users are known to ignore permis-
sions, privacy policies, and terms of agreement altogether [9],
with some users placing higher emphasis on the short-term
benefits derived from information disclosure [1}|2]. Study-
ing app over-privilege continues to be important, as users’
intentions are known to diverge from their actual behaviour
when it comes to protecting their privacy [23, [3].

To illustrate the problem of permission-hungry apps, we
show the details of the Top 8 search results for the query

'Note that app developers can nullify the switch-over to run-
time permissions by targeting their apps to API level 22 or
lower.

http://dx.doi.org/10.1145/2994459.2994474

! Free

Alarm Clock Xtrel My Alarm Clock F
AVG Labs Apalon Apps

Google Play Store

| Can't Wake Up!

Kog Creations Bitspin

Actual Screenshot of
Search Results from the

L2 2 8 8] L2 2 31 L2 2 8 B L8 3
User Rating: 4.5/5 4.3/5 4.5/5
Downloads: 10M-50M 10M-50M 1M-5M

of Permissions: 3 5 4 2

Timely Alarm Clo

*

4.4/5
5M-10M

=t

Alarm Clock Free
iHandy Ltd

Alarm Clock Plus

Alarm Clock Plus / Bina

Alarm Clock
MacroPinch

Digital Alarm Clo

Squarenotch

*h ko Kk k *hkh Kk h
4.5/5 4.3/5 4.0/5 4.2/5
5M-10M 5M-10M 10M-50M 5M-10M

3 2 5 6

Figure 1: Snapshot of the Top 8 Google Play Store results for the search query “alarm clock”. All apps have
very high ratings and provide similar functionality, but the most permission-hungry app uses three times as
many permissions as the least permission-hungry app.

“alarm clock” in Fig. Overall, there is a great dispar-
ity (the most permission-hungry result uses three times as
many permissions as the least permission-hungry result) in
permission usage across the Top 8 results, in spite of the
fact that each app in the group provides similar functional-
ity. Moreover, all of the apps are highly rated and provide
similar textual app descriptions, so it is difficult for (and un-
reasonable to expect) the average user to make an informed
choice every time they install a new app. We are motivated
to determine whether this disparity in permission usage is
an isolated occurrence for the “alarm clock” query, or ev-
idence of a much larger phenomenon affecting app stores.
The utility of our work hinges on the fact that app store
searches are the most popular method of app discovery .

In this paper, we present SecuRank, a framework and tool
that identifies and suggests functionally-similar apps that
follow the principle of least privilege. Throughout the paper,
we focus exclusively on the usage of dangerous permissions,
i.e., the 24 system permissions listed in the Android devel-
oper API as allowing an app access to a user’s confidential
data [5]. For this reason, we refer to dangerous permissions
as simply permissions.

Our work is motivated by the following key observations:

O-1: App store searches return many apps with similar func-
tionality but dissimilar permission usage. The average
user cannot be expected to analyse and understand the
security and privacy trade-offs in choosing one app over
another every time they want to install an app.

: Over-privileged apps can be more profitable to app de-
velopers and advertisers. With greater access to a de-
vice’s data and other resources (such as location), ad-
vertisers can more effectively profile users for the pur-
poses of advertisement targeting to the benefit of the
app developer.

: Threats to user privacy and security coming from over-
privileged apps are not static. App stores evolve as new
apps (both benign and malicious) are added and thus
automatic and continuous analysis is required to iden-
tify apps that seek inappropriate access to a device.

It is critical to note that our work only focuses on general-
purpose apps. By general-purpose apps, we mean those that
provide generic functionality, with many apps competing in
the app store to provide that functionality. Examples of gen-
eral purpose apps include alarm clocks, flashlights, calorie

44

counters, etc. Non-general-purpose apps, such as Facebook
or Bank of America, are considered to be out of scope, as of-
ten times there will be only one particular app that matches
what the user is looking for.

Our work is guided by the following research questions:

Q-1: Can permission-hungry apps be identified by compar-
ing their permission usage to other apps that provide
similar functionality?

1 Are the rankings of search results from app stores sta-
ble over time?

similar alternatives of good quality that follow the prin-
ciple of least privilege?

Contributions. To the best of our knowledge, we are the
first to make the following contributions to the literature:

e A methodology for determining popular app searches
in app stores.

e An understanding of the extent to which users can
obtain less permission-hungry apps of good quality to
replace the ones they currently use.

e A framework and tool, called SecuRank, that assists
users in replacing apps with less permission-hungry al-
ternatives. We have made our tool available to the
general public in the form of a websiteﬂ and an An-
droid ap;ﬂ

Outline. The rest of this paper is organised as follows:
Section 2 explains our data collection methodology; Section
3 presents an overview of our dataset; Section 4 explains
how contextual permission analysis works; Section 5 presents
SecuRank and the results of running it on the Google Play
Store; Section 6 discusses our work; Section 7 surveys related
work in the area; and finally Section 8 concludes the paper.

