
Hardened Setup of Personalized Security Indicators to
Counter Phishing Attacks in Mobile Banking

Claudio Marforio
ETH Zurich

claudio.marforio@inf.ethz.ch

Ramya Jayaram Masti
ETH Zurich

ramya.masti@inf.ethz.ch

Claudio Soriente
Telefonica

claudio.soriente@telefonica.com

Kari Kostiainen
ETH Zurich

kari.kostiainen@inf.ethz.ch

Srdjan Capkun
ETH Zurich

srdjan.capkun@inf.ethz.ch

ABSTRACT
Application phishing attacks are rooted in users inability to
distinguish legitimate applications from malicious ones. Pre-
vious work has shown that personalized security indicators
can help users in detecting application phishing attacks in
mobile platforms. A personalized security indicator is a vi-
sual secret, shared between the user and a security-sensitive
application (e.g., mobile banking). The user sets up the in-
dicator when the application is started for the first time.
Later on, the application displays the indicator to authenti-
cate itself to the user. Despite their potential, no previous
work has addressed the problem of how to securely setup a
personalized security indicator — a procedure that can itself
be the target of phishing attacks.

In this paper, we propose a setup scheme for personalized
security indicators. Our solution allows a user to identify
the legitimate application at the time she sets up the indi-
cator, even in the presence of malicious applications. We
implement and evaluate a prototype of the proposed solu-
tion for the Android platform. We also provide the results
of a small-scale user study aimed at evaluating the usability
and security of our solution.

Keywords
Mobile applications; phishing; security indicators

1. INTRODUCTION
User-application interaction provides a subtle and often

very stealthy attack vector to mobile malware. Phishing
applications can violate the confidentiality of user input to
steal login credentials. For example, a phishing application
can show a mobile banking login screen, to steal the victim’s
credentials. Alternatively, a malicious application can vio-
late the integrity of other application outputs to provide the
user with fabricated data. For example, a malicious appli-
cation may mimic the UI of a legitimate trading application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPSM’16, October 24 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4564-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994459.2994462

and show fabricated stock prices, to induce the user into
buying or selling stocks.

Despite many security mechanisms employed on mobile
devices, attacks that target user-application interaction re-
main an open problem [1, 8, 34]. Such attacks are mostly
rooted in the user inability to distinguish a malicious ap-
plication from the genuine one. In particular, application
phishing attacks that target mobile banking and payment
applications, have become a recurring threat with several
incidents reported [6, 9, 10,21,29,32].

Previous work has shown that personalized security indi-
cators can help an alert user to detect phishing attacks on
mobile devices [19]. A personalized security indicator (or in-
dicator for short) is a visual secret shared between the user
and an application. The first time the user starts the ap-
plication, she chooses an indicator (e.g., a picture) for that
particular application. Every time the application asks for
the user’s credentials, it authenticates to the user by show-
ing the indicator. A user should input her credentials only
if the application shows the correct indicator.

Personalized security indicators do not fully prevent phish-
ing attacks, as a careless user may forget to verify the in-
dicator when entering her credentials [19]. However, indi-
cators can help users to detect otherwise stealthy phishing
attacks and provide a complementary security mechanism
to strengthen security-critical applications.

Confidentiality of the indicator is key to prevent phishing
applications from masquerading as legitimate ones. If the
indicator chosen by the user for the legitimate application
is phished, malware on the device can masquerade, later on,
as the legitimate application and phish the user credentials.
Previous research proposals [4,31,34] ask the user to set up
the indicator upon the first execution of the application, as-
suming that the adversary is not present at this time. This
is typically referred to as the “trust on first use” (TOFU)
assumption. In mobile platforms, the TOFU assumption
is only reasonable early in a device lifetime, when no mali-
cious applications are present on the device. In reality, users
install applications at different times during the device life-
time. A phishing attack at the time when the user sets up
the indicator for an application, may leak the indicator to
the adversary and void any security guarantees provided by
indicators.

In this paper, we propose a novel scheme to set up indi-
cators more securely. We use mobile banking and phishing
protection as a case study, but the security mechanism we
propose is applicable also to other applications and can be

83

http://dx.doi.org/10.1145/2994459.2994462

used to protect other forms of user-application interaction
(e.g., integrity of the application output). Our solution helps
an alter user to withstand malicious apps on the device at
the time of indicator setup, and hence improves the security
properties of indicators.

Our solution requires minor modifications to the mobile
platform and to the infrastructure of the application provider
(e.g., the bank). Our scheme incurs extra user interaction
when the indicator is set up, but no extra burden when the
application is used. We implement a prototype for the An-
droid platform and show that the increase in the platform
TCB is small.

We also present results of a small-scale user study. The
majority of our 30 study participants were able to complete
the indicator setup procedure, but few (4) participants fell
for subtle attacks. We conclude that our solution helps an
alert user to set up indicators more securely.

To summarize, in this paper we make the following con-
tributions:

• We propose a novel scheme to securely set up person-
alized security indicators in the presence of malicious
applications on the user’s device.

• We implement a prototype of our solution for the An-
droid platform and evaluate its performance.

• We conduct a small-scale user study that shows that
majority of the users are able to complete the pro-
posed procedure and that the procedure improves the
security of indicator setup.

The rest of this paper is organized as follows. Section 2
provides background information on mobile application phish-
ing and Section 3 explains the problem of secure indicator
setup. In Section 4 we describe our indicator setup scheme.
We evaluate the performance and usability in Section 5. In
Section 6 we discuss our solution in a broader context. Sec-
tion 7 surveys related work, and Section 8 concludes the
paper.

