
Scalable Revocation Scheme for Anonymous Credentials
Based on n-times Unlinkable Proofs

Jan Camenisch
IBM Research - Zurich

Zurich, Switzerland
jca@zurich.ibm.com

Manu Drijvers
IBM Research - Zurich and
Dept. of Computer Science,

ETH Zurich
Zurich, Switzerland

mdr@zurich.ibm.com

Jan Hajny
Brno University of Technology

Brno, Czech Republic
hajny@feec.vutbr.cz

ABSTRACT
We propose the first verifier-local revocation scheme for privacy-
enhancing attribute-based credentials (PABCs) that is prac-
tically usable in large-scale applications, such as national
eID cards, public transportation and physical access control
systems. By using our revocation scheme together with ex-
isting PABCs, it is possible to prove attribute ownership in
constant time and verify the proof and the revocation sta-
tus in the time logarithmic in the number of revoked users,
independently of the number of all valid users in the sys-
tem. Proofs can be efficiently generated using only offline
constrained devices, such as existing smart-cards. These fea-
tures are achieved by using a new construction called n-times
unlinkable proofs. We show the full cryptographic descrip-
tion of the scheme, prove its security, discuss parameters in-
fluencing scalability and provide details on implementation
aspects. As a side result of independent interest, we design
a more efficient proof of knowledge of weak Boneh-Boyen
signatures, that does not require any pairing computation
on the prover side.

Keywords
Revocation, attribute-based credentials, privacy, smart-cards,
blacklisting, eID, e-ticketing.

1. INTRODUCTION
Privacy-enhancing attribute-based credentials (PABCs) al-

low users to anonymously prove their personal attributes,
such as age, citizenship, birthplace, etc. In typical PABC ap-
plications, such as national eIDs and e-ticketing, programmable
smart-cards are used to store user attributes and execute the
proving protocol. Technologies like IBM Identity Mixer and
Microsoft U-Prove [14, 39] based on privacy-enhanced group
signatures [6, 7, 18] enhance the attribute proofs by provid-
ing additional privacy-protecting features, such as the selec-
tive disclosure of attributes, untraceability and unlinkability
of verification sessions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WPES’16, October 24 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4569-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994620.2994625

When using PABCs, the revocation of users’ credentials
is required on a daily basis. Both the revocation of mali-
cious users and the revocation of honest users, who for ex-
ample lose their smart-cards, needs to be done. However, the
strong protection of users’ privacy makes it difficult to do the
revocation. It is a non-trivial problem to find and exclude
a particular user if all users’ transactions are anonymous,
unlinkable and untraceable. In fact, the missing practical
revocation of PABCs is currently one of the most significant
technological barriers preventing the large-scale deployment
of PABC technology [27, 29, 34, 44].

So far, many schemes for PABC revocation have been pro-
posed. These proposals can be divided into the following
categories:

• Blacklisting of Credential Identifiers [39]: a con-
stant unique identifier is embedded to each attribute
proof of a particular user. If the user needs to be re-
voked, the identifier is put on a blacklist. The main dis-
advantage of this approach is that all the user’s trans-
actions are linkable because they all share the same
identifier. Thus, one of the crucial features of PABCs,
the unlinkability of proofs, cannot be provided. Black-
listing of identifiers is used by U-Prove.

• Blacklisting of Keys and Revocation Handles
[3, 8, 41]: similarly as the identifiers, also the users’
keys and revocation handles can be used for revoca-
tion. In this case, a private attribute (user’s key or
dedicated handle) stored in a credential gets black-
listed. This approach has the advantage that the un-
linkability of proofs can be still provided because the
private attributes are never disclosed in an open form.
The main disadvantage of most schemes using this
technique is that the user key (or handle) must be
known by the entity that initiates the revocation pro-
cess. Thus, achieving verifier-driven and issuer-driven
revocation is difficult. Furthermore, the computational
complexity of the revocation status verification is lin-
early dependent on the number of revoked users. The
BLAC scheme [41] provides the verifier-driven revoca-
tion at the cost of communication and computation
complexity linear to the number of revoked users, for
both users and verifiers in this case. Furthermore,
BLAC needs costly bilinear pairing operations at veri-
fiers’ side. Blacklisting of keys is used in Direct Anony-
mous Attestation [8, 10, 11] and some implementations
of Identity Mixer.

123

http://dx.doi.org/10.1145/2994620.2994625

• Epochs of Lifetime [15]: a time interval (an epoch),
in which the credential is valid, can be embedded to
all attribute proofs. If this technique is used, the user
must periodically update his credentials every time a
new epoch starts. The disadvantage of this method is
that users must renew their credentials and that the
revocation is never immediate. The credential gets re-
voked only after its lifetime expires and is not renewed.
Epochs of lifetime are one of the methods used by Iden-
tity Mixer.

• Accumulator Proofs [17, 28, 31, 35]: a user effi-
ciently proves that he is on a whitelist of non-revoked
users. In this case, if any user gets revoked, all other
users must re-compute their whitelist membership wit-
nesses. Therefore, the main disadvantage of this method
is that the users must periodically update their creden-
tial information from a central authority, thus cannot
stay completely offline.

• Verifiable Encryption of Secrets [25, 37, 38]: a
user-specific revocation handle or a user key is embed-
ded to each attribute proof in an encrypted form. The
verifier is able to check that the identifier is present
but is unable to decrypt. The decryption is done only
in justified cases by a separate revocation authority.
The verifier usually needs to interact with the revo-
cation authority during each credential proof verifi-
cation. Furthermore, the authority must be trusted
not to decrypt in unjustified cases. This approach is
therefore better suited for the de-anonymisation (in-
spection) than the revocation of users.

• Hash Chains [26, 42]: Nymble [26] was designed to
provide fast revocation primarily in anonymous net-
works, like TOR. Although Nymble provides anonymity,
unlinkability and backward anonymity, it lacks prop-
erties important for PABCs. In particular, Nymble
lacks pseudonym-credential binding, is not primarily
designed to support permanent revocation and inspec-
tion and is suitable rather for online applications than
smart-card-based ones because users need to obtain
and store unique pseudonyms for all their future trans-
actions (which is unrealistic with current smart-card
memory size). Nymble’s proving protocol has com-
putational complexity linear to the number of revoked
users and users need to communicate with a revocation
authority during all transactions (this was changed to
distributed blacklist updates in [42]).

• Combined Techniques [32, 43]: the scheme of Lueks
et al. [32] combines the epoch-based technique with the
blacklisting of revocation handles. It provides verifier-
local revocation (VLR) with constant verifiers’ and
users’ proving times. Nevertheless, the unlinkability
property is provided only if users prove their creden-
tials to the same verifier no more than once in an
epoch. At the same time, the revocation authority
must re-compute the revocation list for all verifiers in-
dividually in each epoch. Therefore, it is very difficult
to make epochs short enough so that the unlinkabil-
ity is truly achieved and the scheme remains practi-
cal at the same time. An extension presented in the
original paper allows full multi-show unlinkability but

suffers from vulnerabilities to attacks on credential in-
distinguishability. The scheme by Verheul [43] further
extends the idea of the global-mode revocation pre-
sented in [32] by adding the protection against the at-
tacks on the unlinkability property. Unfortunately, the
scheme retains the negative properties of the original
schemes and has unrealistic requirements on existing
computational devices, i.e., it requires bilinear pairing
on smart-cards and number of pairings at verifier’s side
that is linear to the number of all revoked credentials.