2SecuRank is freely available to online at

https://securank.me/
3The [SecuRank app can be downloaded for free from the
Google Play Store.

use

: Can permission-hungry apps be replaced with functionally-

https://securank.me/
https://play.google.com/store/apps/details?id=me.securank.jov

2. DATA COLLECTION METHODOLOGY Play Store 2
Our overall goal is to analyse permission usage within Start Crawler
groups of functionally-similar apps. To identify such groups, Project
we leverage general-purpose search queries on the Google List olfa s
Play Storq”|that each return a sufficient number of functionally- v v pp
similar apps as search results. Data relating to the Google Get apps with English app Local
Play Store and search results for particular search queries descriptions and more than m database of
was retrieved in early 2016 from an IP address in the United installs app data
Kingdom. Our data collection methodology is depicted in v
Fig. |2l and has three major steps that are discussed in Sec- Remove non-Roman alphabet T
tion and characters from app descriptions
and convert to lower-case App
2.1 Collect Google Play Store App Data v d‘;j;rl'gggr‘; -
Google does not make full app store data available, so we Tokenize, stem, and remove stop prequired, > %
first had to leverage the Google Play Store Crawler project [19]. words from app descriptions number of n
This project is concerned with making a simple, scalable installs,
crawler that retrieves data (such as app title, description, y - category,
and popularity) from all apps in the Google Play Store. Un- Getn most'frequently appearing rating...
fortunately, this project does not collect information about words In corpus of app
i pro) . descriptions
the permissions an app uses, so we had to perform additional 3
steps: Query Google Play Store auto-
suggest APl with the n most Google
1. Extract all app names from the Google Play Store frequently appearing words Play Store
Crawler project dataset and add them to a local database. ¥
2. Build a second crawler that scrapes the HTML page Retrieve highest ranking suggestions (or ignore query
of an app on the Google Play Store website and parse if none present)
it to obtain the complete data (including permission ¥ 7
usage) of an app. h
Get Top x Google Play Store search results for each
3. Add this complete app data to the local database. suggestion
v
2.2 Generate Popular Search Queries Measure cosine similarity of app descriptions in each
The Google Play Store does not provide statistics of the set of Top x results N
most popular search queries, so we had to derive our own v >§7
list. An app’s description is used heavily by the app store Save search queries with Top x search results having 177}
search ranking algorithm to return relevant results. Fre- a cosine similarity above a threshold of y
quently occurring (non-stop) words in the descriptions of
the most popular apps can give some idea of what popular L
searches in that store may look like. We leVerage this in- Popular search queries that each yield x results that
sight to generate popular search queries by performing the are all within the similarity threshold of y
following steps (as shown in Stage 1 of Fig. : J
1. Obtain app store data (from the local database) of all Figure 2: Flow chart showing the various stages in
apps reported as having more than 100,000 installs. our data collection methodology.

2. Parse and filter the app store descriptions of these
apps to obtain written text containing Roman alpha-

by queryin the Google Play Store search form auto-
bet characters only.

suggest API with each word.

3. Pre-process these app store descriptions using the nat-
ural language processing (NLP) techniques of tokeniza-
tion, stemming, and stop word removal.

6. Add the highest ranking suggestion to a list of popular
search queries.

2.3 Ensure App Similarity

4. Combine pre-processed descriptions into a corpus of

text, and extract the 20,000 most frequently appearing The list of popular search queries derived needs to be fil-
words. tered, to obtain only those search queries that each yield a
sufficient number functionally-similar apps. For our analy-

5. Ensure that these 20,000 most frequently appearing sis, we considered only those search queries whose resulting

words correspond to actual searches of the app store

5To prevent our script from being blocked, we rate-limited
4Throughout this paper, we use the terms Google Play Store, our queries to one per second and sent a random, valid User-
app store and Store interchangeably. Agent string with each query.

45

Top 20 apps were all similar in functionality and had de-
scriptions written in English. The set of 20 apps returned
by each search query is hereafter called the search result set
for that query.

We used an app’s textual description as a proxy for the
functionality it provides. We believe this to be a valid strat-
egy because app developers write the descriptions of their
apps to advertise functionality and enable the app store to
effectively rank the app based on keywords in the descrip-
tion. We used a similarity measure to compare the text
descriptions of apps within each search result set. The simi-
larity measurement function compares the app descriptions
of search results #2-20 to that of search result #1 (since we
assume that search result #1 is the best match for the query).
If the similarity of app descriptions across a search result set
was above a certain threshold, we assumed that the group
of apps all provide similar functionality. We validate this
assumption in Section El

Similarity measures for short segments of text, such as app
descriptions, have been widely studied in the literature [20,
21]. Some approaches are lexical, meaning that they rely
solely on matching terms, while others are probabilistic and
involve language modelling frameworks. A common similar-
ity measurement approach involves transforming documents
using Term Frequency-Inverse Document Frequency (TF-
IDF) in a so-called vector space model. This model does
not work well for measuring documents of different lengths.
To get around this problem, the cosine similarity measure is
often used since the vectors are normalised before measure-
ment. Cosine similarity is easy to understand and implement
but suffers from the fact that it does not take sentiment into
account. We do not consider understanding sentiment to be
critical is this case, since the app store search ranking algo-
rithm already provided apps that were thought to be related.
Our similarity measure, then, is only needed to identify and
reject those search queries containing one or more genuinely
unrelated apps. Cosine similarity has been used previously
for Android malware detection [29].

For our similarity measure, we used the Python NLTK
library [6] to build a cosine similarity measurement function
that leveraged a Porter stemmer for text pre-processing. We
filtered (as shown in Stage 2 of Fig. |2) the popular search
queries obtained from the previous step (Stage I of Fig. [2)
to obtain only those that delivered 20 similar apps. We
expand on choosing a similarity threshold in Section [3.1]
After following the aforementioned steps, we had a list of
popular search queries of the Google Play Store that each
returned a search result set of 20 functionally-similar apps.

