
CPPL: Compact Privacy Policy Language

Martin Henze, Jens Hiller, Sascha Schmerling, Jan Henrik Ziegeldorf, Klaus Wehrle
Communication and Distributed Systems, RWTH Aachen University, Germany

{henze, hiller, schmerling, ziegeldorf, wehrle}@comsys.rwth-aachen.de

ABSTRACT
Recent technology shifts such as cloud computing, the In-
ternet of Things, and big data lead to a significant transfer
of sensitive data out of trusted edge networks. To counter
resulting privacy concerns, we must ensure that this sen-
sitive data is not inadvertently forwarded to third-parties,
used for unintended purposes, or handled and stored in vio-
lation of legal requirements. Related work proposes to solve
this challenge by annotating data with privacy policies be-
fore data leaves the control sphere of its owner. However,
we find that existing privacy policy languages are either not
flexible enough or require excessive processing, storage, or
bandwidth resources which prevents their widespread de-
ployment. To fill this gap, we propose CPPL, a Compact
Privacy Policy Language which compresses privacy policies
by taking advantage of flexibly specifiable domain knowl-
edge. Our evaluation shows that CPPL reduces policy sizes
by two orders of magnitude compared to related work and
can check several thousand of policies per second. This al-
lows for individual per-data item policies in the context of
cloud computing, the Internet of Things, and big data.

1. INTRODUCTION
Cloud computing, the Internet of Things (IoT), and big

data lead to an increasingly interconnected world, where new
data sources continuously emerge [16,21]. This is accompa-
nied with a massive growth in the amount of data, funda-
mentally changing data processing: the prevalence of local
processing is superseded by processing data outside of the
territory of data owners. Besides enormous benefits such as
availability, scalability, and cost efficiency, we also face se-
vere privacy challenges [16,17,29,35,38]: Sensitive data that
is transferred out of trusted networks might be inadvertently
forwarded to third-parties, used for unintended purposes, or
handled violating legal requirements. These privacy con-
cerns, missing trust, and legal restrictions on data handling
prevent a wide range of users and companies to fully embrace
the advantages of an interconnected world [18,29].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WPES’16, October 24, 2016, Vienna, Austria
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4569-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994620.2994627

Current state of the art, i.e., legal text dictating pri-
vacy policies by providers, can no longer sufficiently ad-
dress these concerns as the massive growth in the amount
of data is accompanied by a significant increase of diver-
sity of data sources [3] and high granularity of reported
data [21]. To account for this development, related work
proposes to attach per-data item privacy policies (also re-
ferred to as sticky policies) to data before it leaves trusted
networks [15,18,28,30,34]. Instead of having a provider dic-
tate a privacy policy for all users, per-data item policies en-
able each user to specify her own privacy requirements which
then have to be enforced by the provider. Such policies en-
able the user to express her individual privacy requirements
down to the level of specific data items. For example, read-
ings of personal medical devices should be treated differently
from much less sensitive readings of personal weather sta-
tions. This combination of user-centricity and granularity
empowers users to effectively remain in control over their
data, even if it leaves their physical control.

To realize such fine-granular user-centric policies, related
work introduced a wide range of policy languages, either
generic or specifically tailored for a specific scenario, e.g., in
the area of accounting, banking, handling of insurance in-
formation, or processing of medical data of patients. These
range from policies for realizing access control [11, 13] over
complete data handling policies [1,36] to digital rights man-
agement [20]. However, we identify two severe drawbacks of
these languages when applying them in an interconnected
world: (i) they are either limited in scope and do not pro-
vide the necessary expressiveness and flexibility required by
increasingly dynamic scenarios and evolving perceptions of
privacy, or (ii) they consume excessive processing, storage,
or bandwidth resources which becomes prohibitive when con-
sidering the frequent exchange of rather small data, e.g., in
the context of the IoT. This issue further exacerbates with
recent proposals of attaching policies to individual network
packets to realize policy-based routing [25].

To overcome these shortcomings and hence offer support
for fine-granular user-centric policies in an interconnected
world, we propose to introduce a domain specific compres-
sion step before sending a policy over the network. To this
end, we incorporate flexibly specifiable domain knowledge to
realize an efficient bit-level compression. More specifically,
our contributions in this paper are:
1. We analyze the deployment and network scenarios in an

increasingly interconnected world as well as the suitability
of privacy policy languages proposed by related work to
address emerging requirements in these scenarios. Based

99

on our analysis, we find a mismatch between the commu-
nication patterns in such networks and the characteristics
of existing privacy policy languages.

