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ABSTRACT
As embedded devices (under the guise of ”smart-whatever”)
rapidly proliferate into many domains, they become attrac-
tive targets for malware. Protecting them from software
and physical attacks becomes both important and challeng-
ing. Remote attestation is a basic tool for mitigating such
attacks. It allows a trusted party (verifier) to remotely as-
sess software integrity of a remote, untrusted, and possibly
compromised, embedded device (prover).

Prior remote attestation methods focus on software (mal-
ware) attacks in a one-verifier/one-prover setting. Physical
attacks on provers are generally ruled out as being either un-
realistic or impossible to mitigate. In this paper, we argue
that physical attacks must be considered, particularly, in
the context of many provers, e.g., a network, of devices. As-
suming that physical attacks require capture and subsequent
temporary disablement of the victim device(s), we propose
DARPA, a light-weight protocol that takes advantage of ab-
sence detection to identify suspected devices. DARPA is
resilient against a very strong adversary and imposes min-
imal additional hardware requirements. We justify and
identify DARPA’s design goals and evaluate its security and
costs.

1. INTRODUCTION
In addition to traditional computing devices that come

in various shapes and sizes (e.g., laptops, desktops, smart-
phones and tablets), so-called smart embedded computing
devices are increasingly percolating into many spheres of
everyday life. Such devices include household appliances, in-
dustrial machinery, automotive and avionic components, as
well as many kinds of personal gadgets. In general, these
smart devices differ from traditional computers in that their
mission is not general-purpose computing. Hence, their ca-
pabilities and purposes are limited to supporting the goals
of the device as a whole, e.g., sensing or actuation. These de-
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vices represent attractive attack targets and their prolifera-
tion poses a formidable security challenge, for three reasons:
First, they communicate via wired or wireless interfaces,
which means that they can be accessed remotely. Second, in
order to keep costs low and/or to conserve power, they lack
necessary resources to defend themselves against attacks in
the manner of general-purpose computers, e.g., via sophis-
ticated OS security features or anti-malware tools. Third,
because they are used to control (or interface with) physical
equipment, a successful attack can cause actual real-world
damage.

To address the aforementioned challenge, a lot of effort
has been invested into both prevention and mitigation of at-
tacks, especially, remote malware infestations, exemplified
by the well-known Stuxnet episode [55]. The most popular
approach is to verify the current state of a remote embedded
device in order to establish that it behaves as it should, i.e.,
operates correctly. This translates into verifying device’s
software integrity, which is typically achieved using remote
attestation, a distinct security service that provides a proof
to a trusted entity (verifier) of software integrity of an un-
trusted – and possibly compromised – remote embedded de-
vice (prover).

Problem Description. Prior remote attestation results
consider only remote software attacks, wherein the adver-
sary’s power is limited to manipulating prover’s software
from afar. This is in line with the need to protect the prover
against remote malware infestations, under the assumption
that the adversary never has physical access to the prover.
Furthermore, prior schemes focus on the setting with a single
prover. This was a natural first step.

In the single-prover setting, it is reasonable to assume that
physical attacks on the prover are either impossible or very
unlikely, especially, if the device is physically protected or un-
reachable, e.g., located on secure premises. Also, in case of
multiple stand-alone (not inter-connected) provers, each can
be attested individually and no-physical-attack assumption
might still hold. However, there are current and emerging
scenarios that involve multiple inter-connected devices, e.g.,
automotive, building, office, and factory automation envi-
ronments. They differ from the single-prover setting in two
important ways:

1. Faced with potentially numerous provers, attesting them
individually can become expensive and unscalable, re-
gardless of whether attestation is performed locally or
remotely. This motivates a need to perform collective
or aggregated attestation of the entire set of provers.

2. Provers might be heterogeneous and distributed over a
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large physical area, e.g., a factory floor. Consequently,
the prior assumption about no physical attacks is no
longer valid: some provers could remain physically
unreachable while others might be within adversary’s
grasp. For example, in an office building, devices in
public spaces might be easily accessible, in contrast to
those inside individual private offices.1

The second issue has not been considered at all in the
context of remote attestation. In contrast, the first issue has
been noticed and progress has been made, to some extent,
by Asokan et al. [4] in the design of SEDA– a technique
for efficient and scalable attestation of a network of provers.
This is attained by distributing the attestation burden across
the entire network. However, SEDA focuses on so-called

“device swarms”. It does not attest topology and merely
reports the number of devices that pass attestation. Also,
SEDA’s threat model only considers remote software-based
attacks.

Goals and Contributions. If some devices can be cap-
tured and physically attacked, remote attestation techniques
must define a stronger adversary model that allows physi-
cal attacks, and devise a means of mitigating such attacks.
This paper represents the first step towards this goal and
makes two main contributions. First, it defines the ad-
versary model for collective attestation that allows physical
attacks. Second, it constructs a collective attestation tech-
nique DARPA, that is secure in the presence of the strongest
version of the adversary. Specifically, DARPA can detect
both software-based and physical attacks. However, our
main goal is to detect whether an attack has occurred, rather
than identifying malicious devices. DARPA can be extended
with a majority voting protocol in order to detect such de-
vices. Finally, due to the dynamic nature of the targeted
networks, we acknowledge the possibility of false positives,
due to device failures, unreachablity, network partitioning
or message loss. However, the main focus of this paper is
security, i.e., to avoid false negatives.

The main premise for our work is that, in order to phys-
ically attack a device, the adversary must make it inacces-
sible for a certain non-negligible amount of time, e.g., to
take it apart for the purpose of extracting secrets [5]. (In-
accessibility implies either physical removal of the device or
switching it off in situ.) Therefore, detecting device’s ab-
sence can be a sign of capture. In designing DARPA, we
take advantage of prior work in Wireless Sensor Networks
(WSN) literature [13, 14, 15, 23, 24, 25, 26, 53].

2. BACKGROUND AND OBJECTIVES
Physical Attacks. We consider unattended networks of
embedded devices that are infrequently inspected physically.
Some devices might be physically protected, while others
can be subject to physical attacks, perhaps due to their type
and/or location. This paper focuses on physical attacks that
require disablement or disconnection of the device(s) from
the network for a non-negligible amount of time. We refer
to this event as device capture.