3. ANALYSIS OF THE SEARCH QUERY
DATASET

We first measured the stability (or time invariance) of
search rankings in the Google Play Store to understand the
extent of changes in rankings over time. To do this, we re-
trieved the Top 20 results from the Google Play Store for the
queries in our search query dataset several times, with pe-
riods of two-weeks and two-months between retrievals. The
results of this analysis are presented in Fig. The plots
show what percentage of search queries have the same apps
in particular positions in the search results. The 2-week dif-
ference plot shows that 86% of the queries had the same app
in position #1 and 71% had the same pair of apps in posi-

46

$ 100 : ‘

o gol &, |e-e 2-week difference ||

=} .\(:

2 60L... e i |®-® 2-month difference||

o Ly : :

S 40F-- R e S TRLDERRTILRPRPLTRPE: DRRPRIPRPRILOPPRIES

2 20 LI P 3

ks I~ T A R

R 0 , s s pa-202288eo..d
0 5 10 15 20

Search result ranking
Figure 3: Difference in search results over a 2-

week /2-month period. The most highly ranked apps
tend to hold on to their exact search rankings or
were slightly reshuffied.

tions #1-2. The 2-month difference plot shows that 75% of
search queries had the same app in position #1 and 51% had
the same pair of apps in positions #1-2. Over the longer
period, and for lower ranks of apps, the search results are
less stable. At this point, it is important to reiterate that
the highest ranking search results are the ones that com-
mand the significant majority of traffic (and thus app down-
loads) from organicﬂ searches [18|. Thus high-ranking apps,
if permission-hungry, are a persistent cause for concern since
their search rankings are very stable.

3.1 Generating the Search Query Dataset

To generate the search query dataset to be used in our
analysis, we had to choose an appropriate value for the co-
sine similarity threshold to ensure that the search queries
each delivered 20 similar apps. Manual inspection showed
that a cosine similarity threshold of 0.25 yielded queries with
search result sets of functionally-similar apps. Thus we used
a threshold of 0.25 for the remainder of the tests. At a
threshold of 0.25, we had 2620 search queries that deliv-
ered 20 similar apps. We randomly selected 2500 of these
queries for our analysis of the Google Play Store. These
2500 queries (and their corresponding 50,000 search results)
constitute our search query dataset (not to be confused with
a search result set of 20 apps).

3.2 App Ratings and Permission Usage

Within each search result set, we measured how the qual-
ity of an app varied with its rank in the search results. We
used the average user rating for an app as a proxy for the
quality of that app. Our findings are shown in Fig. [We
found that the average rating of an app did not fall off as the
ranking in the search results went down. This suggests that
competing apps within groups of functionally-similar apps
are also of high quality.

Fig. shows how the mean number of permissions re-
quired by apps varied based on the app’s rank in the search
results. The #1 ranked apps required (noticeably) more per-
missions than the apps that were ranked below them. Single-
factor ANOVA confirmed that this was a statistically signif-
icant result. On average, eight apps from a search result set
required more permissions than the mean for that search
result set. Our analysis shows that six of these eight apps,

50rganic search results are those that are derived from their
relevance to queries, as opposed to those resulting from ad-
vertisement campaigns.

Mean Rating of App

o = N W H U
T
i

i ; ;
5 10 15
Rank of App in Search Results

o

Figure 4: How the mean user rating per app varies
with the rank of that app.

»
&

of permissions

NN Wow ok
o Un o U o
T

I
5 10

I
15
Rank of App in Search Results

20

o

Figure 5: How the mean number of permissions re-
quired per app varied with the rank of the app in
the search results.

on average, were ranked in the Top 10 for their search re-
sult set. This observation suggests that more highly-ranked
apps, in general, are more permission hungry, and under-
scores the utility of a framework that can identify and sug-
gest functionally-similar alternatives that use less permis-
sions.

Our analysis so far has yielded three key insights:
1. Highly-ranked apps tend to be more permission-hungry.

2. The highest-ranking search results are fairly stable,

meaning that high-ranking apps that are overly permission-

hungry pose a persistent challenge.

3. Less highly-ranked apps are still highly rated by users,

pointing to the availability of high-quality, less permission-

hungry alternatives.

Based on these insights, we analyse the extent to which we
can suggest suitable alternative apps to users that still sat-
isfy their demand for particular functionality. In this way,
we incentivise the development of less permission-hungry

apps.

4. FINE-GRAINED CONTEXTUAL
PERMISSION ANALYSIS

Fine-grained contextual permission analysis involves look-
ing at permission usage across apps within each search re-
sult set. For this analysis, we use permission prevalence, a
metric that measures how many other apps within a search
result set use the same permission. A similar metric was
used by Sarma et al. [30] for malware classification. The
idea is that if all the apps in a search result set provide sim-
ilar functionality, any deviations from the norm in terms of

47

permission usage may be a useful indicator of an app being
overly permission-hungry (for an app providing that func-
tionality). We define the Individual Permission Prevalence
(IPP) of each permission as the fraction of apps in a search
result set using that permission. We define App Overall Per-
mission Prevalence (AOPP) as the mean of the IPPs of those
permissions used by an app. Algorithm [T] outlines more for-
mally how IPP and AOPP are calculated.

Algorithm 1: Calculate IPP and AOPP for a list of apps
s Bn

Input: List of apps 8 = B1, ...
Output: IPP, AOPP per app
permList < []
foreach app in 8 do

| permList < permList + getPermissions(app)

IPP « 0
foreach perm in GetUniqueltems(permList) do
L IPP[perm] < permList.count(perm) <+ len(B)

AOPP + 0
foreach app in 8 do

temp < []

foreach perm in getPermissions(app) do

| temp < temp + I PP[perm)]

AOPP[app| < mean(temp)

return AOPP,IPP

As a concrete example, consider four apps: app1 = {A, B,C},
app2 = {A, B}, apps = {A, C}, apps = {A}, where A, B and
C are permissions. IPP and AOPP are calculated as follows:

1. Make list of all permissions, i.e., [A, B, C, A, B, A, C,
Al

2. Count occurrences of each permission in list, i.e., pa =
4, pp =2, pc = 2.

3. IPP is the fraction of occurrences of a permission
the number of apps, i.e., [PPa = 3 = 1.0, IPPg =
2 =05, IPPoc=2=05.

4. AOPP is the mean of the IPPs for those permissions
used by an app, i.e., AOPP, = 0.66, AOPP, = 0.75,
AOPP; =0.75, AOPP, = 1.0.