Each of these revocation techniques has its pros and cons
and is suitable for particular applications. However, none of
the existing schemes is able to simultaneously preserve all
the privacy-enhancing features of PABCs, be implemented
on offline constrained devices and be scalable enough to be
practically implemented in large-scale applications with mil-
lions of users and thousands of revoked users. This virtually
prevents PABCs from being used in applications such as na-
tional eIDs, public transportation and large physical access
control systems.

1.1 Our Contribution
In this paper, we propose the first revocation scheme com-

patible with existing PABC technologies that provides: 1)
verifier-local revocation (VLR) [5]: revocation of invalid users
that does not affect remaining users, 2) anonymity, selective
attribute disclosure, untraceability and unlinkability: all the
core privacy-enhancing features of PABCs, 3) user-, verifier-
and issuer-driven revocation: revocation that can be initi-
ated by all system entities, 4) scalability: the scheme can
be parametrized to suit applications with few or millions of
users, 5) speed: a verifier’s computational complexity is in-
dependent of the number of valid users in the system and
only logarithmic in the number of revoked users. Using fixed
system parameters, a user’s complexity is constant and good
enough for the implementation on existing smart-cards.

We achieve this by letting the user construct n unlinkable
pseudonyms, computed with a verifiable-random function
on input that is proven to be a member of a certain set.
The revocation authority can compute all n pseudonyms of
a user, which lets a verifier efficiently perform the revocation
check. This construction resembles the traceable signatures
by Chow [21], where it is used to let the group manager
efficiently find all signatures by one member.

We introduce a new efficient proof of knowledge of weak
BB-signatures which is of independent interest. We esti-
mate that computing the proof is twice as fast compared
to the existing proof of knowledge, and the prover does not
compute any pairings. These proofs-of-knowledge allow for
more efficient set membership proofs and range proofs, and
can be used to severely improve the efficiency of many ex-
isting works [9, 13, 21].

1.2 Paper Outline
In Sec. 2, we specify the notation and the main crypto-

graphic building blocks we use. In Sec. 3, we show the gen-
eral architecture of revocation based on n-times unlinkable
proofs and provide the security model. In Sec. 4, we present
our revocation scheme and prove its security. In Sec. 5, we
provide more details on implementation aspects, including
the choice of system parameters and performance analysis.

124

2. PRELIMINARIES
This section introduces the cryptographic preliminaries

used in our scheme. In addition, we present an improved
way of proving knowledge of a weak Boneh-Boyen signature,
which is of independent interest.

2.1 Notation
We describe proof of knowledge protocols (PK) using the

efficient notation introduced by Camenisch and Stadler [20].
The protocol for proving the knowledge of discrete logarithm
of c with respect to g is denoted as PK{α : c = gα}. The
proof of discrete logarithm equivalence with respect to dif-
ferent generators g1, g2 is denoted as PK{α : c1 = gα1 ∧ c2 =
gα2 }. The symbol “:” means “such that”, “|” means “divides”,
“|x|” is the bitlength of x and “x ∈R {0, 1}l” is a randomly
chosen bitstring of maximum length l. We write a ←$ A
when a is sampled uniformly at random from A.

We use signatures with efficient protocols [18, 2] as the
main building block in our scheme. Using these signature
schemes, one can prove knowledge of a signature and a mes-
sage such that the signature signs the message rather than
revealing the signature. This allows one to convince a veri-
fier that a message is signed multiple times in an unlinkable
manner. In the description of our revocation scheme, we use
a generic signature scheme with efficient protocols denoted
by Σ as a modular building block. We use Σ.KeyGen, Σ.Sign
and Σ.Verify to refer the to KeyGen, Sign and Verify al-
gorithms of Σ. Σ can be instantiated by, e.g., CL02 [18],
CL04 [19], or weak Boneh-Boyen signatures [4], where the
latter would yield the most efficient scheme.

2.2 Weak Boneh-Boyen Signature
Weak Boneh-Boyen signatures [4] are unforgeable against

a weak chosen message attack under the qSDH assumption.
A signature can only sign a single message, but are more
efficient and smaller in size than CL02 signatures. The sig-
nature cannot be randomized, but it does allow for efficient
proofs-of-knowledge.

Setup: input security parameter lq, generate groups G1 =
〈g1〉,G2 = 〈g2〉,GT = 〈e(g1, g2)〉 of prime order q : |q| = lq
with bilinear map e : G1 × G2 → GT . Take x ←$ Zq,
compute w = gx2 , and output sk = x as private key and
pk = (q,G1,G2,GT , g1, g2, e, w) as public key.

Sign: input message m ∈ Zq, pk, and sk, output σ = g
1

x+m
1 .

Verify : input the signature σ, m and pk, output 1 iff e(σ,w)·
e(σm, g2) = e(g1, g2) holds.

2.3 Set Membership and Range Proofs
Camenisch et al. [9] introduce a zero-knowledge proof to

prove m is part of a public set S = {m1, . . . ,ml}, denoted
SPK{(m) : m ∈ S}. They introduce an entity that uses a
signature scheme with efficient protocols to sign every ele-
ment of S and publishes these signatures. A prover proves
knowledge of a signature on m. By unforgeability of the sig-
nature scheme and soundness of the zero-knowledge proof,
this guarantees that m is in the set S. Camenisch et al.
instantiate the signature scheme with weak Boneh-Boyen
signatures [4].

One application of set membership proofs are range proofs.

By taking the set S as all numbers in a range, a prover can
prove that his witness lies in the range.

2.4 Zero-Knowledge Proofs for Boneh-Boyen
Signatures

Camenisch et al. [9] propose proving knowledge of a weak
Boneh-Boyen signature σ on m under key w = gx2 by taking
a random r ←$ Zq, σ′ ← σr and proving π ← SPK{(m, r) :
e(σ′, w) = e(σ′, g2)−me(g1, g2)r}. Computing proof (σ′, π)
takes one pairing operation and three exponentiation in G1,
verification requires two pairing computations and two ex-
ponentiations in GT .

We now present a more efficient way of proving knowl-
edge of a weak Boneh-Boyen signature: The prover takes
random r ←$ Z∗q , sets σ′ ← σr and σ̄ ← σ′−mgr1 . Prove π ←
SPK{(m, r) : σ̄ = σ′−mgr1}. A proof consists of (σ′, σ̄, π).
To verify, check σ′ 6= 1G1 , verify π ∈ SPK{(m, r) : σ̄ =
σ′−mgr1} and e(σ̄, g2) = e(σ′, w). Computing this proof
takes 5 exponentiations in G1. Verification requires two pair-
ings and three exponentiations in G1.

Note that our method does not require the prover to work
in G2 or GT , nor does it compute pairings. This severely
improves the efficiency and the ease of implementation. By
timing the primitive operations1, we expect that generating
our proof requires less than half of the time compared to the
original proof. In addition, it can be executed on smart cards
that support ECC, whereas it is currently hard to find smart
cards that support pairings. The verification cost increases
with less than five percent.