Physical attacks can be classified into invasive, non-invasive,
and semi-invasive.

Invasive attacks [48] aim to extract information from a

1Similar examples include factory automation or perimeter
monitoring scenarios where devices on the edges of the net-
work are naturally more vulnerable than those in the middle.

device by trying to directly access internal components us-
ing sophisticated and expensive specialized equipment, e.g.,
Focused Ion Beam (FIB) and micro-probing stations. Such
attacks start with full or partial de-capsulation (i.e., removal
of packaging using mechanical or chemical means, or mixture
of both), followed by de-processing.

Non-invasive attacks [58], such as side-channel (e.g.,
power, time or electromagnetic radiation) attacks aim to
stealthily extract cryptographic keys during normal device
operations. They mainly use low-cost electrical engineering
tools. Several countermeasures have been proposed to mit-
igate side-channel attacks at physical, technological and/or
algorithmic levels [38, 58]. Examples include: shielding cir-
cuits, using analog isolation to hide the correlation between
secret key and power consumption, or making execution
path independent of cryptographic keys.

Semi-invasive attacks [49] are less expensive and less
complicated than invasive attacks, since they involve cheaper
equipment (e.g., laser microscopes) and only require decap-
sulation. Examples include: ultra-violet attacks, laser scan-
ning, thermal imaging and optical fault injections.

Both invasive and semi-invasive attacks require detach-
ing the device for some time (e.g., anywhere from several
hours to weeks [47, 48]) using specialized tools. Even micro-
probing, which can be performed while the device is operat-
ing, requires switching-off the device for at least the dura-
tion of de-capsulation and de-processing operations (which
is non-negligible) before getting access to internal wiring and
signals buried under passivation layer, using a micro-probing
station. On the other hand, although side-channel attacks
may require as little as few minutes and up to one day (if
mounted in-field by an insider) they are very likely to be
detected since they require bulky physical tools (e.g., an os-
cilloscope or EM-receiver/demodulator) to be attached to
the victim device, or installed in close proximity.

Prevention vs. Detection: Attack prevention is clearly
more appealing than attack detection. However, we rec-
ognize that the former is very difficult to achieve in the
envisaged general setting of large distributed networks of
heterogeneous devices. We believe that the only means of
attack prevention are physical, e.g., placing all devices in-
side a secure perimeter, protecting them with other types
of devices (e.g., alarm sensors that are themselves subject
to attack), putting them inside protective containers or en-
casing them in various hard-to-penetrate materials, such
as cement or metal. Besides being expensive and hamper-
ing mobility, all these approaches are simply not general.
An alternative is to assume that each device is equipped
with tamper-resistant components, which can be problem-
atic since tamper-resistant hardware involves extra costs:
monetary, power consumption, weight and volume. This
motivates our focus on detection, rather than prevention, of
physical attacks.

Objectives. We believe that, ideally, a secure collective
attestation protocol should:

1. Verify collective integrity of the network.
2. Detect (and, ideally, identify) compromised devices.
3. Offer better efficiency than attesting devices individu-

ally.
4. Detect absent and thus possibly captured devices.
5. Attest network topology.

Properties (1–3) pertain to scalable attestation of groups
(or swarms) of devices. The recently proposed SEDA proto-
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col [4] aims at addressing (1–3), in a weaker (remote software-
only) adversary model. SEDA does not address either (4) or
(5). Property (4) is needed to mitigate a stronger adversary
that can physically capture and fully compromise devices –
it forms the crux of this paper’s contribution. Property (5)
is optional; it is important if the topology is a part of overall
network’s integrity. Our goal is a protocol that satisfies all
these properties.

3. DARPA: PRELIMINARIES

3.1 System Model and General Idea
We consider a network of many, possibly heterogeneous,

devices with either static or dynamic topology, e.g., automo-
tive networks, industrial control systems, prospecting robots
or IoT devices in smart home/office environments. There are
s devices in total and each device Di is uniquely identifiable,
i.e., has a distinct id i. The set of the id i-s is denoted by ID.
We denote the verifier by Adm.

The general idea of DARPA is that the network is mostly
left unattended, i.e., in the time between successive attesta-
tions. During that time, each Di periodically monitors all
other s−1 devices. This is achieved using the heartbeat pro-
tocol, executed at regular time intervals thb. Each Di broad-
casts a secure heartbeat to its immediate neighbors, thereby
proving its presence. Each neighbor, in turn, forwards the
received heartbeat to its own neighbors, and so on. Each Di

collects all heartbeats, verifies and logs them. At the time
of next attestation, Adm performs a collective attestation
protocol (e.g., SEDA) with the entire network and gathers,
from each device, a set of logs – one for each heartbeat pro-
tocol instance executed since the previous attestation. This
is done via a separate collect protocol.

3.2 Adversary Model
Similar to all other attestation techniques, we assume that

the verifier is trusted. In the context of the prover, we con-
sider three types of adversaries:

1. Software – Advv,0 can remotely compromise (i.e., via
software attacks) up to v ≤ s devices. This is the usual
adversary model in prior attestation protocols.

2. Physical – Adv0,w can capture (i.e., physically at-
tack) up to w < s devices.

3. Hybrid – Advv,w can compromise up to v, and cap-
ture up to, w devices.

We use v and w to refer to maximum numbers of devices that
Adv can subvert – by software and physical means, respec-
tively – within a certain time interval Tatt. This interval
corresponds to the longest period of time between succes-
sive instances of network attestation performed by Adm, i.e.,
longest inter-attestation time gap. We assume Adv requires
a non-negligible amount of time Tcap to physically attack
a device. Tcap is expected to be appreciably longer than
any communication delay within the network. We also limit
Adv’s scope of attacks as follows:

1. No omnipotent adversary: Given s devices to-
tal, we claim that Adv0,s is impossible to mitigate.
However, we consider the next most powerful adver-
sary – Advs,s−1, which can compromise all devices and
capture all-but-one, without making any assumptions
about the single uncaptured device.

2. No noninvasive physical attacks: Adv might ex-
ploit hardware side-channels (time, power, optical) to

extract devices secrets. Such attacks – which do not re-
quire switching off a device for a minimum amount of
time – represent an orthogonal problem that is beyond
the scope of this paper.