4.1 Identifying Rare Permissions

We classified a permission as a rare permission if it had an
IPP of 5%, i.e., only one app in a search result set of 20 used
this permission. Rare permission usage should be consid-
ered suspicious, since among a set of 20 functionally-similar
apps, only one app used this permission. Approximately 6%
of apps that were ranked #1 for their search query used one
or more rare permissions. The most common rare permis-
sions used by #1 ranked apps were ACCESS_FINE_LOCATION
(10.5%), CAMERA (9%), and READ_CONTACTS (8.5%). Apps
using rare permissions are not automatically malicious, but
should certainly be the subject of more intensive static or dy-
namic analysis by app stores to detect malfeasance. Across
our search query dataset, we analysed which permissions
were rare permissions. Our results are shown in Fig. [6]
From the figure, approximately 12% of the time the offend-
ing permission was RECORD_AUDIO. Other ‘popular’ rare per-
missions allowed apps to get a user’s location, use their cam-
era, or read their contacts.

12

—_
(=]
X 10
<
()]
u8
c
o 6
=
> 4
3
o 2
o Z N Z2 Hn0xwwvuone OV Iaqao oWw
8csipbosfsocxzshEgEzedgraeungzz0
3l—E{L—(mIJ‘%om‘2w|§04‘<2p—82mlz§§
=z
S85EgeoFEEeoE Y lgaBEee
29009m6<jm0wu<6gmzm§ SRS
o u' Ulu.u'”’Q‘U|<8U|“<|U|m‘5u°>-'\ >
92 g2 go°EE ppEpbtezsgs 923
@ T o=] z og 5 o @ u g
) < o o = ;30 <) - B
[0} o | w w
w | %) o < Eﬁ
g 3 i o
< 8 o =
v} Q 4 g
< o 2

Rare permissions

Figure 6: Breakdown of the usage of rare permis-
sions, i.e., permissions with an IPP of 5%.

4.2 Case Study of Rare Permissions

Fig. [B]shows the rare permissions observed in our dataset.
We did a manual inspection on 125 of the apps that used
rare permissions to determine whether they were dissimilar
apps that got into each search result set and were flagged
for rare permission usage for that reason (false positives), or
they were indeed functionally-similar apps that were using
rare permissions (true positives). For the manual inspec-
tion, we considered permissions that would allow apps to
capture audio/video from a device, access the user’s exact
location, or cost the user money. Specifically, we randomly
chose 25 occurrences from each of RECORD_AUDIO, CAMERA,
ACCESS_FINE_LOCATION, SEND_SMS, and CALL_PHONE to anal-
yse.

Table [1] shows a summary of the results of our manual
analysis. We found that 92.8% of the apps were relevant to
the search query that they were returned from. That is, we
confirmed that the vast majority of apps in this set were not
flagged because they were irrelevant search results. More-
over, we consider this 92.8% to represent the lower bound on
relevance, because our manual analysis was focused on apps
that were flagged for rare permission usage. These apps are
the most likely ones to have been false positives in the first
place, since their permission usage was so drastically differ-
ent from the other apps in their search result set. Across
our entire dataset, we expected relevance to be near perfect,
and we validated that this was the case.

We manually determined whether apps (that were rele-
vant to their query) justified their use of rare permissions.
To infer this, we analysed app store information for each
app including app description, screenshots, feature listing,
and “What’s New” section to glean insight as to why the app
would need the rare permission. Of the apps that were man-
ually audited, rare permission usage was justified only 22.4%
of the time. Worryingly, this 22.4% seems to be inflated by
apps using the CAMERA permission, whose use was justified in
61% of cases. Apps using the more surreptitious (and dan-
gerous) CALL_PHONE and SEND_SMS permissions only justified
their need for doing so 4% and 9% of the time respectively.
These two permissions may have financial consequences as
some malicious apps are known to make calls and send SMS
messages to premium rate numbers .

48

Table 1: Results of the manual analysis on 125 apps
that used rare permissions. Apps were highly rele-
vant to their search query and a significant majority
did not justify their rare permission use.

Permission Relevant? | Justified?
ACCESS_FINE_LOCATION 96% 8%
CALL_PHONE 96% 4%
CAMERA 92% 61%
RECORD_AUDIO 92% 30%
SEND_SMS 38% 9%
Average 92.8% 22.4%

We used historical snapshotsﬂ of the Google Play Store
to analyse the apps in our dataset that used rare permis-
sions. After removing duplicates (apps appearing more than
once for the same rare permission), we had 3452 apps, i.e.,
approximately 7% of the search query dataset. We discov-
ered that 8.7% (301) of apps using rare permissions added
their rare permission within the last 10 months. Worry-
ingly, 31.6% (95) of these apps did not have a corresponding
update to their app descriptions to explain any added func-
tionality warranting the use of these permissions. Of these
95 apps, 77 of them had more than 100,000 installs, and 36
had more than 1,000,000 installs.

5. SECURANK FRAMEWORK AND TOOL

Given the prevalence of apps using rare permissions in
our dataset, we applied the concept of fine-grained con-
textual permission usage to analyse the entire Google Play
Store. We performed this measurement using a framework
and tool called SecuRankﬂ (Security Rank). SecuRank finds
functionally-similar apps then determines the ones that most
closely seem to be following the principle of least privilege.
To infer least privilege, SecuRank uses an app’s AOPP as
defined in Section[d The AOPP metric penalises apps that
use permissions that are uncommon within their group of
functionally-similar apps. Thus, given an input app, Secu-
Rank can identify and suggest alternative apps that more
closely obey the principle of least privilege. We used Se-
cuRank to analyse the entire Google Play Store, to report
on the extent to which apps had functionally-similar alter-
natives that used less privileges on users’ devices. There
are two main steps to populate the database that SecuRank
uses:

1. Use a similarity measurement function (similar to the
one described in Section to compare app descrip-
tions across the Google Play Store to identify and
group functionally-similar apps.