2. BACKGROUND
An adversary that wants to attack the interaction between

a user and an application on a mobile platform can violate
the confidentiality of the user input or the integrity of the
application output. In this paper we focus on application
phishing attack, and therefore on the protection of user in-
put confidentiality, as such attacks are becoming increas-
ingly commonplace [6, 9, 10,21,29,32].

2.1 Application Phishing Techniques
A simple phishing technique is to clone the entire user in-

terface of the target application. Such phishing applications
are often spotted in application marketplaces. We call this
phishing technique a similarity attack.

In a more advanced phishing scenario, malware runs in
the background of the device and leverages the platform
APIs to observe which application is scheduled to the fore-
ground. When the user starts the target application, the
malware activates to the foreground and presents the user
with a phishing screen. Such phishing technique is called a
background attack [8].

A malicious application can also present a button to make
a payment via another app, but instead of forwarding the

(a) (b)

Figure 1: (a) Screenshot of a banking application that does
not use security indicators. (b) Screenshot of a banking
application that makes use of security indicators (in this
case the user chose the Mona Lisa as her security indicator)

user to the legitimate payment or banking application, the
malicious application shows a phishing screen. We refer to
this phishing technique as a forwarding attack.

For a more extensive discussion on known application phish-
ing techniques, we refer the reader to [1, 8, 19].

2.2 Known Countermeasures
Several countermeasures have been proposed to the prob-

lem of mobile application phishing. However, all known
countermeasure have their own limitations [19].

Signature-based code analysis can detect background at-
tacks [1]. However, some phishing techniques, such as for-
warding attacks, do not require any specific system APIs or
permissions. The only precondition of successful phishing is
the ability to draw on the mobile device screen.

The mobile platform could also be enhanced to show the
identity of the currently running application: similar to ad-
dress bars on web browsers, the mobile platform could allo-
cate a part of its screen for the application name and devel-
oper identity [1, 28]. However, mobile devices have limited
screen estate. Additionally the adversary could use similar
looking application name and developer identity, as in many
web phishing attacks.

Personalized security indicators are a well-known phish-
ing countermeasure from the context of websites [4,31]. An
indicator is a visual shared secret between the user and the
application. In the context of mobile application [34], the
setup of the indicator happens the first time the application
is started. At this time the user picks an indicator (e.g., a
picture) for that particular application. From that moment
on, every time the application asks for the user’s credentials,
it displays the indicator as a menas to authenticate to the
user.

Figure 1a shows a sample banking application that does
not use security indicators and, in contrast, Figure 1b shows
the same application displaying the indicators chosen by the
user (the Mona Lisa picture). The user should input her
credentials only if the application is displaying the correct
indicator. Obviously, the effectiveness of indicators relies on
user alertness. While, prior studies in the context of web

84

phishing have shown that the majority of users forget to
check the presence of the correct indicator [27], we recently
evaluated the effectiveness of personalized indicators in the
context of mobile banking applications and found that de-
ployment of indicators prevented many (50%) attacks [19].
(We emphasize that the attack success rates reported in [27]
and [19] are not directly comparable, due to differences in
their respective studies. The goal of our recent study was
not to compare or contradict previous results, but rather to
evaluate the effectiveness of indicators in the new context of
mobile banking applications.)

3. PROBLEM STATEMENT
Importantly, the anti-phishing benefits of personalized se-

curity indicators are void in case the indicator itself is phished.
For example, the first time the user starts a banking appli-
cation and chooses the indicator, she may not be able to tell
if the application in foreground (i.e., the one receiving the
user-chosen indicator) is the legitimate banking application
or a malicious one. If the user-chosen indicator is leaked to
a malicious application, that application can, later on, au-
thenticate to the user as the legitimate banking application
and phish her credentials.

In this paper we focus on how to avoid that malicious soft-
ware on the device phishes the indicator that a user chooses
for a legitimate application. We focus on mobile banking
as it is a scenario where phishing attacks may cause severe
monetary losses for the victim user or the targeted financial
institution. Also, a mobile banking application asks for user
credentials every time the application is started (differently
from applications that keep session cookies) and, therefore,
increases the chances of a phishing attack. We design our
solution for the Android platform because it provides ex-
tensive capabilities for an attacker to implement phishing
and because malicious apps are often found in the Android
ecosystem [36].

3.1 System Model
Figure 2 illustrates the system model we consider. Mo-

bile applications run on top of an OS that, together with
the underlying hardware, constitute the device TCB. The
TCB guarantees that a malicious (e.g., phishing) applica-
tion cannot tamper with the execution of another applica-
tion (isolated execution) or read its stored data (application-
specific storage). Typically, the application active in fore-
ground controls the entire device screen and receives all user
inputs. The TCB enforces that applications running in the
background do not intercept user inputs intended for the
foreground application and cannot capture its output (user-
interaction isolation).

Applications are primarily distributed through a central-
ized repository operated by the mobile platform provider,
known as the marketplace (e.g., Google Play). Applications
can also be downloaded directly from the developer or from
third-party marketplaces. Installing applications from other
sources than the main marketplace is called sideloading.

We consider a mobile banking application distributed by
the bank to its customers through the marketplace. The ap-
plication uses personalized security indicators and the user
must set up an indicator before being able to use the ap-
plication. Regular mail is normally used by banks as a se-
cure and authentic channel to transfer PIN codes and other
credentials to their customers. We, therefore, assume the

U
se

r'
s

sm
ar

tp
h
on

e

Bank

Hardware

Operating System (Android)

T
C
B

Phishing App

app storage

Mobile Banking

app storage

Marketplace

Mobile Banking
Application

Phishing
Application
(sideloading)

Mobile Banking
Application

Adversary

Out-of-band Channel

User

Figure 2: System model. Each application running on the
smartphone is sandboxed and cannot access other applica-
tions memory or storage. Applications are installed from a
marketplace or via sideloading. Banks have an out-of-band
channel (e.g., regular mail) to their customers.

availability of an out-of-band-channel between the bank and
the user.