3. No denial-of-service (DoS): We consider DoS at-
tacks to be out of scope, assuming that the envisaged
Adv wants to remain stealthy and undetected while at-
tempting to compromise and/or physically attack de-
vices.

4. MITIGATING PHYSICAL ADVERSARY
For now, we assume that Adv can capture all devices –

except one Dz – in a single Tatt interval. However, we also
assume that Adv can not compromise any device that it
does not first capture. Hence, ”0” in the first subscript of
Adv0,s−1.

The intuition behind our approach is as follows: If the
lower bound on the time needed to capture a device – Tcap–
is known, the network can regularly run a collective heartbeat
(absence detection) protocol, at intervals thb, shorter than
Tcap. Therefore, if the following two conditions hold:

1. Each uncaptured device’s heartbeat is unforgeable and
uniquely tied to the particular instance (time) of the
heartbeat protocol,
and:

2. Each device periodically (every thb interval) emits its
own time-based heartbeat and collects/records heart-
beats of all other present devices

Then, it is safe to make the following assertion:

Assertion 1: [Alert] If 0 < k < s devices are
captured within a given Tatt, then, by the next
attestation instance, the log of at least one un-
captured device (Dz) will lack at least one other
device’s heartbeat, for at least one heartbeat pro-
tocol instance.

Assuming that Dk is absent for longer than Tcap, Dz’s log
would be missing at least one of Dk’s heartbeats correspond-
ing to a particular instance of the heartbeat protocol. This
is because Tcap > thb, where thb is the interval between suc-
cessive runs of the heartbeat protocol. Of course, after cap-
turing Dk, Adv might extract its secrets and later attempt
to forge the missing heartbeat(s). However, by that time, it
is too late since this would take at least Tcap > thb time
and Dz would record Dk’s absence. Note that, in practice,
the inverse of Alert does not hold: a discrepancy between
devices’ logs at attestation time does not imply that any de-
vices were captured. Indeed, a log discrepancy might occur
due to lost heartbeat messages, device failures or (even tem-
porary) unreachability. Thus, we readily acknowledge that
false positives are possible. However, our main goal is to
avoid false negatives.

Furthermore, we assert that:

Assertion 2: [Normalcy:] At any attestation
instance, if logs of all s devices match and con-
tain every device’s heartbeat for each heartbeat
protocol instance, then no devices were absent
for longer than Tcap time.

Normalcy implies that no device was captured since none
were absent for at least Tcap. Therefore, the heartbeat log of
Dz contains timely proof of every other device’s presence, for
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each heartbeat protocol instance since the last attestation.
And, because Dz is (at least) the only uncaptured device
and its log agrees with all other devices’ logs, no device was
absent for ≥ Tcap. (We emphasize that Dz’s identity, idz, is
unknown to Adm.) Consequently, no physical attacks took
place.

4.1 DARPA:heartbeat Protocol
We first introduce some assumptions. The first two cor-

respond to individual devices and the rest apply to the net-
work:

1. Reliable Clocks: Each Di has a reliable clock, loosely
synchronized with Adm’s clock. δt denotes the maxi-
mum clock skew between any two devices.

2. Secret Keys: Each Di has a unique private signing
key SKi, which is assigned and installed (perhaps by
Adm) before deployment.

3. Public Keys: Each Di knows the set of all id i-s –
ID, and, for each Dj – the public key PKj , as well
as Adm’s public key – PKAdm. For better efficiency,
signatures can be replaced by message authentication
codes (MACs). This variant is discussed in Section 6.

4. Connectivity: there always exists a path between any
two devices, i.e., the network is always connected.

5. Mobility: devices might be mobile, i.e., network topol-
ogy is subject to change. However, during DARPA’s
execution, topology is assumed to be static.

heartbeat is initiated in a distributed manner: Di either re-
ceives a heartbeat message from one of its neighbors, or
wakes up based on a timer, indicating that thb has passed
since the last run of the protocol. In either case, Di generates
its own heartbeat, timestamped and signed with SKi, and
broadcasts it to neighbors. Whenever Di receives a heart-
beat from Dj , it verifies the timestamp and the signature.
If both are valid, Di logs the heartbeat as part of the cur-
rent protocol and re-broadcasts it to the neighbors. Once
Di receives heartbeats from all peers, it terminates the pro-
tocol. Alternatively, Di terminates the protocol based on a
time-out – tacc (see Table 1). Non-receipt of a valid heart-
beat from some Dj within tacc from the protocol start indi-
cates that, from Di’s perspective, Dj is absent. The detailed
description of the heartbeat protocol is shown in Figure 1.
Table 1 summarizes our notation. In it, ttx denotes the
global upper bound for a network delay. However, since the
time Tcap needed to physically attack a device is expected
to be considerably greater than any other delay, a tight up-
per bound on network delay is not necessary. As mentioned
earlier, the heartbeat protocol for Di can start based on a
timeout or a received heartbeat message. However, for the
sake of clarity, we illustrate the protocol as starting only
upon a timeout, assuming that heartbeat messages received
prior to step 0 are queued in a buffer.

4.2 DARPA:collect Protocol
Periodically (at intervals upper-bounded by Tatt), Adm

initiates the collect protocol. We make no assumptions about
Adm’s location at that time: it could be local or remote.
Adm generates a request: Ch = N, tAdm, SIGAdm where:
N is a random challenge, tAdm is a timestamp, and SIGAdm

is Adm’s signature over N and tAdm.
Upon receipt of Ch, Di verifies the timestamp and the

signature. If both are valid, Di replies with the set of all
logs collected since the last attestation instance – LOGi =

s total number of devices

i, j, z, k device indexes ∈ [1, s]

v, w max #-s of devices Adv can compromise or capture

idj identifier of Dj

ID set of all device id-s: {id1...ids}

SKi, PKi devi’s public and private keys, respectively

kij symmetric key shared between Di and Dj

Ki symmetric key shared between Di and Adm

Tatt maximum interval between two consecutive attestations

Tcap minimum time needed by Adv to capture a device;
Tcap < Tatt

δt maximum clock skew between any two devices

ttx maximum time to transmit a message between any two
devices. (includes processing time at intermediate devices)

tacc acceptance interval; tacc = δt + ttx

thb interval between successive heartbeat instance;
2 · tacc < thb < Tcap − tacc − δt