We must show that our proof is in fact a valid zero-
knowledge proof of knowledge of a weak Boneh-Boyen sig-
nature. We have two extra constraints: First, we can only
prove knowledge of signatures σ 6= 1G1 . An honest signer
only creates signatures equal to one with negligible prob-
ability. Second, a pair (ḡ, ḡx) ∈ G2

1 must be available to
the simulator in order to prove zero-knowledge. This con-
straint is easy to fulfill, the signer can simply create such a
pair and add it to his public key. Note that when reducing
the unforgeability of the weak BB signature to the qSDH
assumption, private key x is not known, but the qSDH in-
stance contains (g1, g

x
1), which allows for a pair (ḡ, ḡx) to be

simulated.

Lemma 2.1. Our construction forms a zero-knowledge proof
of knowledge of a weak Boneh-Boyen signature σ 6= 1G1 .

We prove this lemma in Appendix A.

3. REVOCATION USING N-TIMES UNLINK-
ABLE PROOFS

We use the standard architecture of PABC schemes in-
volving Users (U), Issuers (I), Verifiers (V) and the Revoca-
tion Authority (RA), as depicted in Fig. 1. The revocation
scheme creates a revocation handle, that will be placed as
an attribute in every credential of the PABC scheme. A user
presenting a PABC credential will also prove that the revo-
cation handle in his credential is not revoked. As demon-
strated by Camenisch et al. [12], a revocation scheme can
be seen as an extension to a PABC scheme. We analyze the
security of a revocation scheme individually.

1Measured using the IAIK ECCelerate library on 256-bit
Barreto-Naehrig Curves.

125

Figure 1: Architecture of standard PABC scheme
with revocation.

Our approach to revocation lets a user first go to the RA
to receive a revocation handle w, while the RA adds in-
formation to its list of revocation handles rh. A user can
create n unlinkable pseudonyms in each epoch2 using w and
prove that these are correctly formed. The RA can revoke
the user by computing all pseudonyms the user can make
using the information from rh, and placing the pseudonyms
on individual epoch’s revocation lists RLepoch. A verifier
performing a revocation check will check that a presented
pseudonym is not part of RLepoch. We first present the al-
gorithms in more detail, after which we present the security
definitions of a revocation scheme using n-times unlinkable
proofs.

3.1 Algorithms
A revocation scheme consists of algorithms IssuePseudonym,

ReceivePseudonym, ProvePseudonym, VerifyPseudonym and
Revoke. Other related algorithms, such as the IssueAt-

tribute and ProveAttribute, are marked grey in Fig. 1
and are not covered further in the text as existing PABC
schemes are expected to be used.

• (spar, pkRA, skRA) ←Setup(1K, n): inputs a security
parameter 1K and parameter n for the n-times unlink-
able proofs, outputs public system parameters spar
and a public key pkRA, and as RA’s private output a
private key skRA.

• (rh′)← IssuePseudonym(spar, skRA, rh) ↔
ReceivePseudonym(spar, pkRA) → (w): RA’s inputs
are the system parameters spar, the RA’s key skRA
and the list of revocation handles rh, the User’s inputs
are just the public parameters. The user’s output is the
revocation handle w3, that the user will use to create
the n-times unlinkable proofs. RA’s private output is
the updated list of revocation handles rh′.

• (C, π, c)←ProvePseudonym(spar, w, epoch, ctr): inputs
system parameters spar, a revocation handle w, a cur-
rent epoch identifier epoch, a counter ctr, and out-
puts a randomized pseudonym C, a commitment c, and

2A time period in which the revocation list gets updated.
3A unique revocation handle embedded into a credential as
an attribute. This same revocation handle would be placed
in every credential of the PABC scheme. The handle creates
the pseudonym - credential binding.

proof π that proves that the pseudonym and commit-
ment are correctly formed. Commitment c is a com-
mitment to revocation handle w, that will be used to
bind the revocation handle to the PABC scheme.

• (0/1)← VerifyPseudonym (spar, pkRA, C, π, c, epoch,
RLepoch): inputs system parameters spar, RA’s public
key pkRA, a pseudonym C with corresponding proof π
and commitment c, an epoch with corresponding re-
vocation list RLepoch and outputs 1 iff the pseudonym
and proof are valid, otherwise outputs 0.

• (RLepoch, rd
′, revoked′)←

Revoke(spar, rh, rd, {CR, epochR}, epoch, revoked): in-
puts system parameters spar, a revocation handle list
rh, a revocation database rd, pseudonym(s) for revo-
cation CR, their epoch identifiers epochR, next epoch
identifier epoch and the list of revoked handles revoked
and outputs the revocation list RLepoch for the next
epoch, the updated revocation database rd′ and the
updated list of revoked handles revoked′.

3.2 Security Model
As we take a new approach to revocation, the security

requirements cannot be captured by existing definitions for
revocation. For example, the definitions by Camenisch et
al. [16] require revocation privacy when the RA is corrupt.
Our revocation mechanism is based on the fact that the RA
can compute all pseudonyms that a user can make, so we
cannot guarantee privacy when the RA is corrupt. Further-
more, we use a revocation database rd that other revocation
schemes do not use, again requiring us to create a different
model.

Like Camenisch et al. [16], we have properties for revoca-
tion completeness, revocation soundness, and revocation pri-
vacy. Revocation completeness ensures that unrevoked users
will always pass the revocation check. Revocation soundness
states that whenever the RA is honest, users cannot claim to
have an unrevoked revocation handle when they are in fact
revoked. The adversary can play the role of corrupt users
and request pseudonyms through the OIssuePseudonym oracle,
revoke users using ORevoke, and move to the next epoch with
ONextEpoch. The adversary wins by creating a pseudonym and
proof that pass verification in the current epoch, although
the user is revoked. Revocation privacy ensures that honest
users do not lose privacy by proving they posess an unre-
voked revocation handle, when the RA is honest. Two hon-
est users are created, and through oracle OProvePseudonym the
adversary can request proofs of having an unrevoked revo-
cation handle. Finally the challenger outputs a proof by one
of the two honest users, and the adversary wins if he can
decide which user created this proof. The full definition is
presented in Fig. 2.

4. REVOCATION SCHEME
We now describe our instantiation of a revocation scheme

based on n-times unlinkable proofs. On a high level, we
limit the amount of pseudonyms a user can create by letting
users create pseudonyms using a pseudo-random function on
inputs from a limited set of ‘randomizers’. Zero-knowledge
proofs are used to prove that the pseudonyms are correctly
formed and the randomizers are taken from a set. In this
description, we let Σ denote a signature scheme with ef-
ficient protocols, i.e., there is an efficient zero-knowledge

126

Definition 3.1 (Revocation correctness). For every efficient adversary A, there exists a negligible function ν
such that the following holds:

Pr[VerifyPseudonym(spar, pkRA, C, π, c, epoch,RL) = reject :

(spar, (skRA, pkRA))← Setup(1κ, n),

rh← IssuePseudonym(spar, skRA, rh)↔ ReceivePseudonym(spar, pkRA)→ w,

ctr ← AO
IssuePseudonym,ORevoke,ONextEpoch

(spar, w), (C, π, c)← ProvePseudonym(spar, w, epoch, ctr)] ≤ ν(κ) ,

where the oracles OIssuePseudonym, ORevoke, and ONextEpoch are defined as follows.