2. Compare permission usage within groups to identify
whether apps had less permission-hungry alternatives.

Across the Google Play Store, we consider an app to be
less permission-hungry (or more closely following the prin-
ciple of lease privilege), if it has a higher AOPP than a
functionally-similar app. Fig. [7] shows the Store-wide per-
centage of apps having less permission-hungry (‘preferable’)

"Our historical snapshots of the Google Play Store are avail-
able upon request.

8SecuRank is freely available to use
https://securank.me/| and as an |Android app.

online at

https://securank.me/
https://play.google.com/store/apps/details?id=me.securank.jov

Preferable alternatives (%)

100K oo
500K| il
Lomp
50M|-

R T T T TR N S ! [
S F oo o v vy s = s
— 1N O O +H In O O — 1N o
— — 1 o
—
Minimum number of downloads
Figure 7: Percentage of apps having ‘prefer-

able’ alternatives. A preferable alternative is a
functionally-similar app with a higher AOPP. Note
that (at the time of writing) there were no paid apps
with five million downloads or more.

Table 2: Breakdown of the store-wide likelihood of
an app to have a preferable alternative depending
on whether the app was free or paid.

Cost Has alternatives No alternatives
Free 2408 (13.4%) 15508 (86.6%)
Paid 189 (9.1%) 1895 (90.9%)

alternatives, broken down by popularity and cost (free or
paid). There is a positive correlation between the minimum
number of downloads of an app and the number of alterna-
tives it had, regardless of the cost of the app, i.e., free or
paid. The likelihood of a free app having a preferable alter-
native monotonically increased with the minimum number of
downloads of that free app. Approximately one in five apps
(free or paid) with 500 downloads or more had a preferable
alternative. At the upper end of popularity (50 million or
more downloads), approximately one in two free apps had
a preferable alternative. This is concerning since it means
the more likely an app is to have been installed by users in
the first place, is the more likely it is to have a preferable
alternative that could have been installed instead.

Across the entire Google Play Store, we tested the overall
likelihood of an app to have a preferable alternative depend-
ing on whether it was a free or paid app. Data was collected
using random sampling with a sample size of 20,000. Table
shows the results of our random sample. Free apps were
more likely (13.4%) than paid apps (9.1%) to have prefer-
able alternatives. A 2-proportion z-test confirmed that this
observation was statistically significant: p < 0.01.

The results so far demonstrate that many apps have less
permission-hungry alternatives. However, care must be taken
to ensure that these alternatives are of good quality if they
are to be suggested to users to replace the originals. We use
the average user rating of apps (measured out of 5-stars) in
the Google Play Store as a proxy for their quality. We anal-
ysed the app recommendations made by SecuRank to un-
derstand how they compared to the app they were intended
to replace. Table[3] presents the result of our analysis. From
the table, 53.2% of alternative apps had the same rating
(4.9%) or higher (48.3%) than the app they were intended
to replace. Of the alternative apps that had a lower rating,
37% of them were within 0.25 stars of the rating of the orig-

49

Table 3: Breakdown of the rating of suggested re-
placement apps. A majority of replacement apps
were more highly rated than the apps they replaced.
Rating Number of apps
Higher than original 100,760 (48.3%)
Same as original 10,303 (4.9%)
Lower than original 97,714 (46.8%)
Total 208,777

inal app. Thus, a fair portion of alternative apps that had a
lower overall rating were still of reasonably close quality to
the original. For this reason, we believe that in most cases
SecuRank would be able to recommend alternative apps to
users that would be considered satisfactory. This is critical
if SecuRank is to be adopted.

6. DISCUSSION

In this section, we identify three stakeholders in the smart-
phone app ecosystem and discuss the potential barriers to
adopting SecuRank from the perspective of each of the stake-
holders.

e Smartphone users can immediately use SecuRank
to find functionally-similar alternative apps that are
less permission-hungry.

e App stores can use SecuRank to increase the security
of the app store by identifying and scrutinising apps
that use unusual permissions for the functionality they
provide.

e App developers can obtain useful feedback on how
their apps compare to other apps that provide similar
functionality.

6.1 Smartphone Users

SecuRank has the potential to greatly reduce the attack
surface of smartphones. The main obstacles that stem from
the use of SecuRank involve inaccuracies in app suggestions
and users’ willingness to use SecuRank and follow its sug-
gestions.

In Section [B] we showed that the alternative apps sug-
gested by SecuRank are typically of similar or better qual-
ity than the apps they are intended to replace. However,
alternative apps are discovered using similarity metrics, and
while manual inspection of the results shows high accuracy,
inaccurate suggestions are inevitable. To combat this prob-
lem, future versions of SecuRank could incorporate user
feedback about the suitability of app suggestions, which
could then be used to inform and improve the similarity
measurement algorithms. Additional characteristics of apps
such as libraries used, API calls, and network endpoints
could also be leveraged to more accurately determine which
apps are similar.

Various tools have been proposed to help improve secu-
rity and privacy on smartphones. While these tools prove
useful, user adoption can be a challenge, and SecuRank is
not immune to such a challenge. We believe, however, that
SecuRank may not suffer as much as other tools since it is
straightforward to use and provides valuable feedback every
use, without itself needing to be run frequently. Moreover,
users could opt-in to have SecuRank applied for them at the

app store level, to have their search results automatically
tailored to apps that are less permission-hungry.