3.2 Adversary Model
The goal of the adversary is to succeed in a phishing attack

to steal the user login credentials for the banking applica-
tion. In order to mimic the GUI of the banking application,
the adversary must phish the user-chosen indicator when it
is set up. The adversary can induce the user to install a
rogue application on her device (e.g., using social engineer-
ing). The malicious application may be installed either from
the marketplace or via sideloading (as shown in Figure 2).
The adversary can control all network traffic to and from
the mobile device. However, the adversary cannot compro-
mise the device TCB or the out-of-band channel between
the bank and the user.

4. HARDENED INDICATOR SETUP
In this section we describe a new scheme to set up indi-

cators more securely. We start by giving an overview of the
scheme and then explain its details, security properties, and
implementation. We focus on scenario where the user sets
up an indicator for a mobile banking application.

4.1 Solution Overview
Setting up an indicator securely, in the presence of ma-

licious applications, requires the user to identify the legit-
imate banking application during the indicator setup pro-
cess. That is, the user must tell if the application asking to
set up the indicator is the legitimate banking application or
a malicious application that looks exactly like the banking
application. We note that the only party that can tell the
legitimate banking application from a malicious one is the
application provider (i.e., the bank). We therefore leverage
the out-of-band channel to the user in order to bootstrap
the secure identification of the banking application.

Figure 3 shows in gray the components that we add to the
mobile device TCB. A system component that we call the

85

U
se

r'
s

sm
ar

tp
h
on

e

Hardware

SAS BrokerOS

T
C
B

Phishing App

app storage

Mobile Banking

app storage

Figure 3: Our solution enhances the mobile platform with
two additional components (shown in gray). The Broker can
measure installed applications and has a GUI to receive user
inputs. A Secure Attention Sequence (SAS) is used to start
the Broker.

Broker can measure applications (e.g., compute a hash of
the application binary and its configuration files) installed
on the device and has a GUI to receive user inputs. The mo-
bile OS is also enhanced with a Secure Attention Sequence
(SAS), which is a common approach to start a particular
software component of the TCB [11, 16, 22]. (A popular
SAS is the “ctrl-alt-del” sequence in the Windows systems
which generates a non-maskable interrupt that starts the
user-logon process.) In our solution, the SAS operation is
implemented as two repeated presses of the home button and
it starts the Broker. When the Broker is running, the OS
ensures that no application can activate to the foreground.

The bank sends a short PIN to the user via the out-of-
band channel. The user starts the Broker via the SAS op-
eration and enters the PIN. The Broker and the bank use
the PIN to establish an authenticated channel and to verify
the integrity of the banking application installed on the de-
vice. If the protocol succeeds, the Broker transfers the PIN
to the banking application. When the application is started,
it displays the PIN to the user and asks her to set up the
application indicator. The user can identify the legitimate
banking application, by comparing the PIN received from
the bank with the one displayed on the screen.

4.2 Protocol Details
Figure 4 illustrates the steps to securely set up a person-

alized security indicator. Here we explain them in detail.

1. The bank uses the out-of-band channel (e.g., regular
mail) to send the PIN together with the instructions
to install the application to the user.

2. The user installs the application downloading it from
the marketplace. Based on the instructions, when the
installation completes, the user performs the SAS op-
eration to start the Broker. While the Broker is run-
ning, the mobile OS prevents third-party applications
from activating to the foreground.

3. The user inputs the PIN to the Broker (see Figure 5a).

4. The Broker and the bank use the PIN to run a Pass-
word Authenticated Key Exchange (PAKE) protocol [14]
and establish a shared key.

5. The bank sends the measurement of the legitimate
banking application to the Broker. The measurement
can be the hash of the application installation package.
The message is authenticated using the key established
during the previous step.

User

1. PIN

User's smarphone

Broker

2. SAS

Mobile
Banking

6. measure

compare
measurements

5. application measurement

7. PIN

8. show PIN

start

3. PIN

Bank

4. PAKE

9. personalize indicator

(authenticated channel)

(out-of-band
channel)

compare
PINs

Figure 4: The application indicator setup protocol. The user
performs an SAS operation to start the Broker and enters
the PIN. The Broker verifies the installed banking applica-
tion with the help of the bank. If the installed application
is the legitimate one, the Broker starts it and the user can
choose a custom indicator.

6. The Broker checks the authenticity of the received mes-
sage, measures the banking application on the device,
and matches its measurement against the reference
value received from the bank (i.e., compares two hash
values).

7. If the two measurements are identical, the Broker se-
curely transfers the PIN to the banking application
(e.g., writes the PIN to the application-specific stor-
age). Otherwise the Broker aborts the protocol and
notifies the user.

8. The Broker starts the banking application and the mo-
bile OS restores the functionality that allows back-
ground applications to activate to the foreground. The
banking application displays the PIN which serves as
a confirmation to the user that the application in fore-
ground is the legitimate banking application (see Fig-
ure 5b).

9. The user can now choose an indicator for the banking
application (Figure 5b). The latter stores the indicator
in its application-specific storage and displays it every
time the user must input his credentials.

4.3 Security Analysis
At the beginning of the setup process, the user must in-

put the PIN only after performing the SAS operation. At
the end of the protocol, the user can identify the legitimate
banking application comparing the PIN received from the
bank with the one displayed by the application.