OIssuePseudonym: On input (IssuePseudonym), the oracle runs algorithm rh∪{w} ← IssuePseudonym(spar, skRA, rh) with A
performing the user role. If the algorithm successfully terminates, the oracle updates rh← rh ∪ {w}.

ORevoke: On input (Revoke(wi)) with wi ∈ rh and wi 6= w, the oracle sets revoked ← revoked ∪ {wi} and runs
(RL, rd, revoked)← Revoke(spar, rh, rd, ∅, epoch, revoked).

ONextEpoch: On input (NextEpoch), the oracle increases epoch and runs (RL, rd, revoked) ←
Revoke(spar, rh, rd, ∅, epoch, revoked).

Definition 3.2 (Revocation soundness). For every efficient adversary A, there exists a negligible function ν such
that the following holds:

Pr[VerifyPseudonym(spar, pkRA, C, π, c, epoch,RL) = accept :

(spar, (skRA, pkRA))← Setup(1κ, n),ComOpenVf(c, w, o)

(C, π, c)← AO
IssuePseudonym,ORevoke,ONextEpoch

(spar, pkRA), w ∈ revoked] ≤ ν(κ) ,

where the oracles OIssuePseudonym, ORevoke, and ONextEpoch are defined as follows.

OIssuePseudonym: On input (IssuePseudonym), the oracle runs algorithm rh∪{w} ← IssuePseudonym(spar, skRA, rh) with A
performing the user role. If the algorithm successfully terminates, the oracle updates rh← rh ∪ {w}.

ORevoke: On input (Revoke(wi)) with wi ∈ rh, the oracle sets revoked ← revoked ∪ {wi} and runs (RL, rd, revoked) ←
Revoke(spar, rh, rd, ∅, epoch, revoked).

ONextEpoch: On input (NextEpoch), the oracle increases epoch and runs (RL, rd, revoked) ←
Revoke(spar, rh, rd, ∅, epoch, revoked).

Definition 3.3 (Revocation privacy). For every efficient adversary A there exists a negligible function ν such
that for every epoch and ctr ∈ Zn, the following holds:

Pr[b′ = b :

(spar, (skRA, pkRA))← Setup(1κ, n),

rh← IssuePseudonym(spar, skRA, ∅)↔ ReceivePseudonym(spar, pkRA)→ w0,

rh′ ← IssuePseudonym(spar, skRA, rh)↔ ReceivePseudonym(spar, pkRA)→ w1,

b ∈R {0, 1}, (C, π, c)← ProvePseudonym(spar, wb, epoch, ctr)

b′ ← AO
ProvePseudonym

(spar, pkRA, C, π, c)] ≤ ν(κ) ,

where oracle OProvePseudonym is defined as follows.

OProvePseudonym: On input (ProvePseudonym, b′′, epoch′, ctr′) the oracle runs algorithm
ProvePseudonym(spar, wb′′ , epoch′, ctr′). If the algorithm successfully terminates with output (C, π, c), the
oracle outputs (C, π, c). Queries with both epoch = epoch′ and ctr = ctr′ are ignored.

Figure 2: Our security model for revocation schemes.

127

proof of knowledge of a valid signature on a message. We
require Σ to be existentially unforgeable against known mes-
sage attacks [24]. We use a commitment scheme where
ComOpenVf(c,m, o) denotes checking that commitment c
opens to message m with opening o. Let H be a collision
resistant hash function.

4.1 Algorithm Instantiations

4.1.1 Setup(1K, n)

Choose system parameters (j, k) such that n = kj . Choose
a group G = 〈g〉 of prime order q : |q| = K. Choose ran-
dom elements (α1, . . . , αj) ←$ Zjq and compute gi = gαi

for all i = 1, . . . , j. Create a key pair for the signature
scheme (skRA, pkRA) ← Σ.KeyGen(1K) and choose a set of
so-called randomizers S = {e1, . . . , ek} with every e-value
ei ←$ Zq. Every ei is signed with σi ← Σ.Sign(skRA, ei).
Output the RA key pair (skRA, pkRA) and the public system
parameters spar = (g, q,G, k, j, (g1, . . . , gj), (α1, . . . , αj),Σ,
{(e1, σ1), . . . , (ek, σk)}).

4.1.2 IssuePseudonym(spar, skRA, rh)↔
ReceivePseudonym(spar, pkRA)

The RA chooses w ←$ Zq and adds w to the list of revoca-
tion handles rh′ ← rh∪ {w}. The RA receives output (rh′)
and the user receives output w.

4.1.3 ProvePseudonym(spar, w, epoch, ctr)

The user can only create kj unlinkable pseudonyms per
epoch, so if ctr ≥ kj , the user aborts. If ctr < kj , we
can view ctr as a k-ary number (ctr0, . . . , ctrj−1) with ctr =∑j−1
i=0 (ctri · ki). Every ctri will indicate which e-value to

use as the i-th randomizer. The pseudonym is computed as

C = g1/(w+
∑j−1
i=0 αiectri+H(epoch)). Then, the user constructs

a zero-knowledge proof π proving that the pseudonym is
formed correctly. This proof will be usually combined with
the ProveAttribute protocol of the PABC scheme so that
it is proven that also the credential contains the revocation
handle w as an attribute, thus the credential and pseudonym
are bound. We model this with commitment c, that commits
to the revocation handle. In practise, c could be instanti-
ated by the credential of the PABC scheme. Proof π also
proves that c is correctly formed. User outputs (C, π, c).
The ProvePseudonym algorithm is depicted in Fig. 3.

4.1.4 VerifyPseudonym(spar, pkRA, C, π, c, epoch, RLepoch)

Output 1 iffH(C) 6∈ RLepoch and the zero knowledge proof
is valid. By employing short hashes, the size of the revoca-
tion list updates and the revocation list itself remains ac-
ceptable, see Sec. 5 for details. Each time a verifier obtains
an attribute proof, he can check the public revocation list
and see if the pseudonym presented was revoked or not. This
operation (simple sorted list look-ups) is logarithmic in the
number of revoked users, thus computationally efficient even
for millions of revoked users. Concrete numbers and imple-
mentation details are presented in Sec. 5.

4.1.5 Revoke(spar, rh, rd, {CR, epochR}, epoch, revoked)

This algorithm is run before each epoch is started.
For every revocation handle w on the list rh, compute

hashes of all pseudonyms this user can create in this epoch,
by computing H(Ci) for i = 0, . . . , kj − 1 with Cctr =

= g1/(w+
∑j
l=1

αlectrl+H(epoch)) and (ctr1, . . . , ctrj) ∈ Zjk is

the k-ary expension of ctr. Create tuples of the hashed
pseudonym and its revocation handle w, and add all those
tuples to a sorted list rdepoch. Add rdepoch to a revocation
database rd′ ← rd∪{rdepoch}. This will allow the RA later
to find the revocation handle of a user given a pseudonym,
with minimal computational effort.

Although this might seem to be a costly procedure, we
show in the section devoted to implementation aspects (Sec. 5)
that both computational and storage requirements can eas-
ily be met using standard hardware.

For users that are being revoked, look upH(CR) in rdepochR
to find their revocation handle wR and add them to the list
of revoked handles revoked′ ← revoked ∪ {wR}.

For users with revocation handle w ∈ revoked′, add all
the computed hashed pseudonyms for the current epoch to
a sorted list RLepoch.

Output (RLepoch, rd
′, revoked′).