6.2 App Stores

App stores can improve their profile by using SecuRank
to identify permission-hungry apps. This use of SecuRank
would have the greatest impact on the health of the ecosys-
tem since permission-hungry apps would be penalised at the
highest level. The main obstacle to the adoption of Secu-
Rank by app stores comes from the reduction in the freedom
of app developers during app development. We must make it
clear that permission-hungry apps are not automatically ma-
licious. Indeed, many successful apps achieved success from
using permissions in novel ways to provide attractive fea-
tures over their competitors. In other words, app developers
may benefit from being free to use and request permissions
as they see fit. However, competition has led to the current
situation where competing apps are continuously trying to
outdo each other in terms of features provided. While com-
petition is good for users in one sense, these same users now
suffer from the fact that their smartphones are filled with
permission-hungry apps. Unsurprisingly, permission-hungry
apps are very attractive targets to attackers, as they pro-
vide an additional (and sometimes more effective) avenue to
privilege escalation on a smartphone.

We propose a compromise in the use of SecuRank, to
satisfy the requirements of the freedom of app developers
while at the same time assisting those users who want less
permission-hungry apps. As mentioned above, app stores
could use SecuRank internally to provide less permission-
hungry apps to those users that select the option. Addi-
tionally, app stores could automatically suggest (during app
search ranking) less-privileged apps to users running out-
dated smartphones to help minimise their already inflated
attack surface. These two strategies remove the effort re-
quired by informed users to manually find less-privileged
apps, and transparently assist less informed and more vul-
nerable users to reduce their attack surface. Additionally,
app stores can use SecuRank to identify apps that use per-
missions that are ‘suspicious’ for the functionality that they
provide. These apps can then be more thoroughly vetted
before being made available for public consumption.

6.3 App Developers

In the current model, app developers may be hesitant to
adopt SecuRank because there is no penalty for developing
highly-privileged apps. In fact, developers stand to benefit
from highly-privileged apps since an app’s bundled libraries,
such as ad libraries, inherit the permissions granted to the
app. Ad libraries are already known to leverage as many
permissions as are available to them, ostensibly for better
advertisement targeting. We envisage app stores that use
SecuRank in their ranking algorithms (in some cases) to
recommend less permission-hungry apps to users. The exis-
tence of such app stores may provide the necessary incentive
to develop apps that use less privileges.

6.4 Limitations and Future Work

SecuRank, in its current form, uses an app’s description
from the app store as a proxy to determine the app’s func-
tionality. Given that app developers (presumably) are trying
to market their app in a way that maximises their number of
downloads, we believe that an app’s description indeed de-

50

scribes most of the functionality provided by the app. How-
ever, in comparing two apps for similarity of function, we
relied on a cosine similarity measure of the app descriptions.
Cosine similarity may not be robust enough to capture all
the required information from an app since it may misun-
derstand context and semantics. If this is the case, then
more advanced NLP techniques would need to be employed
to solve the problem. Additionally, we plan to integrate Se-
cuRank with other sources of information such as network
endpoints, libraries used, and API usage within apps. This is
expected to improve the overall precision of SecuRank when
grouping apps since false positives will be reduced. Addi-
tionally, we plan to integrate SecuRank with existing tools
such as AutoCog [27] so that after identifying rare permis-
sion usage, we can automatically determine if an app has
justified its use of these permissions in its app description.

7. RELATED WORK

Felt et al. [11] took an early look at the permissions re-
quired by Android apps. They studied over-privilege in An-
droid apps and built a tool, called Stowaway, that detects
whether an app required too many permissions. The authors
applied their tool to 940 Android apps and found one-third
of them to be requesting more permissions than they needed.
They then investigated the reason for this over-privilege, and
found that the developers seem to be following the principle
of least privilege, but are sometimes confused due to insuf-
ficient API documentation. This work is important, since
it shows that the Android ecosystem contains a significant
number of over-privileged apps. Complementary to this, we
evaluate the official app marketplace itself to determine the
extent to which users can be assisted in avoiding permission-
hungry apps altogether.

To determine whether the Android permission system was
effectively protecting users, Felt et al. [14] conducted two
usability studies to determine whether users paid attention
to or understood the permission information they were pre-
sented during app installation. Worryingly, the authors dis-
covered that only 17% of participants paid attention to per-
missions at install-time and a paltry 3% were able to cor-
rectly answer three comprehension questions. In a similar
study, Kelley et al. [17] also found that people are gener-
ally unaware of the security risks from mobile apps. This is
concerning, since the security and privacy-protection mech-
anisms are in place (most recently run-time permissions),
but users are typically unable or unwilling to make the most
of them. By contrast, we do not focus on quantifying the
extent to which users are effectively guided by permissions.
Rather, we examine the ways in which users can be assisted
in finding less-privileged apps to install in the first place, in
a way that is potentially transparent to them.

Sarma et al. [30] tackle the problem from a direction sim-
ilar to ours, in that they not only analyse the permissions
used by an app, but they leverage additional information
such as the category that an app belongs to, and the per-
missions requested by apps in the same category. The au-
thors show that machine learning techniques utilising Sup-
port Vector Machines (SVMs) can effectively identify mal-
ware by understanding the rareness of certain permissions
in apps in general. Their work boasts a malware detection
rate of up to 81% with a warning rate of only 8%. Peng
et al. [26] do a similar analysis, but they use probabilistic
models in their risk scoring schemes and show that their

models outperform existing approaches. In a similar vein,
Gorla et al. [16] use clustering by description topic to iden-
tify outliers with respect to permission usage. By contrast,
we do not look at the general characteristics of an app to
attempt to justify its use of permissions. Rather, we gain
greater contextual insight through our large-scale analysis of
permission usage across apps that are functionally-similar.
Several authors consider using permission request and us-
age patterns to detect malfeasance. Frank et al. [15] used a

clustering based approach and determined that low-reputation

apps deviated from the typical permission request patterns
of apps with a high reputation. Chia et al. [§] find that some
apps attempt to mislead users into granting permissions. Pa-
pamartzivanos et al. [25] propose a cloud-based crowdsourc-
ing solution to detect privacy violations by apps. Zhang et
al. [33] propose a platform called VetDroid that leverages
permission use analysis to identify information leaks. All
these authors look at permission request patterns at a high
level without the context of app functionality.