A phishing application on the device will not receive the
PIN from the Broker because its measurement differs from
the one of the legitimate banking application. Similarly, the
adversary cannot impersonate the bank server to the Bro-

86

PIN

(a) (b)

Figure 5: (a) Screenshot of the Broker prototype. (b) Bank-
ing application started by the Broker. The user must verify
the displayed PIN and can customize the application indi-
cator.

ker without knowledge of either the PIN or the key derived
through the PAKE protocol.

The SAS operation and the device TCB guarantee that
no information is leaked when the user inputs the PIN to
the Broker. The PIN is used as a one-time password to de-
rive a key through the PAKE protocol. The derived key is
only used to authenticate one message (from the bank to
the Broker). The security properties of the PAKE protocol
guarantee that, given a transcript of the protocol, the ad-
versary can neither learn the PIN, nor brute-force the set of
possible PINs [17].

The isolated storage functionality, provided by the mobile
OS, guarantees that the PIN received by the banking ap-
plication can not be read by other applications. Similarly,
when the banking application stores the indicator chosen by
the user, no other application can access it.

A malicious application could try to steal the user’s in-
dicator choice using an overlay attack. In the overlay at-
tack, the malicious application draws partially on top of
the victim application. For example, the malicious appli-
cation could draw an indicator choice element on top of
the banking application, leaving the correct PIN visible to
the user. Implementation of such attacks requires the SYS-

TEM_ALERT_WINDOW permission. Overlay attacks can be ad-
dressed such that the banking application hides the PIN or
displays a warning message it looses user focus (i.e., the user
taps a UI element of another application).

4.4 Implementation
We build a prototype of our solution for the Android plat-

form. We use a Samsung Galaxy S3 and develop against the
CyanogenMod Android OS (version 4.3 JellyBean). Crypto-
graphic operations are based on the Bouncy Castle library.
Message authentication uses HMAC-SHA256 with a 128-bit
key. The bank server is implemented in Python, using the
CherryPy Web Framework and SQLite. Client-server com-
munication works over a standard HTTP channel using mes-
sages in the JSON format. Our implementation adds two
Java files, to implement the Broker as a privileged applica-

TCB increment 652 LoC

Communication overhead 705 bytes

Execution time (WiFi) 421ms (±21ms)

Execution time (3G) 2042ms (±234ms)

Execution time (Edge) 2957ms (±303ms)

Table 1: Performance evaluation summary for the applica-
tion indicator setup prototype.

tion, and modifies four system Java files. A total of 652 lines
of code were added to the device TCB.

We add an extra tag (<secureapk>) to the Android Man-
ifest file of the banking application. The tag contains two
fields indicating a URL and an application handle. When
the banking application is installed, the PackageParser reads
the extra information in the <secreapk> tag and stores it
for later use.

We assign the SAS operation to a double-tap on the“home”
button. The SAS operation starts the Broker that asks the
user to enter the PIN received from the bank (see Figure 5a).
In our implementation, the bank sends to the user a 5-digit
PIN (e.g., “80547”) and a service tag. The service tag con-
tains an application handle used by the Broker to search
through the registered handles and identify the application
to measure. The service tag also contains a user ID, required
by the bank to retrieve the correct PIN from its database.
An example of service tag is“bank:johndoe”, where“bank” is
the application handle and “johndoe” is the user ID. When
the user has input the service tag and the PIN, the Bro-
ker uses the handle to identify the application to measure.
At this time the Broker also fetches the URL stored by the
PackageParser, to contact the bank server.

We use SPEKE [14] as an instantiation of the key estab-
lishment protocol. SPEKE uses 4 messages, including a key
confirmation step, as mandated in [14]. The first SPEKE
message sent by the Broker also contains the user ID that
allows the bank’s server to select the correct PIN from its
database. When the key has been established, the server
uses it to compute a MAC over the hash of the legitimate
application. Both the hash and the authentication tag are
sent to the Broker. The Broker verifies the authentication
tag, hashes the installed application, and compares the hash
computed locally with the received one. If the two hashes
match, the Broker writes the PIN to the application’s folder
so that it can only be read by that application. Otherwise,
the Broker aborts and notifies the user.

Figure 5b shows the banking application started by the
Broker. The user is asked to compare the displayed PIN
with the one received via mail. The user can select a custom
application indicator by clicking on the “Customize Indica-
tor” button.

5. EVALUATION
In this section we evaluate the protocol performance, and

the usability and security of the setup procedure through a
small-scale user study.

5.1 Protocol Performance
We use a sample banking application of 264 KB. Com-

munication overhead totals to 705 bytes, of which 641 bytes
account for the SPEKE protocol. (Communication overhead

87

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60 70 80 90 100

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s)

Attempt

WiFi
3G
Edge

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80 90 100

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s)

Attempt

WiFi
3G
Edge

(b)

Figure 6: (a) Completion time for 100 runs of the SPEKE
protocol. (b) Time required to complete 100 runs of the
setup protocol after the shared key has been established.

is independent of the application size.) We test the protocol
over a WiFi connection (hosting the server in a remote lo-
cation, i.e., not on a local network), as well as over 3G and
EDGE cellular data connections. Figure 6a shows the time
required to establish a key with the SPEKE protocol over
100 runs. Figure 6b shows the additional time required to
complete the setup protocol, i.e., the time to send the au-
thenticated hash, to measure the application on the phone,
to compare the two hash values, and to transfer the PIN to
the application.