#hb number of heartbeat protocol runs between

successive attestations; 1 ≤ #hb = bTatt
thb
c

p heartbeat protocol index; 0 < p ≤ #hb

hbi,p Di heartbeat message for p-th heartbeat protocol
instance; hbi,p = {p, ti,p, idi}

SIGi,p signature, computed by Di, using SKi over hbi,p

time() returns current time

ti,p Di clock when hbi,p is created

logi,p Di’s log of all valid received heartbeats for p-th
protocol instance

present[s] bitmap indicating which devices were ever absent,
present[i] = 0 implies that Di was absent (at least once)

OK flag indicating if any device was ever absent, OK = 0
implies that (at least) one device was absent at least once

accept(tstart, tj,p) = 0|1 timestamp verification;
returns ”true” if tj,p = tstart

sign(SK,MSG) signature generation: using SK and
MSG, yields a signature on MSG

verify(PK,MSG, SIG) signature verification: using PK,
checks SIG on MSG; yields 0|1

mac(k,MSG) computes MAC of MSG using k

vermac(k,MSG,MAC) MAC verification: using k,
checks MAC on MSG; yields 0|1

Table 1: Notation

{logi,p, ; 0 < p ≤ #hb} – timestamped and signed with
SKi. Once Adm receives LOGi, it verifies the timestamp
and Di’s signature. If both are valid, it stores the corre-
sponding log set. Having received LOGi-s from all devices,
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Figure 1: DARPA: heartbeat Protocol (as viewed by Di)

T imeout(timerhb)

Start-timer(timeracc = tacc)

ti,p = tstart = time(), hbi,p = {p, ti,p, idi}

SIGi,p = sign(SKi, hbi,p)

Set logi,p = hbi,p, Start-timer(timerhb = thb)

Di
hbi,p, SIGi,p−−−−−−−−−−−→ all neighbors

while
(
¬ Timeout(timeracc) ∧ sizeof(logi,p) < s

)
do

Di
hbj,p, SIGj,p←−−−−−−−−−−− neighbor (Dj)

if (accept(tstart, tj,p) ∧ hbj,p /∈ logi,p) then

if V erify(PKj , hbj,p, SIGj,p) then

Append
(
{hbj,p, SIGj,p}, logi,p

)

Di
hbj,p, SIGj,p−−−−−−−−−−−→ all neighbors

else

Discard hbj,p

end

else

Discard hbj,p

end

end

p = p+ 1

Adm can easily determine whether any devices were absent
for one or more heartbeat protocol instances since last at-
testation. Furthermore, Adm can identify the devices that
were absent at each heartbeat protocol instance. According
to the Normalcy assertion, if all logs match and contain
all devices’ heartbeats, then no device has been absent. The
collect protocol is shown, in more detail, in Figure 2 and 3.

4.3 Efficiency Improvements
Several aspects of the above protocols involve some poten-

tially impractical assumptions and costly operations. This
is done mainly in order to simplify presentation; substantial
cost reductions and simplifications can be made, as follows:

Communication Model: The collect protocol in Figures 2
and 3 is shown in an idealized communication setting, where
each Adm “talks” directly to every Dj . While plausible, this
is not a realistic assumption. However, recall that Adm’s
attestation request (Ch) is signed and so is Di’s reply – respi.
These signatures essentially result in an authentic channel
between Adm and Di. Consequently, protocol’s security is
the same, regardless of whether Adm and Di communicate
directly, or through a sequence of intermediate hops, i.e., one
or more Dj-s.

Public Key Signatures: Both heartbeat and collect proto-
cols involve heavy use of signatures. This is done mainly for
illustration purposes, as it makes the protocol more concise,

Figure 2: DARPA: collect Protocol (as viewed by Adm)

for 0 < i ≤ s do

t = time(), N ∈ {0, 1}`N ,

SIGAdm = sign(SKAdm, t|N)}

Adm Ch={t,N,SIGAdm}−−−−−−−−−−−−−−−−−−−−−−−→ Di

Adm respi={LOGi,SIGi}←−−−−−−−−−−−−−−−−−−−−−−− Di

if
(
verify(PKi, LOGi|Ch, SIGi)

)
then

Store LOGi

else

Discard respi

end

end

Figure 3: DARPA: collect Protocol (as viewed by Di)

Di
Ch={t,N,SIGAdm}←−−−−−−−−−−−−−−−−−−−− Adm

if If
(
verify(PKAdm, t|N,SIGAdm)

)
then

SIGi = sign(SKi, LOGi|Ch)

Di
respi={LOGi,SIGi}−−−−−−−−−−−−−−−−−−−→ Adm

else

Discard Ch

end

though also more expensive. In the heartbeat protocol, it is
easy to replace signatures with hop-by-hop MACs, assuming
that a key shared is by every pair of neighboring devices. It
is equally easy to replace signatures with MACs in collect,
as long as each device shares a unique key with Adm. In our
context, MACs are no less secure than signatures, since our
Adv0,s−1 is purely physical and can not capture all devices.
Thus, as long as at least one Dz remains always present (un-
captured), it would accurately log at least one absent device
(see Section 6 for details). One obvious downside of using
MACs is the need for a separate key establishment protocol
between adjacent devices, or a key pre-distribution scheme,
to let each device share a symmetric key with every neigh-
bor.

Heartbeat Logs: Figures 2 and 3 show each Di collecting,
and later sending to Adm, accumulated logs (of the form
logi,p) bundled into LOGi at collect time. Once again, this is
done for ease of illustration. Instead, it is sufficient for each
logi,p to contain a list of either absent or present devices,
whichever is smaller. At the very minimum, we simply use a
binary flag indicating whether at least one device was absent
during any heartbeat instance. An optimized MAC-based
implementation of DARPA is described in Section 6.
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4.4 heartbeat: Correctness and Security
Correctness of the heartbeat protocol means that, if no
device is absent, then all log sets (LOGi-s) of all devices
must match and contain every other device’s heartbeat.