More recently, Wijesekera et al. [32] studied the extent
to which apps accessed resources that are protected by per-
missions. They use the concept of contextual integrity to
explore usage of protected resources when smartphone users
were not expecting it. They conducted surveys and discov-
ered that 80% of their respondents had a desire to block over
one-third of all requests. Eling et al. [10] show that 40.4%
of users still accepted glaring run-time permission requests
for minimal reward. This points to the need for assisting
users in finding lower-permission app alternatives in the first
place, and our work fills this gap.

Finally, a number of authors leveraged natural language
processing to understand how advertised app functionality
related to an app’s use of permissions. One of the earliest
work that did this was WHYPER from Pandita et al. [24].
They used NLP techniques to determine whether they could
identify sentences from an app’s description that hinted at
the need for particular permissions. Qu et al. [27] subse-
quently outperformed WHYPER and highlight the general
problem of “low description-to-permission fidelity”. Watan-
abe et al. [31] propose a framework, ACODE, and find that
it gives comparable performance to WHYPER. These pieces
of work suffer from the fact that they will unnecessarily flag
permissions as being suspicious simply because an app’s de-
scription does not allude to their need. By contrast, we do
not use app descriptions to infer the need for permissions.
Instead, we use app descriptions to find and group apps that
are functionally-similar, then leverage contextual permission
usage within groups to identify rare permission usage.

8. CONCLUSION

In this paper, we presented SecuRank, a framework and
tool that identifies and suggests functionally-similar alter-
natives to replace permission-hungry apps. SecuRank lever-
ages app descriptions to identify groups of apps with simi-
lar functionality, before using contextual permission analysis
within groups to identify unusual permission usage. Within
a sample of the Google Play Store, we observed that 7% of
apps used permissions that were rare for apps of that func-
tionality. Across the entire Google Play Store, we found
that free apps and popular apps were more likely to have a
less permission-hungry replacement. Worryingly, we found a
positive correlation between the likelihood of an app having
a less permission-hungry alternative and the popularity of

51

that app. As smartphone and app usage continues to sky-
rocket, there is an increasing concern about the access that
third-parties have to our data. SecuRank is a well-needed
tool in the arsenal for taming permission-hungry apps and
unscrupulous app developers.

9. REFERENCES

[1] A. Acquisti. Privacy in Electronic Commerce and the
Economics of Immediate Gratification. In Proceedings
of the 5th ACM Conference on FElectronic Commerce,
EC ’04, pages 21-29, New York, NY, USA, 2004.
ACM.

[2] A. Acquisti and J. Grossklags. Losses, Gains, and
Hyperbolic Discounting: An Experimental Approach
to Information Security Attitudes and Behavior. In
2nd Annual Workshop on Economics and Information
Security (WEIS), volume 3, pages 1-27, 2003.

[3] A. Acquisti and J. Grossklags. Privacy and
Rationality in Individual Decision Making. IEEE
Security and Privacy (S&P), 3(1):26-33, Jan 2005.

[4] Android. Requesting Permissions at Run Time.
http://developer.android.com/training/permissions/
requesting.html, December 2015.

[5] Android. System Permissions.
http://developer.android.com/guide/topics/
security /permissions.html, December 2015.

[6] S. Bird, E. Klein, and E. Loper. Natural language
processing with Python. O’Reilly Media, Inc., 2009.

[7] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards Taming
Privilege-Escalation Attacks on Android. In NDSS,
2012.

[8] P. H. Chia, Y. Yamamoto, and N. Asokan. Is This
App Safe?: A Large Scale Study on Application
Permissions and Risk Signals. In Proceedings of the
21st International Conference on World Wide Web,
WWW ’12; pages 311-320, New York, NY, USA,
2012. ACM.

[9] E. Chin, A. P. Felt, V. Sekar, and D. Wagner.

Measuring User Confidence in Smartphone Security

and Privacy. In Proceedings of the Fighth Symposium

on Usable Privacy and Security, SOUPS 12, pages
1:1-1:16, New York, NY, USA, 2012. ACM.

N. Eling, S. Rasthofer, M. Kolhagen, E. Bodden, and

P. Buxmann. Investigating Users’ Reaction to

Fine-Grained Data Requests: A Market Experiment.

In 2016 49th Hawaii International Conference on

System Sciences (HICSS), pages 3666-3675, Jan 2016.

A. P. Felt, E. Chin, S. Hanna, D. Song, and

D. Wagner. Android Permissions Demystified. In

Proceedings of the 18th ACM Conference on Computer

and Communications Security, CCS 11, pages

627-638, New York, NY, USA, 2011. ACM.

A. P. Felt, S. Egelman, and D. Wagner. I’Ve Got 99

Problems, but Vibration Ain’t One: A Survey of

Smartphone Users’” Concerns. In Proceedings of the

2nd ACM Workshop on Security and Privacy in

Smartphones and Mobile Devices, SPSM ’12, pages

33-44, New York, NY, USA, 2012. ACM.

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and

D. Wagner. A Survey of Mobile Malware in the Wild.

(10]

(11]

(12]

(13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

In Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Deuvices,
SPSM 11, pages 3-14, New York, NY, USA, 2011.
ACM.

A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android Permissions: User Attention,
Comprehension, and Behavior. In Proceedings of the
8th Symposium on Usable Privacy and Security
(SOUPS 2012), SOUPS ’12, pages 3:1-3:14, New
York, NY, USA, 2012. ACM.