Table 1 summarizes the performance evaluation in terms
of added lines of code, communication overhead, and av-
erage protocol completion times. We note that hashing the
banking application takes 25 ms on average, with a standard
deviation of 2 ms. The time to hash an application increases
linearly with the application’s size and remains lower than
the network delay for applications up to 100 MB.

5.2 User Study
The indicator setup protocol requires the user to follow

instructions from the bank (i.e., perform the SAS operation,
input the PIN, and configure the indicator). This is compa-
rable to enrolling typical second-factor authentication tokens
that customers receive from their banks.

In the following we present the result of a small-scale user
study that aims at evaluating the usability and security of
the proposed setup protocol. In particular, our goal was
to understand how easy it is for users to setup indicators by
following written instructions, like the ones a bank customer
would receive from her bank. We also wanted to verify how
attentive users are when comparing the PIN shown by the
application with the one received from the bank, i.e., does

our solution prevent subtle phishing attacks at the time of
indicator setup.

We invited participants to our lab and asked them to carry
out the setup procedure as if they were customers of a bank
that uses indicators in its application. We provided par-
ticipants with a phone and a letter from the bank with in-
structions on how to setup the indicator. We assigned par-
ticipants to three different groups. One group carried out
the set up protocol in benign settings. For the remaining
two groups, we simulated variants of a background attack
at the time when the banking application displays the PIN
(step 8 of the setup protocol). In a background attack, the
malicious application waits in the background and activates
to the foreground right when the legitimate app is about to
be displayed [19]. We recorded whether participants pressed
the “Customize Indicator” button and chose a personalized
indicator while under attack.

Recruitment and group assignment.
We advertised the study as a user study “to evaluate the

usability of a setup protocol for a mobile banking applica-
tion”. Participants were asked to come to our lab and setup
the application on a smartphone that we provided. We in-
formed participants that we would not collect any personal
information and offered a compensation of $20. We selected
30 participants and assigned them to one of three groups
in a round-robin fashion. The difference among the groups
was the PIN shown by the banking application right before
participants were asked to choose a personalized indicator,
as explained below:

• In Group A, participants were shown the same PIN
that appeared on the letter from the bank.

• In Group B, participants were shown a random PIN.

• In Group C, participants where shown no PIN.

Participants of group A reflected the user experience of the
setup protocol under no attack. The purpose of this group
was to measure how well users are able to complete the setup
procedure. Participants of groups B and C reflected the user
experience of the setup protocol under a background attack
where the malicious application is either guessing the PIN
or displaying no PIN. The purpose of these groups was to
measure how attentive users are during the indicator setup
procedure.

Task details.
The task started with a pre-test questionnaire to collect

demographic information. After the questionnaire, partici-
pants were given a smartphone and a letter from a fictitious
bank with instructions to setup the indicator. Appendix B
shows the contents of the letter given to the participants.

The letter included a 5-digit PIN and a service tag to be
used during the setup protocol. The procedure was carried
out on a Galaxy S3. We did not interact with the partic-
ipants for the duration of the setup protocol. Participants
were also asked to fill in a post-test questionnaire to evaluate
the procedure they had just completed.

Results.
Table 2 shows the demographics of the participants. 40%

were males and 60% females. Most of them had a university
degree (84%), and were aged between 21 and 40 (90%).

88

Gender

Male 12 (40%)

Female 18 (60%)

Age

21 – 30 15 (50%)

31 – 40 12 (40%)

41 – 50 3 (10%)

Education

High School 2 (6%)

Bachelor 5 (17%)

Master 20 (67%)

Other 3 (10%)

Use mobile banking

Yes 9 (30%)

No 18 (60%)

Do not have 3 (10%)

total 30

Table 2: User study participant demographics.

setup not setup

completed completed

Group A (no attack) 0 (0%) 10 (100%)

attack not attack
detected detected

Group B (wrong PIN) 0 (0%) 10 (100%)

Group C (missing PIN) 4 (40%) 6 (60%)

Table 3: User study results. All participants in Group A
were able to complete the procedure. In Group B, all par-
ticipants detected the attack. In Group C, some participants
fell for the attack.

The user study results are shown in Table 3. All partic-
ipants in Group A managed to complete the task success-
fully. This suggests that users are able to complete the pro-
cedure by following the given instructions. All participants
of Group B (wrong PIN) aborted the setup procedure be-
cause they detected a mismatch between the PIN displayed
by the banking application and the one in the letter from
the bank. This suggests that attacks where the adversary
presents a randomly chosen PIN are not effective. In Group
C (missing PIN), four participants (40% of the group) failed
to detect the missing PIN and completed the setup process,
thereby leaking the indicator to the phishing application.
This implies that despite the given instructions, attacks with
missing PIN may still work on some users.

Post-test questionnaire.
The post-test questionnaire showed that 90% of the par-

ticipants rated the instruction sheet easy to understand (Q1)
and 95% of them rated the task easy to complete (Q2). 87%
of the participants believed that they had completed the task
successfully (Q3) and 67% of them would use the mechanism
in a mobile banking application (Q4). Figure 7 shows the
distribution of the answers, while Appendix A provides the
full text of items Q1–Q4.

0%

3%

3%

8%

95%

90%

87%

67%

5%

8%

10%

26%Q4

Q3

Q2

Q1

100 50 0 50 100
Percentage

Response Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Figure 7: Answers to the post-test questionnaire for the user
study on the indicator setup protocol. Percentages on the
left side include participants that answered “Strongly dis-
agree” or “Disagree”. Percentages in the middle account for
participants that answered “Nor agree, nor disagree”. Per-
centages on the right side include participants that answered
“Agree” or “Strongly agree”.