2. We present CPPL, a Compact Privacy Policy Language
designed for the dynamic and high-frequent characteris-
tics of increasingly interconnected networks. CPPL com-
presses a textual policy specification and an interchange-
able domain specification allows us to adapt the domain
specific compression to any (even as yet unknown future)
deployment and network scenarios.

3. To illustrate the feasibility of CPPL, we first perform syn-
thetic benchmarks and then compare CPPL with other
privacy policy languages. Furthermore, we showcase the
applicability of CPPL in the context of cloud computing,
the IoT, and big data. Our results show that CPPL is
able to reduce policy sizes by two orders of magnitude
compared to related work and process several thousand
of policies per second in real-world settings.

2. PRIVACY POLICIES IN AN INTERCON-
NECTED WORLD

On our path to an interconnected world, users’ personal
spheres are inevitably penetrated and support for fine-gran-
ular user-centric privacy policy languages becomes a crucial
challenge. In this section, we outline our targeted scenario
and derive requirements that we argue must be addressed
by any viable solution. We then rigorously analyze exist-
ing policy languages with respect to these requirements and
identify different short-comings that render existing work
inapplicable in this scenario.

2.1 Scenario
In this paper, we consider scenarios where data is trans-

ferred out of the data owner’s control sphere to back-end
infrastructures as shown in Figure 1. This scenario is com-
monplace in cloud computing already today, but even more
in the IoT vision of an interconnected world. An IoT home
automation system, e.g., might transfer raw sensor data to
a cloud back-end to infer a user’s presence and activity for
optimal control of HVAC appliances. With the upcoming
trend of big data, masses of data will be used to derive
novel insights. These scenarios all have in common that,
while considering huge amounts of data in total, individual
data pieces are comparably small. For example, single IoT
measurements can be as small as 72 byte (cf. Section 4.3).
When transferring this data out of data owners’ control, it
becomes subject to (overlay) routing, processing, and stor-
age operations in the back-end infrastructure. Performing
these operations outside the control sphere of users raises
severe privacy concerns [29, 35, 38]. Ultimately, this results
in a complete loss of control over own data [16,18,19,22].

To overcome these concerns, one promising approach in
related work is to attach per-data item privacy policies (also
referred to as sticky policies) to data before it leaves the
control sphere of the user [15, 18, 28, 30, 34] as depicted in
Figure 1. Privacy policies are thus imposed by the data
owner and are binding for all entities involved in handling
the data in the back-end infrastructure outside the control of
the data owner. More specifically, data is only allowed to be
routed to, processed on, and stored at nodes in the back-end
fulfilling the privacy policy imposed by the data owner. Cou-
pling of data and policy ensures continuous availability of

Figure 1: When data leaves the control sphere of the
data owner, per-data item policies empower her to
influence routing, processing, and storage decisions.

the policy. Alternative approaches such as per-stream poli-
cies [27, 37] lack support for the emerging federated clouds
which distribute data among several cloud providers. Fur-
thermore, existing data integrity protection mechanisms can
easily be extended to the privacy policy to prevent inad-
vertent changes to privacy policies during transmission or
data handling. In the context of this work, our aim is a
functional improvement of the status quo by reducing pol-
icy sizes to feasible magnitudes for an interconnected world.
We deliberately do not focus on the orthogonal problem of
enforcing policies, i.e., providing (formal) guarantees that
nodes adhere to policies. As CPPL does not change the se-
mantics of policy languages, existing solutions that propose
cryptographic guarantees [20, 23], tracking data flows [28],
or creating audit logs [32] to enforce policies do still apply.

2.2 Requirements
The machine-readable formalization of privacy policies is

called privacy policy language. In the following, we de-
rive key requirements for any privacy policy language for
the above described scenario where (potentially small) data
leaves the control sphere of the data owner, e.g., in the con-
text of cloud computing and the Internet of Things.
Minimal Storage Footprint. As privacy policies are at-
tached to data and travel with it through the network, they
add transmission and storage overhead. It is thus paramount
that privacy policy languages minimize storage footprint.
Efficient Policy Checking. Privacy policies are evaluated
at numerous times, e.g., relocation or replication and pro-
cessing of data. Hence, the overhead for checking if a policy
matches with the properties of a node must be minimized.
Expressiveness. We identify a large spectrum of expecta-
tions for handling of data: (i) restriction of storage location
to a certain country, (ii) deletion of a data item at a speci-
fied point in time, (iii) logging or notification when data is
accessed by a third party, or (iv) replication rate of data to
ensure availability [15, 29]. A policy language must provide
the ability to express expectations for these various kinds of
data handling. This requires support of environmental con-
text, e.g., awareness of storage location or replication rate,
time-based triggers to specify the point in time for an action
such as deletion, and event-based triggers to initiate actions
when an event such as data access occurs [1].
Extendibility. In an interconnected world, new services
and application scenarios together with novel privacy re-
quirements emerge continuously. Thus, a policy language
needs to be extendable such that it can be easily adapted to
the individual requirements of new deployment domains.