4.2 n-times Unlinkable Proofs
The revocation scheme presented in this paper is based on

a property we call n-times unlinkability. Given a small set
of signed public randomizers, a prover is able to construct
a large number of proofs for statements about discrete log-
arithms. Without the knowledge of witnesses and random-
izers, these proofs are provably unlinkable. However, the
entity knowing the witnesses is able to efficiently link all the
proofs. Similarly as we’ve employed the n-times unlinka-
bility to enhance credential schemes, our construction can
be further used in many other schemes based on the proof
of knowledge protocols, such as the identification schemes,
e-voting, e-cash, attestation schemes, etc.

4.3 Security Proof
We formally prove the security of our scheme in Appendix B.

5. IMPLEMENTATION ASPECTS
To prove that our scheme is practical even for large-scale

applications, we provide a detailed analysis of the scheme’s
complexity and discuss its performance on real devices in
this section. We let Σ be instantiated by weak Boneh-Boyen
signatures and use the proof of knowledge protocol from
Sec. 2.4.

5.1 Computational Requirements
The computational requirements of all algorithms are sum-

marized in Table 1. We considered billinear pairing (P),
scalar multiplication on elliptic curve (E) and table look-
ups (L), and omitted operations with minor computational
costs (such as hashes, random number generation, addition
and subtraction).

The IssuePseudonym ↔ ReceivePseudonym algorithm has
only small constant complexity as it requires only a random
number generation and its sharing.

The ProvePseudonym algorithm is the crucial part of the
scheme as it runs on constrained devices, such as smart-
cards. It involves no bilinear pairing and only a small num-
ber4 of EC multiplications. The computational complexity
does not depend on the number of all users in the system
nor the number of revoked users.

4The j parameter is usually between 1 and 4, see Sec. 5.3.3.

128

User Verifier
g, q,G,Σ, pkRA, epoch, RLepoch

α1, . . . , αj
g1 = gα1 , . . . , gj = gαj

(e1, σ1), . . . , (ek, σk)w
ctr = (ctr1, . . . , ctrj) ∈ Zjk
i =

∑j
l=1 αlectrl

C = g
1

w+i+H(epoch)

π = SPK{(w, i, ectr1 , . . . , ectrj , σctr1 , . . . , σctrj , o) :

gC−H(epoch) = Cw · Ci
∧

1 = g−i
∏j
l=1 g

ectrl
l

∧∧j
l=1 Σ.Ver(pkRA, σctrl , ectrl) = 1

∧
1 = ComOpenVf(c, w, o)}

ctr← ctr + 1 π,C, c
−−−−−−−−−−−−−−−−→ Check H(C) 6∈ RLepoch

Verify π

Figure 3: ProvePseudonym and VerifyPseudonym algorithms.

Table 1: Computational Requirements.
U RA V

IssuePseudonym 0P, 0E, 0L 0P, 0E, 0L -
ProvePseudonym (5j + 3)E - -
VerifyPseudonym - - 2jP

(4 + 3j)E
log(kj |UR|)L

Revoke - kj |U |E
log(kj |U |)L

-

|UR|: number of revoked users.
|U |: total number of users.
P: bilinear pairing operation e.
E: EC point scalar multiplication.
L: Look-ups: sorted table look-ups.

To verify a proof using the VerifyPseudonym algorithm,
a verifier must compute 2j pairings and a small number of
EC multiplications. To check user’s revocation status, a
verifier must do a number of revocation list look-ups that is
logarithmic in the number of revoked users. The revocation
check can be done also in constant time using associative
arrays.

The Revoke algorithm is run by RA once in an epoch.
To update the revocation database for a new epoch, a num-
ber of scalar point multiplications linear to the number of
all system users must be computed. Although this number
might get very high in large-scale applications, the computa-
tions can be easily finished in reasonable time using standard
hardware and available cryptographic libraries. We present
concrete numbers in Sec. 5.3.3. To revoke a user, a number
of a revocation database look-ups that is logarithmic in the
number of users must be computed.

Table 2: Storage Requirements.
U RA V

IssuePseudonym |spar|+ |q| |spar|+ |q| -
ProvePseudonym |spar|+

+j log2 k
- -

VerifyPseudonym - - |spar|+
+kj |UR||H|

Revoke - |spar|+
+kj |U ||H|T+
+|q||UR|

-

|UR|: number of revoked users.
|U |: total number of users.
|G1|: G1 element size.
|q|: G1 order size.
|H|: size of the hash used.
T : maximum number of epochs (credential lifetime).
|spar|: constant size of pre-shared system parameters.

5.2 Storage Requirements
The storage requirements of all algorithms are summa-

rized in Table 2.
The IssuePseudonym ↔ ReceivePseudonym algorithm re-

quires |q| bits of storage at both user and RA.
The ProvePseudonym algorithm requires to store the counter

and system parameters. The storage size is independent of
the number of users and revoked users.

The VerifyPseudonym algorithm needs to use a revocation
list. Its size is linearly dependent on the number of revoked
users. The size of the list remains in units of megabytes
even in large-scale applications, see Sec. 5.3.3 for concrete
numbers.

The Revoke algorithm requires RA to store hashes of all
pseudonyms in a revocation database rd. The size of rd
is linear to the number of all users, but acceptable, see
Sec. 5.3.3 for actual numbers. RA also needs to store the list
of revoked handles of size linear to the number of revoked
users.

129

5.3 Experiments

5.3.1 Parameters
The security parameter 1K specifies the order of the group.

We set this parameter to K = 160 and K = 224 in our
experiments, to match the ECRYPT security levels 4 and 6
[30].

The (j, k) parameters have a direct influence on how many
times a user’s pseudonym can be randomized during one
epoch. In our analysis, we consider (j = 2, k = 10). This
choice allows users to generate 102 = 100 pseudonyms per
epoch.

Based on regulations and recommendations on revocation
timing [40, 23], we chose an epoch to last one day.

To prove usability of our scheme in large-scale applica-
tions, we consider 8 million users and 10’000 revoked users.
That models a national eID system of a mid-size country.

Choosing 60-bit hashes results in collision probability of
around 10−9. We note that a hash collision causes false
rejection of a valid, non-revoked pseudonym, thus has effects
only on usability, not security.

Finally, we consider that users’ devices (smart-cards) are
issued for 4-year periods in which they remain completely
offline.

5.3.2 Hardware
We used an oldish mid-range server, namely the 2009 IBM

x3550 M2 with two Intel Xeon 2.27 GHz processors with
8 cores each and 32 GB RAM, to represent verifiers’ and
RA’s hardware. The smart-card selection was more diffi-
cult as only 3 out of our 19 programmable cards of all plat-
forms (JavaCard, Multos, BasicCard) supported the plain
EC scalar multiplication operation. We selected the NXP
JavaCard J3D081 [36] as it was the fastest one.

5.3.3 Speed
The speed of bilinear pairing (P) and scalar point multi-

plication (E) virtually determine the performance of our al-
gorithms as these operations have significantly higher (by or-
ders) complexity than others (including table look-ups used
only O(log(|U |))-times, resp. O(log(|UR|))-times)5 and be-
cause the scalar point multiplication is the most used opera-
tion in our scheme. We implemented the bilinear pairing op-
eration using the PBC library [33] and used the 160-bit and
224-bit pairing-friendly Barreto-Naehrig (BN) curves [1]. The
scalar point multiplication was implemented using a curve of
the same size and type, using the PBC library on the server
and ECDSA API on the smart-card. On the server, we used
pre-processing and parallel processing on all cores.