Conclusions.
Our study shows that the setup procedure was simple

enough to be completed by average users. Regarding at-
tack detection, the “missing PIN” attack was the only one
that went undetected by four participants. These partici-
pants may have judged the absence of the PIN as a tempo-
rary bug and decided to continue with the setup protocol.
Similarly to previous work [19] this result shows that users
are acquainted with software bugs and are likely to tolerate
a temporary bug even during security-sensitive operations.
These results suggest that our solution helps an alert user to
setup indicators securely, but careless users might still fall
for subtle attacks.

6. DISCUSSION

Benefit of our solution.
Because some of the study participants fell for attacks

during the indicator setup procedure, it becomes natural to
ask, what is the benefit of our solution? Simply put, our
indicator setup solution has similar security guarantees as
indicator usage [19]. Our solution allows an alert user to
setup (and use) indicators securely, but a careless user might
fall for attacks, either at the time of indicator setup or use.
Without our solution, attacks at the time of indicator setup
are practically impossible to detect. Therefore, our solution
allows providers of security-critical mobile applications, such
as banks, to improve the security of their applications (while
not fully eliminate all attacks).

User study ecological validity.
When evaluating the usability of the setup protocol we

could not leverage a real deployment of personalized secu-
rity indicators, since no application is currently using them.
Our user study was based on role-playing and we tried to
keep the experiment as close to a real-world deployment as
possible. For example, we edited the text provided to par-

89

ticipants as the one customers from a bank would receive
(see Appendix B), and we did not interfere with participants
during the experiments. Previous work has shown that role-
playing can negatively impacts the effect of security mecha-
nisms [27]. Therefore, the attack success rate in a real-world
scenario, where the customer’s money are at stake, may be
even lower. Nevertheless, a user study in cooperation with
a bank willing to deploy personalized security indicators in
its mobile application would provide more accurate results.

Another factor that hinders the validity of our user study
is the population sample and size. We only recruited 30
participants and we focused on affiliates to our institution
(students, professors and staff members). They were mostly
young female subjects with a university degree. Further
studies with a larger number of participants and with a more
diverse population are required to assess our results.

Deployment aspects.
Our scheme requires the application provider to setup an

online server. Given that a large number of applications
communicate with the infrastructure of their providers (to
consolidate user rankings, to store user’s profiles, etc.), we
argue that the needed infrastructure already exists for many
application scenarios. For mobile application providers that
do not run online servers, the cost of adopting our solution
is naturally higher.

From the results of our evaluation (see Section 4), we con-
clude that the setup of an application indicator is inexpen-
sive in terms of computation and communication; hence, the
solution can easily scale for a large number of users.

The setup mechanism also requires an out-of-band (OOB)
communication between the application provider and the
user. Examples of OOB channels include postal mail, web
or email communication via a trusted device like a PC. The
mobile platform itself cannot be used as the OOB channel
because a malicious application could inject fabricated mes-
sages, for example, by mounting a background attack. The
indicator setup mechanism can easily be adopted by appli-
cation providers that already have established OOB chan-
nels to users (e.g., banks regularly send letters to their cus-
tomers).

Application output protection.
Personalized security indicators allow the user to identify

the application running in foreground. A careful user can,
therefore, tell which application is receiving her input and
detect phishing attacks.

Identifying the application in foreground also allows to
protect the integrity of the application-to-user output. For
example, if the application in foreground is displaying an
account balance, the presence of the correct indicator can
assure the user that the balance is displayed by the legit-
imate banking application. Nevertheless, further research
is required to assess when and how to show an application
indicator while retaining their effectiveness and without af-
fecting the user experience. Personalized security indicators
take screen estate and may hinder the user experience if
displayed at all times. If the indicator is always visible to
the user, there may be little space left for other application
data. We speculate that personalized indicators are suited
for login screens where in most cases only the application
logo and the user input fields are displayed (most mobile
app login screens follow this model [18]).

7. RELATED WORK
Application phishing. Application phishing attacks

have been described in recent research [3, 8, 34] and several
attacks have been spotted in the wild [6, 9, 10, 21, 29, 32].
Proposed solutions are primarily ad-hoc, i.e., they identify
specific attacks and try to prevent them by restricting the
device functionality that those attacks exploit [1, 3, 34].

Personalized security indicators are a well-known concept
from the context of website phishing and can provide an
holistic solution to application phishing attacks in mobile
platforms [19]. Similar to previous work on website phish-
ing, the authors of [34] assume that the adversary cannot
mount a phishing attack when the indicator is set up. In
this paper we described a protocol that allows secure setup
of application indicators in the presence of an adversary. We
are not aware of any previous work that provides the same
security property.

Web phishing. Anti-phishing techniques for the web
have been deployed in practice [5, 13]. Proposals include
automated comparison of website URLs [20], visual com-
parison of website contents [2, 35], use of a separate and
trusted authentication device [24], security indicators [4,27],
multi-stage authentication [12], and attention key sequences
to trigger security checks on websites [33]. While some of
these mechanisms are specific to the web environment, oth-
ers could be adapted also for mobile application phishing
detection. Website phishing in the context of mobile web
browsers has been studied in [23,26].

Mobile malware. Malicious mobile applications typi-
cally exploit platform vulnerabilities (e.g., for privilege esca-
lation) or use system APIs that provide access to sensitive
user data. A malicious application can, for example, leak
the user location or send SMS messages to premium num-
bers without user consent. For reviews on mobile malware,
we refer the reader to recent surveys [7, 36]. Infection rates
of mobile malware are reported in [30].