M. Frank, B. Dong, A. Felt, and D. Song. Mining
Permission Request Patterns from Android and
Facebook Applications. In IEEE 12th International
Conference on Data Mining (ICDM), pages 870-875,
Dec 2012.

A. Gorla, I. Tavecchia, F. Gross, and A. Zeller.
Checking App Behavior Against App Descriptions. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 1025-1035,
New York, NY, USA, 2014. ACM.

P. Kelley, S. Consolvo, L. Cranor, J. Jung, N. Sadeh,
and D. Wetherall. A Conundrum of Permissions:
Installing Applications on an Android Smartphone. In
J. Blyth, S. Dietrich, and L. Camp, editors, Financial
Cryptography and Data Security, volume 7398 of
Lecture Notes in Computer Science, pages 68-79.
Springer Berlin Heidelberg, 2012.

J. Lee. No.1 Position in Google Gets 33% of Search
Traffic [Study].
http://searchenginewatch.com/sew/study/2276184/no-
1-position-in-google-gets-33-of-search-traffic-study,
June 2013.

M. Lins. Google Play Apps Crawler. GitHub
Repository
https://github.com/MarcelloLins/GooglePlay
AppsCrawler, February 2014.

D. Metzler, S. Dumais, and C. Meek. Similarity
Measures for Short Segments of Text. In G. Amati,
C. Carpineto, and G. Romano, editors, Advances in
Information Retrieval, volume 4425 of Lecture Notes
in Computer Science, pages 16-27. Springer Berlin
Heidelberg, 2007.

R. Mihalcea, C. Corley, and C. Strapparava.
Corpus-based and Knowledge-based Measures of Text
Semantic Similarity. In Proceedings of the 21st
National Conference on Artificial Intelligence -
Volume 1, AAAT06, pages 775—-780. AAAI Press,
2006.

Nielsen. The State Of Mobile Apps.
http://www.nielsen.com/content/dam/
corporate/us/en/newswire/
uploads,/2010,/09/NielsenMobile AppsWhitepaper.pdf,
June 2010.

P. A. Norberg, D. R. Horne, and D. A. Horne. The
Privacy Paradox: Personal Information Disclosure
Intentions versus Behaviors. Journal of Consumer
Affairs, 41(1):100-126, 2007.

R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie.
WHYPER: Towards Automating Risk Assessment of
Mobile Applications. In Proceedings of the 22nd
USENIX Conference on Security, SEC’13, pages
527-542, Berkeley, CA, USA, 2013. USENIX Association.

[25]

[26]

27]

(28]

29]

(30]

(31]

32]

33]

(34]

(35]

D. Papamartzivanos, D. Damopoulos, and

G. Kambourakis. A Cloud-based Architecture to
Crowdsource Mobile App Privacy Leaks. In
Proceedings of the 18th Panhellenic Conference on
Informatics, PCI '14, pages 59:1-59:6, New York, NY,
USA, 2014. ACM.

H. Peng, C. Gates, B. Sarma, N. Li, Y. Qj,

R. Potharaju, C. Nita-Rotaru, and I. Molloy. Using
Probabilistic Generative Models for Ranking Risks of
Android Apps. In Proceedings of the 19th ACM
Conference on Computer and Communications
Security, CCS 12, pages 241-252, New York, NY,
USA, 2012. ACM.

Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and
Z. Chen. AutoCog: Measuring the
Description-to-permission Fidelity in Android
Applications. In Proceedings of the 21st ACM
Conference on Computer and Communications
Security, CCS 14, pages 1354-1365, New York, NY,
USA, 2014. ACM.

J. H. Saltzer. Protection and the control of
information sharing in multics. Commun. ACM,
17(7):388-402, July 1974.

B. Sanz, 1. Santos, X. Ugarte-Pedrero, C. Laorden,

J. Nieves, and P. G. Bringas. Anomaly detection using
string analysis for android malware detection. In
International Joint Conference SOCO ’13 CISIS 13
ICEUTE ’13, pages 469478, 2014.

B. P. Sarma, N. Li, C. Gates, R. Potharaju,

C. Nita-Rotaru, and I. Molloy. Android Permissions:
A Perspective Combining Risks and Benefits. In
Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies, SACMAT ’12, pages
13-22, New York, NY, USA, 2012. ACM.

T. Watanabe, M. Akiyama, T. Sakai, and T. Mori.
Understanding the Inconsistencies between Text
Descriptions and the Use of Privacy-sensitive
Resources of Mobile Apps. In Proceedings of the 11th
Symposium On Usable Privacy and Security (SOUPS
2015), pages 241-255, Ottawa, July 2015. USENIX
Association.

P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov. Android Permissions
Remystified: A Field Study on Contextual Integrity.
In Proceedings of the 24th USENIX Security
Symposium (USENIX Security 15), pages 499-514,
Washington, D.C., Aug. 2015. USENIX Association.
Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning,
X. S. Wang, and B. Zang. Vetting Undesirable
Behaviors in Android Apps with Permission Use
Analysis. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications
Security, CCS 13, pages 611-622. ACM, 2013.

Y. Zhou and X. Jiang. Dissecting Android Malware:
Characterization and Evolution. In IEEE Symposium
on Security and Privacy (IEEE SE&P), pages 95-109,
May 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You,
Get Off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In NDSS,
2012.

	Introduction
	Data Collection Methodology
	Collect Google Play Store App Data
	Generate Popular Search Queries
	Ensure App Similarity

	Analysis of the Search QueryDataset
	Generating the Search Query Dataset
	App Ratings and Permission Usage

	Fine-Grained ContextualPermission Analysis
	Identifying Rare Permissions
	Case Study of Rare Permissions

	SecuRank Framework and Tool
	Discussion
	Smartphone Users
	App Stores
	App Developers
	Limitations and Future Work

	Related Work
	Conclusion
	References