We note that the pairing operation was not benchmarked
on the card because currently it is not supported by any
card available on the market, is difficult to implement with-
out card manufacturer’s full technical support and, most
importantly, because our scheme does not require users to
do any pairing operation.

The results of our benchmarks are presented in Table 3.
We present the average of 10 runs for pairing and opera-
tions done on a smart-card. The time of multiplication on
the server is the average of 16 mil. runs (1 million multipli-
cations per CPU core).

5 As we consider 8 million users and 10’000 revoked users,
we have log(|U |) ≈ 23 and log(|UR|) ≈ 13.

Table 3: Benchmarks of Primitive Operations.
SC160 SC224 PC160 PC224

Pairing [ms] - - 1.94 3.25
Mult. [ms] 60 90 0.0102 0.0189

SC160: JavaCard with Fp160BN curve.
SC224: JavaCard with Fp224BN curve.
PC160: Server with Fp160BN curve.
PC224: Server with Fp224BN curve.

Table 4: Speed Estimates using Fp160BN curve.
User RA V

IssuePseudonym < 10 ms < 10 ms -
ProvePseudonym 780 ms - -
VerifyPseudonym - - 8 ms
Revoke - 137 min -

Using the results of benchmarks, we are able to estimate
the running times of the algorithms proposed. These num-
bers are presented in Tables 4 and 5, respectively.

Based on our measurement, we expect the time of prov-
ing a revocation status to get under 1 second using stan-
dard smart-cards. The revocation database re-computation
would take around 137 minutes. This operation is done only
once in an epoch and we stress that this task is fully par-
allelizable. The revocation database update is done at the
central RA, thus we expect much stronger server than the
obsolete one used in our benchmark.

5.3.4 Storage
All storage requirements are negligible considering space

available on current servers and smart-cards, except the re-
vocation database stored at RA and the revocation list dis-
tributed to verifiers.

The Revoke algorithm needs to store hashes of all pseudo-
nyms of all users. Using the formula from Table 2 and the
parameters of our mid-size country eID scenario, we get the
maximum of 8, 76 TB that needs to be stored at RA.

The Revoke algorithm also periodically produces the re-
vocation list containing the hashes of all pseudonyms of
revoked users, valid for the actual epoch. For our model
scenario, the revocation list will not exceed 7.5 MB. This
amount of data is shared by all verifiers and must be dis-
tributed by RA before each epoch starts.

6. CONCLUSION
In this paper, we addressed the problem of efficient re-

vocation of privacy-enhancing attribute-based credentials.
Until now, the revocation of attribute-based credentials has
been difficult in scenarios that expect large number of users
equipped with only offline, constrained devices, such as smart-
cards. We proposed the first revocation scheme that runs in

Table 5: Speed Estimates using Fp224BN curve.
User RA V

IssuePseudonym < 10 ms < 10 ms -
ProvePseudonym 1170 ms - -
VerifyPseudonym - - 13 ms
Revoke - 252 min -

130

short constant time at user’s side and in time logarithmic in
the number of revoked users at verifier’s side, using only of-
fline devices for storing credentials. Our revocation scheme
allows deploying attribute-based credentials in new appli-
cations in which the privacy protection has not been suffi-
ciently addressed yet, such as the public transportation, e-
ticketing and large-scale physical access control. As the next
step, we’ll focus on the optimization of the scheme based on
evaluation of additional signature schemes and on the ex-
perimental implementation on tamper-proof user devices.

7. ACKNOWLEDGEMENT
Research was supported by the Czech Science Foundation

project nr. 14-25298P “Research into cryptographic prim-
itives for secure authentication and digital identity protec-
tion”, the Technology Agency of the Czech Republic project
TA04010476 “Secure Systems for Electronic Services User
Verification”and the National Sustainability Program LO1401.
This work has been supported by the ERC under Grant
PERCY #321310. For the research, infrastructure of the
SIX Center was used.

8. REFERENCES
[1] Paulo S. L. M. Barreto and Michael Naehrig.

Pairing-Friendly Elliptic Curves of Prime Order,
pages 319–331. Springer Berlin Heidelberg, 2006.

[2] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and
Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In Proceedings of the 5th
Conference on Theory of Cryptography, TCC’08, pages
356–374. Springer-Verlag, 2008.

[3] Patrik Bichsel, Jan Camenisch, Thomas Groß, and
Victor Shoup. Anonymous credentials on a standard
java card. In Proceedings of the 16th ACM conference
on Computer and communications security, CCS ’09,
pages 600–610, New York, NY, USA, 2009. ACM.

[4] Dan Boneh and Xavier Boyen. Short signatures
without random oracles and the sdh assumption in
bilinear groups. Journal of Cryptology, 21(2):149–177,
2007.

[5] Dan Boneh and Hovav Shacham. Group signatures
with verifier-local revocation. In Proceedings of the
11th ACM conference on Computer and
communications security, pages 168–177. ACM, 2004.

[6] Stefan Brands. Untraceable off-line cash in wallets
with observers (extended abstract). In Proceedings of
the 13th Annual International Cryptology Conference
on Advances in Cryptology, CRYPTO ’93, pages
302–318, London, UK, 1994. Springer-Verlag.

[7] Stefan A. Brands. Rethinking Public Key
Infrastructures and Digital Certificates: Building in
Privacy. MIT Press, Cambridge, MA, USA, 2000.

[8] Ernie Brickell, Jan Camenisch, and Liqun Chen.
Direct anonymous attestation. In Proceedings of the
11th ACM Conference on Computer and
Communications Security, CCS ’04, pages 132–145,
New York, NY, USA, 2004. ACM.

[9] Jan Camenisch, Rafik Chaabouni, and abhi shelat.
Efficient protocols for set membership and range
proofs. In Josef Pieprzyk, editor, Advances in
Cryptology - ASIACRYPT 2008, pages 234–252.
Springer Berlin Heidelberg, 2008.

[10] Jan Camenisch, Manu Drijvers, and Anja Lehmann.
Anonymous attestation using the strong diffie hellman
assumption revisited. In Michael Franz and Panos
Papadimitratos, editors, TRUST 2016, pages 1–20.
Springer International Publishing, 2016.

[11] Jan Camenisch, Manu Drijvers, and Anja Lehmann.
Universally composable direct anonymous attestation.
In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, Public-Key
Cryptography – PKC 2016, pages 234–264, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[12] Jan Camenisch, Maria Dubovitskaya, Anja Lehmann,
Gregory Neven, Christian Paquin, and Franz-Stefan
Preiss. Policies and Research in Identity Management:
Third IFIP WG 11.6 Working Conference, IDMAN
2013, London, UK, April 8-9, 2013. Proceedings,
chapter Concepts and Languages for
Privacy-Preserving Attribute-Based Authentication,
pages 34–52. Springer Berlin Heidelberg, 2013.

[13] Jan Camenisch, Maria Dubovitskaya, and Gregory
Neven. Unlinkable priced oblivious transfer with
rechargeable wallets. In Radu Sion, editor, Financial
Cryptography and Data Security 2010, pages 66–81,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[14] Jan Camenisch and et Al. Specification of the identity
mixer cryptographic library. Technical report, IBM
Research - Zurich, 2010.