Mobile malware detection is typically based on the analy-
sis of system call patterns and detection of known platform
exploits. The authors of [15] propose to detect malware by
analyzing network traffic patterns. The detection mecha-
nisms used for mobile malware are ill-suited for detection
of mobile phishing applications, as many phishing attacks
do not exploit any platform vulnerability, do not require ac-
cess to security-sensitive system APIs, and do not generate
predictable network traffic patterns.

Electronic voting. Our protocol has some similarities to
electronic voting protocols, such as [25], that send a voting
sheet with a unique code to each voter using regular mail.
The purpose of the code is to allow the voter to authenticate
the voting application or server.

8. CONCLUSION
In this paper we have addressed the problem of secure

setup of personalized indicators. The anti-phishing benefits
of indicators are void in case the indicator itself is phished at
setup time. We introduced a novel protocol that leverages
an out-of-band communication channel between the user and
the service provider (e.g., the bank). Our solution is practi-
cal to deploy and it enables an alert user to set up indicators
securely, even in the presence of malicious applications on
the same device. A careless users might fall for attacks, ei-
ther at the time of indicator setup or usage (as shown by

90

previous studies [19]). We see our solution as a complemen-
tary mechanism to harden security-critical mobile applica-
tions, such as banking and payment. Our solution is also the
first work on secure indicator setup and we hope it encour-
ages further research on secure user-application interaction
on smartphone platforms — a problem that remains largely
unsolved.

9. ACKNOWLEDGEMENTS
This work was partially supported by the Zurich Informa-

tion Security Center (ZISC). It represents the views of the
authors.

10. REFERENCES
[1] Bianchi, A., Corbetta, J., Invernizzi, L.,

Fratantonio, Y., Kruegel, C., and Vigna, G.
What the app is that? deception and countermeasures
in the android user interface. In IEEE Symposium on
Security and Privacy (SP) (2015).

[2] Chen, T.-C., Dick, S., and Miller, J. Detecting
visually similar web pages: Application to phishing
detection. ACM Transactions on Internet Technologies
(TOIT) (2010).

[3] Chin, E., Felt, A. P., Greenwood, K., and
Wagner, D. Analyzing inter-application
communication in android. In International
Conference on Mobile Systems, Applications, and
Services (MobiSys) (2011).

[4] Dhamija, R., and Tygar, J. D. The battle against
phishing: Dynamic security skins. In Symposium on
Usable Privacy and Security (SOUPS) (2005).

[5] Dhamija, R., Tygar, J. D., and Hearst, M. Why
phishing works. In Conference on Human Factors in
Computing Systems (CHI) (2006).

[6] ESET. Android Trojan Targets Customers of 20
Major Banks. http://www.eset.com/int/about/press/
articles/malware/article/android-trojan-targets-
customers-of-20-major-banks/, 2016.

[7] Felt, A. P., Finifter, M., Chin, E., Hanna, S., ,
and Wagner, D. A survey of mobile malware in the
wild. In Workshop on security and privacy in
smartphones and mobile devices (SPSM) (2011).

[8] Felt, A. P., and Wagner, D. Phishing on mobile
devices. In Web 2.0 Security and Privacy Workshop
(W2SP) (2011).

[9] FireEye. An evolving Android trojan family
targeting users of worldwide banking apps, 2015.
https://www.fireeye.com/blog/threat-
research/2015/12/slembunk an evolvin.html.

[10] FireEye. The latest android overlay malware
spreading via sms phishing in europe, 2016.
https://www.fireeye.com/blog/threat-
research/2016/06/latest-android-overlay-malware-
spreading-in-europe.html.

[11] Gligor, V. D., Burch, E. L., Chandersekaran,
C. S., Chapman, R. S., Dotterer, L. J., Hecht,
M. S., Jiang, W.-D., Luckenbaugh, G. L., and
Vasudevan, N. On the design and the
implementation of secure xenix workstations. In IEEE
Symposium on Security and Privacy (SP) (1986).

[12] Herzberg, A., and Margulies, R. My
authentication album: Adaptive images-based login

mechanism. In Information Security and Privacy
Research (2012).

[13] Hong, J. The state of phishing attacks.
Communications of the ACM (2012).

[14] Jablon, D. The SPEKE Password-Based Key
Agreement Methods, 2003. IETF Internet Draft.

[15] Lever, C., Antonakakis, M., Reaves, B.,
Traynor, P., and Lee, W. The core of the matter:
Analyzing malicious traffic in cellular carriers. In
Network and Distributed System Security (NDSS)
(2013).

[16] Libonati, A., McCune, J. M., and Reiter, M. K.
Usability testing a malware-resistant input
mechanism. In Network and Distributed System
Security (NDSS) (2011).

[17] MacKenzie, P. On the security of the speke
password-authenticated key exchange protocol. In In
IACR ePrint archive (2001).

[18] Malisa, L. Detecting mobile application spoofing
attacks by leveraging user visual similarity perception,
2015. Cryptology ePrint Archive: Report 2015/709.

[19] Marforio, C., Masti, R., Soriente, C.,
Kostiainen, K., and Capkun, S. Evaluation of
personalized security indicators as an anti-phishing
mechanism for smartphone applications. In Conference
on Human Factors in Computing Systems (CHI)
(2016).

[20] Maurer, M.-E., and Hofer, L. Sophisticated
Phishers Make More Spelling Mistakes: Using URL
Similarity against Phishing. In International
Conference on Cyberspace Safety and Security (CSS)
(2012).

[21] McAfee. Phishing Attack Replaces Android Banking
Apps With Malware, 2013.
https://blogs.mcafee.com/mcafee-labs/phishing-
attack-replaces-android-banking-apps-with-malware.