We assume that Di is present and functional during the
entire inter-attestation time gap Tatt. Thus, Di periodically
emits an authenticated heartbeat hbi,p = {p, ti,p, idi, }, and
SIGi,p to all its neighbors. Since all devices have reliable
clocks loosely synchronized with Adm, the clock of every
neighbor Dj deviates from ti,p by at most δt. Consequently,
Dj receives hbi,p at t ∈ [ti,p − δt, ti,p + δt + ttx]. Recall that
ttx is the maximum time to transmit a message between
any two devices. Since hbi,p is a genuine heartbeat of Di

for the current heartbeat interval, i.e., accept(p, ti,p) = 1,
and verify(PKi, SIGi,p) = 1; and is received within the ac-
ceptance interval tacc = ttx + δt, Dj appends hbi,p to its
logj,p and forwards hbi,p it to all its neighbors. Similarly,
each neighbor of Dj appends hbi,p to its logj,p and forwards
it onwards. Since the network is always connected and its
topology is static only for the duration of heartbeat instance,
all heartbeat messages are received by all devices, within ttx
time. Thus, every Dk appends hbi,p to its logk,p. It follows
that LOGj of every Dj matches and contains hbi,p of every
other Di for all p heartbeat instances.

Security of heartbeat means that, if 0 < w < s devices
are absent, then logs of present devices lack at least one
heartbeat of each absent one.

We again assume Di is present, i.e., not captured. Accord-
ing to the definition of accept() in Table 1, every uncaptured
Dk only logs the heartbeat hbi,p (of Di at p-th heartbeat in-
terval) in its log if it was received in the same interval. We
derive the upper and lower-bound on the time when hbi,p
can be logged in logk,p (log time). Let t1 be the expira-
tion time of the p-th timerhb on any present Dk, i.e., at
t1, Dk generates its heartbeat hbk,p, and logs in logk,p all
heartbeats received either before t1 or within tacc = ttx + δt.
However, since present devices (such as Di) only generate
correct heartbeats (i.e., based on the current timestamp),
the acceptable hbi,p can be generated no earlier than t1− δt.
Consequently, log time is lower-bounded by t1 − δt, and up-
per bounded by t1 + ttx + δt. Similarly, if t2 = t1 + thb is the
expiration time of (p+ 1)-th timerhb, log time of hbi,p+1 is
in [t2−δt, t2 +ttx +δt]. Therefore, Di can be absent (and un-
detected) for at most: the time between sending hbk,p at the
earliest time possible and emission of hbk,p+1 at the latest
time possible:

t2+ttx+δt−(t1−δt) = t1+thb+ttx+δt−t1+δt = thb+2·δt+ttx

Since Tcap > thb +2 ·δt + ttx, the log of every uncaptured Dk

will lack at least one heartbeat of every captured Di (either
hbi,p or hbi,p+1).

5. MITIGATING SOFTWARE ADVERSARY
In contrast to a physical adversary Adv0,s−1, a purely soft-

ware Advs,0 can not capture devices. However, it can re-
motely compromise any device’s software, which is subject
to attestation. In this section, we assume that the adversary
can software-compromise all devices.

To guarantee security under Advs,0, the attestation proto-
col must remotely verify overall software integrity of the net-
work and, thus, of each Di. To achieve this, we need to make
some minimal assumptions about hardware security features

of the underlying devices. In particular, the integrity mea-
surement mechanism (attestation code) residing on Di must
be immune to software attacks. This condition can be satis-
fied by assuming availability of minimal hardware protection
on each Di, as done in the attestation literature for low-end
embedded devices [4, 8, 19, 29]. In brief, minimal require-
ments/features are: Read-only Memory (ROM) for storing
attestation code and associated cryptographic key(s) and a
simple memory protection unit (MPU). The MPU has sev-
eral tasks: (i) grants access to cryptographic key(s) only to
attestation code, (ii) ensures non-interruptibility of execu-
tion of attestation code,and (iii) cleans up (flushes all regis-
ters and other temporary storage) at the end of attestation
code execution.

Based on the above, compromised devices can be detected.
Indeed, this is exactly what is achieved by a collective attes-
tation protocol as recently proposed in SEDA [4]. In SEDA,
Adm chooses an arbitrary device (initiator), and sends it an
attestation request. The initiator forwards the request to its
immediate neighbors who repeat the process. The request
propagates over the entire network forming a spanning tree
rooted at the inititator. Next, each leaf sends its parent an
integrity report. The parent verifies each child’s report and
aggregates them (along with its own) into a single report,
which includes the number of correctly attested devices. Re-
ports are then propagated and aggregated, in reverse, along
the spanning tree towards the initiator, and on to the veri-
fier.

6. MITIGATING HYBRID ADVERSARY
The strongest adversary Advs,s−1 can compromise all de-

vices by software means, and physically attack all-but-one
devices – Dz, within a single inter-attestation time gap Tatt.
To mitigate this adversary we integrate a secure collective
attestation protocol (such as SEDA) which detects compro-
mised devices, with DARPA:collect and combine it with
DARPA:heartbeat to detect absent devices.

This requires the same hardware assumptions as in Sec-
tion 5 to secure both the attestation and DARPA protocols.
Most importantly, we assume that ROM-resident attesta-
tion code now includes heartbeat and collect protocols. Also,
cryptographic keys used by heartbeat and collect are stored
in ROM and accessible only to that attestation code. Pri-
vate intermediate data, on the other hand is stored in access-
protected RAM.

Figure 4 shows our implementation of the integrated pro-
tocol over a generalization of the SMART architecture [19]
introduced in [8, 29]. In it, a Memory Protection Unit
(MPU) controls access to the part of memory (ROM and
RAM) storing secret keys and private protocol data. Ac-
cess is controlled according to hardware-based access control
rules in the table of Figure 4. For example, rule # 1 states
that: only code residing at address a0 to a3 (i.e., attestation,
heartbeat, and collect) has read access to keys residing at
addresses a4 to a5. Similarly, heartbeat and collect have pro-
tected read and/or write access to their private intermediate
data.