[15] Jan Camenisch, Markulf Kohlweiss, and Claudio
Soriente. Solving revocation with efficient update of
anonymous credentials. In Proceedings of the 7th
international conference on Security and cryptography
for networks, SCN’10, pages 454–471. Springer-Verlag,
2010.

[16] Jan Camenisch, Stephan Krenn, Anja Lehmann,
Gert Læssøe Mikkelsen, Gregory Neven, and
Michael Østergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. In Orr
Dunkelman and Liam Keliher, editors, Selected Areas
in Cryptography - SAC 2015, pages 3–24, Cham, 2016.
Springer International Publishing.

[17] Jan Camenisch and Anna Lysyanskaya. Dynamic
accumulators and application to efficient revocation of
anonymous credentials. In Proceedings of the 22nd
Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’02, pages 61–76,
London, UK, UK, 2002. Springer-Verlag.

[18] Jan Camenisch and Anna Lysyanskaya. A signature
scheme with efficient protocols. In Proceedings of the
3rd international conference on Security in
communication networks, SCN’02, pages 268–289.
Springer-Verlag, 2003.

[19] Jan Camenisch and Anna Lysyanskaya. Advances in
Cryptology – CRYPTO 2004, chapter Signature
Schemes and Anonymous Credentials from Bilinear
Maps, pages 56–72. Springer Berlin Heidelberg, 2004.

[20] Jan Camenisch and Markus Stadler. Advances in
Cryptology — CRYPTO ’97, chapter Efficient group
signature schemes for large groups, pages 410–424.
Springer Berlin Heidelberg, 1997.

[21] Sherman S. M. Chow. Real traceable signatures. In
Michael J. Jacobson, Vincent Rijmen, and Reihaneh
Safavi-Naini, editors, Selected Areas in Cryptography

131

2009, pages 92–107, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[22] Yevgeniy Dodis and Aleksandr Yampolskiy. Public
Key Cryptography - PKC 2005, chapter A Verifiable
Random Function with Short Proofs and Keys, pages
416–431. Springer Berlin Heidelberg, 2005.

[23] CAB Forum. Baseline requirements for the issuance
and management of publicly-trusted certificates
version 1.1.6.

[24] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest.
A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[25] Jan Hajny, Petr Dzurenda, and Lukas Malina.
Privacy-pac: Privacy-enhanced physical access control.
In Proceedings of the 13th Workshop on Privacy in the
Electronic Society, ACM CCS 2014, pages 93–96, New
York, NY, USA, 2014. ACM.

[26] Peter C. Johnson, Apu Kapadia, Patrick P. Tsang,
and Sean W. Smith. Nymble: Anonymous ip-address
blocking. In Privacy Enhancing Technologies, 7th
International Symposium, PET 2007 Ottawa, Canada,
June 20-22, 2007, Revised Selected Papers, pages
113–133, 2007.

[27] Jorn Lapon. Anonymous Credential Systems: From
Theory Towards Practice (Anonieme credential
systemen: van de theorie naar de praktijk). PhD
thesis, Informatics Section, Department of Computer
Science, Faculty of Engineering Science, July 2012. De
Decker, Bart (supervisor), Naessens, Vincent
(cosupervisor).

[28] Jorn Lapon, Markulf Kohlweiss, Bart De Decker, and
Vincent Naessens. Performance analysis of
accumulator-based revocation mechanisms. In Kai
Rannenberg, Vijay Varadharajan, and Christian
Weber, editors, Security and Privacy – Silver Linings
in the Cloud, volume 330 of IFIP Advances in
Information and Communication Technology, pages
289–301. Springer Berlin Heidelberg, 2010.

[29] Jorn Lapon, Markulf Kohlweiss, Bart Decker, and
Vincent Naessens. Communications and Multimedia
Security: 12th IFIP TC 6 / TC 11 International
Conference, CMS 2011, Ghent, Belgium, October
19-21,2011. Proceedings, chapter Analysis of
Revocation Strategies for Anonymous Idemix
Credentials, pages 3–17. Springer Berlin Heidelberg,
2011.

[30] Katholieke Universiteit Leuven. Ecrypt ii yearly
report on algorithms and keysizes. ”http://www.
ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf”.

[31] Zi Lin and Nicholas Hopper. Jack: scalable
accumulator-based nymble system. In Proceedings of
the 2010 ACM Workshop on Privacy in the Electronic
Society, WPES 2010, Chicago, Illinois, USA, October
4, 2010, pages 53–62, 2010.

[32] Wouter Lueks, Gergely Alpár, Jaap-Henk Hoepman,
and Pim Vullers. Fast revocation of attribute-based
credentials for both users and verifiers. In ICT
Systems Security and Privacy Protection - 30th IFIP
TC 11 International Conference, SEC 2015, Hamburg,
Germany, May 26-28, 2015, Proceedings, pages
463–478, 2015.

[33] Ben Lynn. The pairing-based cryptography library.
https://crypto.stanford.edu/pbc/.

[34] Wojciech Mostowski and Pim Vullers. Security and
Privacy in Communication Networks: 7th
International ICST Conference, SecureComm 2011,
London, UK, September 7-9, 2011, Revised Selected
Papers, chapter Efficient U-Prove Implementation for
Anonymous Credentials on Smart Cards, pages
243–260. Springer Berlin Heidelberg, 2012.

[35] Lan Nguyen. Accumulators from bilinear pairings and
applications. In Alfred Menezes, editor, Topics in
Cryptology CT-RSA 2005, volume 3376 of Lecture
Notes in Computer Science, pages 275–292. Springer
Berlin / Heidelberg, 2005.

[36] NXP. P5cd016/021/041 and p5cx081 family.
http://cache.nxp.com/documents/data sheet/
P5CD016 021 041 Cx081 FAM SDS.pdf.

[37] Tatsuaki Okamoto and Shigenori Uchiyama. Advances
in Cryptology — EUROCRYPT’98, chapter A new
public-key cryptosystem as secure as factoring, pages
308–318. Springer Berlin Heidelberg, 1998.

[38] Pascal Paillier. Advances in Cryptology —
EUROCRYPT ’99, chapter Public-Key Cryptosystems
Based on Composite Degree Residuosity Classes,
pages 223–238. Springer Berlin Heidelberg, 1999.

[39] Christian Paquin. U-prove cryptographic specification
v1.1. Technical report, Microsoft Corporation, 2011.

[40] European Parliament. Regulation (eu) no 910/2014 of
the european parliament and of the council of 23 july
2014 on electronic identification and trust services for
electronic transactions in the internal market and
repealing directive 1999/93/ec.

[41] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and
Sean W. Smith. Blacklistable anonymous credentials:
Blocking misbehaving users without ttps. In
Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS ’07, pages 72–81,
New York, NY, USA, 2007. ACM.

[42] Patrick P. Tsang, Apu Kapadia, Cory Cornelius, and
Sean W. Smith. Nymble: Blocking misbehaving users
in anonymizing networks. IEEE Trans. Dependable
Sec. Comput., 8(2):256–269, 2011.

[43] Eric R. Verheul. Practical backward unlinkable
revocation in fido, german e-id, idemix and u-prove.
IACR Cryptology ePrint Archive, 2016:217, 2016.