[22] McCune, J. M., Perrig, A., and Reiter, M. K.
Safe passage for passwords and other sensitive data. In
Network and Distributed System Security (NDSS)
(2009).

[23] Niu, Y., Hsu, F., and Chen, H. iPhish: Phishing
Vulnerabilities on Consumer Electronics. In
Conference on Usability, Psychology, and Security
(UPSEC) (2008).

[24] Parno, B., Kuo, C., and Perrig, A. Phoolproof
phishing prevention. In Financial Cryptography and
Data Security (2006).

[25] Ryan, P. Y., and Teague, V. Pretty good
democracy. In International Workshop on Security
Protocols (2009).

[26] Rydstedt, G., Gourdin, B., Bursztein, E., and
Boneh, D. Framing attacks on smart phones and
dumb routers: Tap-jacking and geo-localization
attacks. In Workshop on Offensive Technologies
(WOOT) (2010).

[27] Schechter, S. E., Dhamija, R., Ozment, A., and
Fischer, I. The emperor’s new security indicators. In
IEEE Symposium on Security and Privacy (SP)
(2007).

[28] Selhorst, M., Stüble, C., Feldmann, F., and
Gnaida, U. Towards a trusted mobile desktop. In

91

http://www.eset.com/int/about/press/articles/malware/article/android-trojan-targets-customers-of-20-major-banks/
http://www.eset.com/int/about/press/articles/malware/article/android-trojan-targets-customers-of-20-major-banks/
http://www.eset.com/int/about/press/articles/malware/article/android-trojan-targets-customers-of-20-major-banks/
https://www.fireeye.com/blog/threat-research/2015/12/slembunk_an_evolvin.html
https://www.fireeye.com/blog/threat-research/2015/12/slembunk_an_evolvin.html
https://www.fireeye.com/blog/threat-research/2016/06/latest-android-overlay-malware-spreading-in-europe.html
https://www.fireeye.com/blog/threat-research/2016/06/latest-android-overlay-malware-spreading-in-europe.html
https://www.fireeye.com/blog/threat-research/2016/06/latest-android-overlay-malware-spreading-in-europe.html
https://blogs.mcafee.com/mcafee-labs/phishing-attack-replaces-android-banking-apps-with-malware
https://blogs.mcafee.com/mcafee-labs/phishing-attack-replaces-android-banking-apps-with-malware

Figure 8: The instruction letter presented to the participants of the user study

International Conference on Trust and Trustworthy
Computing (TRUST) (2010).

[29] Symantec. Android banking Trojan delivers
customized phishing pages straight from the cloud,
2015.
http://www.symantec.com/connect/blogs/android-
banking-trojan-delivers-customized-phishing-pages-
straight-cloud.

[30] Truong, H. T. T., Lagerspetz, E., Nurmi, P.,
Oliner, A. J., Tarkoma, S., Asokan, N., and
Bhattacharya, S. The company you keep: Mobile
malware infection rates and inexpensive risk
indicators. In International Conference on World
Wide Web (WWW) (2014).

[31] Tygar, J. D., and Whitten, A. Www electronic
commerce and java trojan horses. In Workshop on
Electronic Commerce (WOEC) (1996).

[32] WeLiveSecurity. Android banking trojan
masquerades as Flash Player and bypasses 2FA, 2016.
http://www.welivesecurity.com/2016/03/09/android-
trojan-targets-online-banking-users/.

[33] Wu, M., Miller, R. C., and Little, G. Web
wallet: Preventing phishing attacks by revealing user
intentions. In Symposium on Usable Privacy and
Security (SOUPS) (2006).

[34] Xu, Z., and Zhu, S. Abusing notification services on
smartphones for phishing and spamming. In Workshop
on Offensive Technologies (WOOT) (2012).

[35] Zhang, Y., Hong, J. I., and Cranor, L. F.
Cantina: A content-based approach to detecting
phishing web sites. In International Conference on
World Wide Web (2007).

[36] Zhou, Y., and Jiang, X. Dissecting android
malware: Characterization and evolution. In IEEE
Symposium on Security and Privacy (SP) (2012).

APPENDIX
A. POST-TEST QUESTIONNAIRE

We report the items of the post-test questionnaire. All
items were answered with a 5-point Likert-scale from Strongly
Disagree to Strongly Agree.

Q1 The instruction sheet was clear and easy to understand

Q2 The task was easy to complete

Q3 I believe that I have successfully completed the task

Q4 I would use this mechanism to improve the security of
my mobile banking application

B. INSTRUCTIONS LETTER
Figure 8 reports the exact text and format of the letter

showed to the participants of our user study. We call per-
sonalized security indicators as “personal images”.

92

http://www.symantec.com/connect/blogs/android-banking-trojan-delivers-customized-phishing-pages-straight-cloud
http://www.symantec.com/connect/blogs/android-banking-trojan-delivers-customized-phishing-pages-straight-cloud
http://www.symantec.com/connect/blogs/android-banking-trojan-delivers-customized-phishing-pages-straight-cloud
http://www.welivesecurity.com/2016/03/09/android-trojan-targets-online-banking-users/
http://www.welivesecurity.com/2016/03/09/android-trojan-targets-online-banking-users/

	Introduction
	Background
	Application Phishing Techniques
	Known Countermeasures

	Problem Statement
	System Model
	Adversary Model

	Hardened Indicator Setup
	Solution Overview
	Protocol Details
	Security Analysis
	Implementation

	Evaluation
	Protocol Performance
	User Study

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	References
	Post-test Questionnaire
	Instructions Letter