6.1 Protocol
The integrated protocol is shown in Figure 5; it is based

entirely on symmetric cryptography. Every Di is assumed
to share a key Ki with Adm, and kij – with each direct
neighbor Dj .
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Figure 4: Implementation of DARPA

The protocol operates as follows: every thb interval, each
Di (Dw and Dk in the figure) generates a timestamped au-
thenticated heartbeat hbi,p and σij and broadcasts it to all
neighbors Dj . Upon receiving an authenticated heartbeat
from a neighbor Dj , Di checks that:

1. hbj,p is not a duplicate.
2. hbj,p is received within acceptable time, i.e., accept =
true.

3. hbj,p corresponds to current expected heartbeat instance,
i.e., p.

4. the MAC σij on hbj,p (re-computed with kij) verifies
correctly.

If all checks succeed, Di marks Dj as present (present[j] =
1), generates a new MACs on hbj,p, and forwards it to its
neighbors. After a fixed period of time (t = 2 · δt + ttx), Di

checks whether all devices were present during the current
heartbeat instance. If at least one Dj was absent, Di sets
OK = 0.

At attestation time, Adm randomly picks an initiator de-
vice – Dw – which serves as the interface to the rest of the
network, see Figure 5. Adm creates a random challenge
N , authenticates it along with the current time tAdm with
a MAC based on a shared key Kw. Adm then sends the
authenticated challenge CHw to Dw. This triggers both at-
testation and collect. Once Dw verifies CHw, it creates a
separate CHj (authenticated with kwj-based MAC) and for-
wards it to each neihboring Dj . Upon receiving CHj , each
neighbor authenticates the request and forwards an authen-
ticated copy to each of its neighbors, and so on. This way,
the challenge securely propagates throughout the network
along a spanning tree rooted at Dw. Each leaf Di creates a
reply which includes:

1. respi, indicating whether a single device was absent
at any heartbeat interval (respi = mac(Ki, OK|N)).
respi is authenticated in an end-to-end manner.

2. its attestation response attesti to its parent Dj . attesti
depends on the integrated collective attestation proto-
col. In SEDA, it represents the number of successfully
attested devices.

The parent accumulates attesti and XORs respi (along with
its own) and propagates the result upstream, towards Dw.
Finally, Dw forwards the accumulated reply to Adm. Adm

re-generates all MACs, XORs them, and compares the result
to respw. If they match, Adm decides that no device has
been captured and can now trust the attestation results in
determining compromised devices, if any. The protocol is
shown in Figure 5.

A distinct session identifier is needed to avoid double-
counting benign devices. This identifier is sent along with
the challenge and each device includes it in the attestation
response. However, to allow devices to attest their neighbors
and account for software updates, every device is initialized
with its own software certificate, i.e., its software configura-
tion signed by Adm. Upon joining the network, each device
sends its software certificate to its neighbors, each of whom
verifies and stores it for future attestation. Further informa-
tion about session management and distribution of software
configurations for collective attestation can be found in [4].

6.2 Correctness and Security
Somewhat surprisingly, the integrated protocol is actually

not secure against the strongest hybrid adversary. The
main (and only) reason is due to the fact that the Reliable
Clocks assumption is insufficient to mitigate Advs,s−1. Con-
sider the following attack scenario:

First Advs,s−1 captures Di during p − th heart-
beat instance and extracts its keys. Concurrently,
Advs,s−1 compromises (via software) all devices:
D1, ...,Ds and infects them with malware, which
tampers with their clocks, and extends the time
a received heartbeat is accepted to ≥ Tcap. Af-
ter capture, Di runs the p-th heartbeat instance.
On each compromised device, Di’s heartbeat is
accepted by the ROM-resident code running the
heartbeat protocol, since it appears to be correct.

Other similar attack scenarios are possible, where the com-
mon feature is the ability of malware (which is resident on
compromised devices) to manipulate their clocks.

This insecurity leads us towards an additional requirement
that we claim to be both necessary and sufficient to mitigate
a hybrid adversary: the need for a Reliable Read-Only
Clock (RROC) on each device. We use this terminology
in order to stress the fact that each device’s clock must be
non-malleable, i.e., not modifiable by software from either
ROM or RAM. However, we do not require the clock to be
secure in terms of any kind of physical protection, i.e., no
tamper-resistance or tamper-evidence is needed. An RROC
can be realized with an inexpensive commercially available
Real-Time Clock (RTC), such as [1].2

One alternative to the RROC requirement is secure writable
memory. Such memory must be writeable only from ROM.
It is not hard to see that, if each Di has just a tiny amount
of such memory, it can securely record the timestamp of the
last heartbeat protocol. This way, once malware resets the
Dz’s clock to a prior heartbeat protocol instance, it would
attempt to introduce backdated heartbeat messages from
previously absent devices, ROM-resident attestation code
would recognize stale timestamps, detect the inconsistency
and take appropriate action. At the very least, Dz can ig-
nore backdated heartbeats.

2Note that integrity of any intermediate software that reads
the RROC is assumed to be assured, similar to attestation
code in Figure 4.
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p = 0

accept = true
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HBw,p,wj = {hbw,p, σwj}

accept = false

tAdm = time(), N ∈R {0, 1}`N
θw = mac(Kw, {tAdm , N})

if vermac(Kw, {tAdm , N}, θAdm ) then
θwj = mac(kwj , {tAdm , N})

p = p+ 1

OK = OK ∧ (∧si present[i])
∀ i present[i] = 0

respw = mac(Kw, OK|N)

K0 . . .Ks

Verifier Adm DkDj

accept = true
accept = true

if accept = true and pw = pj then
if vermac(kwj , hbw,p, σwj) then
present[w] = 1

σjk = mac(kjk, hbw,p)

HBw,p,jk, HBj,p,jk

HBk,p,jk

Kj , kwj , kjk, ID Kk, kjk, ID

accept = false
accept = false

p = p+ 1

OK = OK ∧ (∧si present[i])
∀ i present[i] = 0 ∀ i present[i] = 0

.