[44] Pim Vullers and Gergely Alpár. Policies and Research
in Identity Management: Third IFIP WG 11.6
Working Conference, IDMAN 2013, London, UK,
April 8-9, 2013. Proceedings, chapter Efficient
Selective Disclosure on Smart Cards Using Idemix,
pages 53–67. Springer Berlin Heidelberg, 2013.

132

http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf
http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf
https://crypto.stanford.edu/pbc/
http://cache.nxp.com/documents/data_sheet/P5CD016_021_041_Cx081_FAM_SDS.pdf
http://cache.nxp.com/documents/data_sheet/P5CD016_021_041_Cx081_FAM_SDS.pdf

APPENDIX
A. PROOF OF LEMMA 2.1

First, we now prove Lemma 2.1, i.e., we show that our
proof of knowledge of weak Boneh-Boyen signatures is a
valid proof of knowledge.

Proof. Completeness If σ 6= 1G1 , we have σ′ 6= 1G1 .
The verification of π will pass by completeness of the
underlying zero-knowledge proof. The final check e(σ̄, g2) =
e(σ′, w) also passes:

e(σ̄, g2) = e(σ′−mgr1 , g2)

= e(g
r− rm

x+m
1 , g2)

= e(g
rx
x+m
1 , g2)

= e(g
r

x+m
1 , gx2)

= e(σ′, w)

Soundness By soundness of proof π, we can extract (m, r)
such that σ̄ = σ′−mgr1 . By e(σ̄, g2) = e(σ′, w), we have

σ̄ = σ′x, giving σ′x · σ′m = gr1 , so σ′ = g
r

x+m
1 . As we

have σ′ 6= 1G1 , we know that r 6= 0, so we can compute

σ ← σ′
1
r to extract a weak BB signature on m.

Zero-Knowledge To simulate a proof of knowledge of a
signature on m, use the pair (ḡ, ḡx) ∈ G2

1. Take r ←$ Z∗q
and set σ′ ← ḡr, σ̄ ← (ḡx)r, and simulate π. Note that
(σ′, σ̄) are distributed as in a real proof: σ′ is uniform
in G∗1 and σ̄ = σ′x. Use the simulator of π to complete
the simulated proof.

B. SECURITY PROOF
We now prove that our revocation scheme is revocation

correct, revocation sound, and revocation private.

Theorem B.1. Our revocation scheme is revocation cor-
rect, as defined in Def. 3.1, in the random oracle model.

Proof. We must prove that an honestly generated proof
of non-revocation will pass verification, even when other po-
tentially corrupt users are revoked, which we prove using a
sequence of games.

Game 1: The challenger runs (spar, (skRA, pkRA)) ←
Setup(1κ), then runs rh ← IssuePseudonym(spar, skRA, rd)
↔ ReceivePseudonym(spar, pkRA)→ w, and sets (C, π, c)←
ProvePseudonym(spar, w, epoch, ctr). It gives spar and w to
the adversary, simulates the random oracle honestly, and
answers the queries honestly. This is the real experiment.

Game 2: The challenger now aborts when it detects a
hash collision. In the random oracle model, this probability
is negligible, so Game 2 ≈ Game 1.

Game 3: The challenger now aborts when H(C) is equal
to one of the elements in H(C′) ∈ RL. By Game 2, we now
that this only occurs when C = C′ for some C′.

Upon an ORevoke query, one wi ∈ rh is revoked and all cor-
responding pseudonyms are added to RL: For every (ctr0,

. . . , ctrj−1) ∈ Zjk, C′ = g

1

wi+H(epoch)+
∑j
i=0

αiectri
1 . Since

wi ∈ rh and every wi ∈ rh is taken uniformly at random

from Zq, the probability that for some C′ we have C′ = C
is negligible.

Game 4: Verification of (C, π, c) consists of verifying π and
checking H(C) 6∈ RL. Proof π is valid by construction, and
by Game 3, we cannot have H(C) ∈ RL, so completeness
holds.

Theorem B.2. Our revocation scheme is revocation sound,
as defined in Def. 3.2, assuming Σ is existentially unforge-
able against a known message attack, in the random oracle
model.

Proof. Suppose an adversary A can win the revocation
soundness game, then we can break the existential unforge-
ability of Σ with a known-message attack.

The challenger receives public key pkRA from the unforge-
ability game. From the unforgeability game, the challenger
receives a list {(e1, σ1, . . . , (ek, σk))}, which it uses as the sig-
natures in spar. When the adversary outputs (C, π, c) with
VerifyPseudonym(spar, pkRA, C, π, c, epoch,RL) = accept, we
know that π is valid and H(C) 6∈ RL. From π we can ex-
tract (w, e1, . . . , ej , σ1, . . . , σj) by rewinding such that C =

g
1

w+H(epoch)+
∑
αiectri

1 , Σ.Ver(pkRA, σi, ei) = 1 for i = 1, . . . , j,
and w ∈ revoked. By w ∈ revoked and H(C) 6∈ RL, at least
one of the e-values used must not be taken from spar, be-
cause when w was revoked, all possible pseudonyms with the
e-values from spar were computed and added to RL. This e-
value and corresponding signature σ lets the challenger win
the existential unforgeability game.

Theorem B.3. Our revocation scheme is revocation pri-
vate, as defined in Def. 3.3, under the l-DBDHI assumption
in the random oracle model.

Proof. To show that the adversary has a negligible ad-
vantage guessing b, we use a sequence of games in which the
final game is independant of b.

Game 1: First, the challenger honestly performs the pro-
tocol and answers oracle queries correctly.

Game 2: Now, the challenger simulates the zero-knowledge
proofs π part of the challenge (C, π, c).

Game 3: Next, pseudonym C from the challenge is taken as
a random element in G1 in ProvePseudonym. By the pseudo-
randomness of the Dodis-Yampolskiy VRF [22] (which holds
under the l-DBDHI assumption), no adversary can notice
this change. Note that as the credential has a limited life-
time, l will be bounded by a constant.

Game 4: Finally, we let c commit to a random value w′ ←$

Zq. By the hiding property of the commitment scheme, this
change is not noticeable. Now, the game is independant
of the choice of b, showing that no adversary can have a
nonnegligible advantage of guessing b correctly.

133

	Introduction
	Our Contribution
	Paper Outline

	Preliminaries
	Notation
	Weak Boneh-Boyen Signature
	Set Membership and Range Proofs
	Zero-Knowledge Proofs for Boneh-Boyen Signatures

	Revocation Using n-times Unlinkable Proofs
	Algorithms
	Security Model

	Revocation Scheme
	Algorithm Instantiations
	Setup(1K, n)
	IssuePseudonym(spar, skRA, rh) ReceivePseudonym(spar, pkRA)
	ProvePseudonym(spar, w, epoch, ctr)
	VerifyPseudonym(spar,pkRA, C, , c, epoch, RLepoch)
	Revoke(spar, rh, rd, {CR, epochR}, epoch, revoked)

	n-times Unlinkable Proofs
	Security Proof

	Implementation Aspects
	Computational Requirements
	Storage Requirements
	Experiments
	Parameters
	Hardware
	Speed
	Storage

	Conclusion
	Acknowledgement
	References
	Proof of Lemma 2.1
	Security Proof