.

p = 0
p = 0

p = 0

t = 0

thb − δt
thb

thb + δt + ttx

tatt ≤ #hb · thb

CHk

respj = mac(Kj , OK|N)

respk, attestk

p = 0
respk = mac(Kk, OK|N)

p = 0

respj , attestjrespw, attestw

if ⊕s
i mac(Ki, 1|N) = respw then

check(attestw)

respj = respj ⊕ respk

CHw =
{
{tAdm , N}, θw

}

CHj =
{
{tAdm , N}, θwj

}

Figure 5: The complete DARPA protocol

Correctness of the integrated protocol means that, if no
device was absent or compromised, then: (1) attestw indi-
cates that no device is compromised, and (2) respw matches
⊕s

i mac(Ki, 1|N).
(1) follows directly from correctness of the collective attes-

tation protocol. According to correctness of heartbeat, all
devices receive valid heartbeats for all heartbeat instances,
within Tatt. Consequently, at each heartbeat instance and
for every Di, present[i] is set to 1. Thus, at attestation
time OK at Di is also 1 (OK = OK ∧ (∧s

ipresent[1]) =
1 ∧ · · · ∧ 1 = 1), and respi is initially set to mac(Ki, 1|N).
Therefore, since all devices receive and accept CH, respw =
⊕s

i mac(Kw, 1|N).

Security of the integrated protocol means that: (1) if no
device was captured, then attestw correctly indicates the
number of compromised devices; and (2) if at least one de-
vice is captured, respw reflects that.

(1) follows directly from security of the collective attesta-

tion protocol. Furthermore, if no device is captured, hop-by-
hop MACs and digital signatures are equally secure, since
(due to SMART-like device architecture) malware has no
access to keys. Thus, based on security of heartbeat, cap-
ture of (at least) one Dj is detected by all other devices.
Of course, Dj can later forge heartbeats of absent devices,
thus helping them evade detection. However, it can not re-
set an OK flag of an uncaptured device to 1 once it is set
to 0 (OK = OK ∧ (∧s

ipresent[i])). Meanwhile, since keys
shared with Adm and digital signatures are equally secure,
respw correctly indicates that at least one device (say, Dj)
was captured. Consequently, Adv can try to evade detection
of Dj ’s capture in several ways: (1) modifying heartbeat or
collect protocol code, (2) extracting Kj before capturing Dj ,
(3) extracting Kz or modifying OK for every uncaptured
Dz within the same Tatt, or (4) fooling every uncaptured
Dz into extending the time a received heartbeat is accepted,
as illustrated in the attack example above. However, (1)
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is impossible since heartbeat and collect are part of ROM-
resident attestation code. (2) and (3) are prevented since
cryptographic keys and private data are accessible only to
the attestation code. Finally, (4) is ruled out since Dz has a
Reliable Read-Only Clock (RROC) which can not be modi-
fied by any software. Therefore, Advs,s−1 can not evade de-
tection of Dj by software compromise. Consequently, respw
will correctly indicate that at least one device (i.e., Dj) was
captured.

7. PERFORMANCE ANALYSIS
We evaluated computation, communication, and energy

costs of both variant of DARPA We also compared, via sim-
ulations, performance of MAC- and signature-based imple-
mentations, for varying numbers of devices.

Computation Overhead: In the signature-based imple-
mentation, every Di generates one and verifies s signatures
in heartbeat. In collect, Di generates one and verifies (ci +1)
signatures. Let ci be the number of children of Di in the
spanning tree rooted in Dw. In the MAC-based implementa-
tion, Di verifies s and generates (N · s) MACs in heartbeat.
In collect, Di verifies (ci + 1), and generates (N + 1) MACs,
where N is the number of Di’s neighbors.

Communication Overhead: In the digital signature-based
implementation, Di receives and sends at most N heartbeats
in heartbeat. Di, also receives N challenges and ci responses;
meanwhile, it sends 1 challenge and 1 response. The number
of log sets in received and sent responses depends on Di’s
position in the spanning tree. It is upper bounded by s − 1
and s respectively. In the MAC-based implementation, Di

receives s and sends s heartbeats as well as N · s MACs in
heartbeat. Di also receives N authenticated challenges and
ci MACs, while it sends 1 challenge and N MACs.

Energy Costs: Our estimate of DARPA’s energy consump-
tion is shown in Figure 6 and 7. We base it on energy costs
of cryptographic operations and communication reported for
TelosB sensor node [16]. We also set the number of heartbeat
protocol instances to 20. As the results show, energy con-
sumption is quadratic in the network size in the signature-
based implementation, and linear in the MAC-based version.
This significant improvement is mainly due to the significant
reduction in communication. Moreover, on low-end embed-
ded devices MACs are obviously much cheaper energy-wise
than digital signatures. Figure 11 also shows an increase in
energy consumption as a function of number of neighbors
for the MAC-based version. This is due to the hop-by-hop
MAC verification and re-generation.

Simulation Results: DARPA was evaluated using om-
net++ simulator [40] with several topologies: chain, star,
tree (with fan-out degrees: 2, 4, 8 and 12), and networks
with fixed number of neighbors (4, 8 and 12). We emulated
cryptographic operations as delays based on measurements
from TyTAN [8]. Simulation uses 20-kbps as the communi-
cation rate for links between devices. It corresponds to the
minimum bandwidth provided by ZigBee – a common proto-
col for IoT devices. We simulated collect and heartbeat based
on digital signatures, described in Section 4, and the opti-
mized MAC-based implementation described in Section 6.
Results are shown in Figure 8, 9, 10, and 11. Results for
networks with fixed number of neighbors are very similar to
those for trees and are hence omitted, due to space limita-
tions.

Figure 6: Energy consumption of signature-based DARPA

Figure 7: Energy consumption of MAC-based DARPA

As shown in Figure 8 and 9, for both implementations, and
aforementioned topologies, run-time of heartbeat is linear
in network size. However, the MAC-based implementation
performs better, particularly in a chain topology. Compu-
tational overheard of heartbeat is linear (in network size) in
chain and star, while logarithmic in tree topologies. Its com-
munication overhead is always linear in network size. For
this reason, the effect of replacing digital signatures with
MACs is reduced. On the other hand, Figure 9 shows that
run-time of heartbeat in 1, 000− node networks is about 13
seconds. This number is less than Tcap, and is therefore
realistic.

Figure 10 and 11 show run-times of collect with digital
signatures and MACs, respectively. The quadratic run-time
of collect in the signature-based implementation is due to
the quadratic communication overhead, since each of the s
devices has to communicate its s log lists to Adm. Mean-
while, in the MAC-based implementation, only a constant
size XOR-ed MAC is communicated. Consequently, this
significant difference in run-times between the two imple-
mentations is due to the reduction in communication over-
head from sending concatenated logs to sending XOR-ed
constant size MACs. Note that the run-time of collect in
the MAC-based implementation consequently converges to
the computational overhead, which is linear in chain and
star (and logarithmic in tree) topology.

Finally, as shown in the figures, chain is the worst-performing
topology for collect, since responses are always sent through
s hops, compared to log(s) hops for trees and 1 hop for
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Figure 8: DARPA:heartbeat signature-based performance

Figure 9: DARPA:heartbeat MAC-based performance

star. On the other hand, star topology performs best in
protocols where communication overhead dominates, i.e., in
signature-based implementation of collect, and worst when
computation overhead is dominant, i.e., in MAC-based. In
the latter case, the central node in the star has to verify s
MACs.

8. RELATED WORK
Remote Attestation is a popular research topic and many
schemes have been proposed in the literature. They all share
a scenario where the prover sends to the verifier a status re-
port of its current software configuration. Authenticity of
the report is typically assured by some form of secure hard-
ware [19, 30, 31, 43, 44, 52] and/or trusted software [2, 22,
28, 31, 34, 45, 46, 54]. Attestation based on secure hard-
ware is often too complex and expensive for low-end embed-
ded systems. Software-based attestation [22, 28, 34, 45, 46]
does not require any hardware and involves no cryptographic
keys. However, its security relies on strong assumptions that
are hard to achieve in practice [3], e.g.: adversarial silence
while the attestation protocol runs, optimality of the attesta-
tion algorithm and its implementation, and fixed round-trip
prover-verifier delay. Hence, common wisdom implies that
secure and practical remote attestation requires at least a
few security features in hardware [19, 21, 29].

Current attestation schemes consider only a single prover
and do not accommodate groups thereof. Moreover, they
consider only (remote) software attackers, with no physical

Figure 10: DARPA:collect signature-based performance

Figure 11: DARPA:collect MAC-based performance

access to provers. Only the recent SEDA [4] scheme per-
forms collective attestation of interconnected devices by dis-
tributing attestation burden across the entire network. How-
ever, SEDA considers only remote software attacks, while
DARPA identifies both compromised and captured devices.

Absence Detection is used (particularly, in sensor net-
works) to detect node failures and captures. Detecting fail-
ures by absence detection has been studied for static [50] and
dynamic topologies [13, 23]. However, since these schemes
are not designed with security in mind, they are ineffective
in our adversarial setting.

A physical attack on a device requires expert knowledge,
costly equipment, and most importantly, in most cases, re-
moval of the device(s) from the network for a non-negligible
amount of time [5]. Therefore, absence detection has been
used to detect node capture attacks, by letting each device
keep track of the time it needs to re-encounter a predeter-
mined subset of peer devices [14, 15]. This time is then
compared to a predetermined threshold. In static networks,
each device simply measures absence time for each neighbor,
and compares it to the minimal time needed to capture a
device [24]. Techniques for dynamic networks allow a cer-
tain number of false negatives, depending on the threshold.
However, static network techniques can not be extended to
dynamic networks. Moreover, all proposed schemes are vul-
nerable to remote software attacks. In contrast, DARPA, be-
sides being applicable to static and dynamic networks, can
detect both remote software and physical attacks.
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Secure data aggregation is a fundamental communica-
tion primitive in wireless sensor networks. It reduces com-
munication overhead considerably, through combining data
received from distinct sensor nodes, while preserving its secu-
rity (secrecy and/or integrity). Several approaches have been
proposed for integrity-preserving data aggregation. Some
are based on cryptographic techniques [10, 11, 27, 32, 37, 42,
57], while others rely on trust relations [41] or witness-based
solutions [17]. Integrity-preserving data aggregation can be
combined with DARPA to provide security against physi-
cal adversary. However, these approaches involve computa-
tionally expensive asymmetric cryptography [32], or require
globally shared keys [37]. Moreover, they have high compu-
tation and communication complexity [12, 17, 39]. They also
mainly focus on detecting integrity breaches, rather than the
identification of misbehaving nodes. Schemes that are able
to detect captured nodes require a number of rounds which
is at least logarithmic in the size of the network [51]. More-
over, such schemes are unable to detect captured nodes, un-
less they misbehave (i.e., alter with the aggregation result).

Key management protocols aim to achieve a trade-off be-
tween storage requirements, key connectivity, and resilience
to node compromise. Most of proposed schemes aim at de-
creasing the number of keys each node needs to store. Stor-
age reduction is achieved on the expense of connectivity, i.e.,
by leveraging knowledge of the network topology [56], or
the probability of every two nodes communicating [20]. In
such schemes, two nodes share a key if they consider each
other reachable [35], or can not rely on other node(s) to
provide a secure path [33]. It can also be achieved at the
expense of resilience to node compromise. This is done using
various mathematically flavored key distribution techniques
[6, 7, 9, 18, 36]. While such schemes do not aim to detect cap-
tured nodes, they try to minimize the effect of node capture
in terms of compromise of communication links. Moreover,
some enable revocation of leaked credentials. DARPA re-
quires either one private (signing) key per device or several
symmetric keys shared between neighbors, and between ev-
ery device and the verifier. Thus, its storage requirement
is minimal. However, end-to-end authenticity is maintined
due to attestation code’s exclusive access to keys.

9. SUMMARY AND FUTURE WORK
This paper proposes DARPA – a scheme which mitigates
a very powerful adversary capable of physical attacks, un-
der reasonable assumptions. However, despite its benefits,
DARPA has certain limitations that need to be addressed,
including:
• False positives due to device failures and temporary

unreachability, e.g., network partitioning.
• Lack of identification of potentially compromised de-

vices.
• Relatively high communication overhead of the heart-

beat protocol.
There are several concrete issues that we plan to tackle in
the near-term:
• Use majority voting to identify compromised devices.
• Apply witness-based approach to mitigate network par-

titioning, i.e., if Adv physically attacks ≤ k devices
within the inter-attestation gap, then each device must
have at least k+ 1 witnesses for each heartbeat period.

• Lower heartbeat protocol overhead by sending heart-
beats only to neighbors.
• Extend DARPA to support device mobility during heart-

beat.
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