100

Incremental Deployment. A new privacy policy lan-
guage should be conceptually compatible with existing lan-
guages to integrate legacy deployments and ease transition.
Matching. A privacy policy language must support the
matching between the privacy expectations of a user and
what service providers offer. To this end, service operators
must also be able to specify what their nodes technically
provide and match this with user expectations.

2.3 Analysis of Privacy Policy Languages
In this section, we analyze (privacy) policy languages from

related work with respect to our scenario and requirements.
We summarize the results of our analysis in Table 1.

XACML [11] is a completely XML-based language for
specifying access control policies. XACML is extendible
to new requirements and use cases, but has an excessive
storage footprint which requires applying separate compres-
sion [14]. Additionally, XACML has no support for trig-
gers. PPL [6] and A-PPL [2,8] extend XACML with support
of triggers, environmental context, credential-based access,
and a matching procedure. Henze et al. [15] propose to ex-
tend PPL with triggers for storage duration and location.

Likewise based on XML, PERFORM [9] targets the sce-
nario of pervasive computing. Policies in PERFORM specify
actions as request/response pairs and limit these with the
help of constraints. Its awareness of environmental context
affords a good basis for expressiveness. However, it does not
support triggers thus, e.g., not supporting access notifica-
tions or specification of data deletion at a certain date.

Rei [24] also targets pervasive computing and supports
specification of rights, prohibitions, obligations, and dispen-
sations. Expressiveness of policies profits from awareness of
environmental context but lacks support for triggers thus
facing the same limitations as PERFORM in our scenario.
Furthermore, the size of resulting policies is not considered.

Garcia-Morchon et al. [13] propose an access control pol-
icy language for medical sensor networks. The resource
constraints in this environment demand for a concise rep-
resentation of policies. To this end, they specify policies in
Boolean formulas represented as binary trees and efficiently
stored in byte-level encoding. However, they explicitly fo-
cus on medical contexts which limits the generalizability
of their language. Furthermore, matching of user expec-
tations with provider-offers is unnecessary for their scenario
but paramount in more general scenarios.

Ali et al. [1] describe an obligation language and a frame-
work to enable privacy-aware service oriented architectures.
Their language supports the specification of obligations, can
evaluate the environmental context, and supports time- as
well as event-based triggers. However, it misses a mechanism
to match offers of a node with expectations formulated by a
user [1], lacks an efficiency analysis, and does not consider
a storage efficient representation of the formal language.

OSL [20] is a policy language for distributed usage control.
In contrast to other languages, OSL partially supports the
enforcement of policies by translating them into the DRM
languages ODRL and XrML and then employing existing
enforcement mechanisms. However, its performance remains
unclear and no attention is paid to the storage footprint.

C 2L [32] is a highly specialized language for restricting
the location and migration of virtual machines (VMs) in the
context of cloud computing. A typed spatio-temporal logic
enables enforcement of policies by rerunning the evaluation

st
or

ag
e
fo

ot
pr

in
t

effi
ci
en

cy

ex
pr

es
si
ve

ne
ss

ex
te

nd
ib

ili
ty

de
pl

oy
m

en
t

m
at

ch
in

g

XACML [11] + extensions ∼ + + ∼ +

PERFORM [9] ∼ ∼ −
Rei [24] − ∼ + −
Garcia-Morchon [13] + ∼ − −
Ali [1] ∼ + − −
OSL [20] ∼ ∼ ∼ +

C2L [32] ∼ ∼ ∼ − −
S4P [4] ∼ +

FLAVOR [36] ∼ + ∼ −

Table 1: Comparison of existing privacy policy lan-
guages. A language fulfills (+), partially fulfills (∼),
or does not fulfill (−) a requirement. Empty fields
denote missing information.

engine on the history of placement and migration of VMs.
Hence, users are limited to a posteriori checking if a given
history contradicts against a policy. Furthermore, the lan-
guage is limited to the context of VM placement and thus
does not provide sufficient expressiveness for the various ap-
plications in an interconnected world. Finally, matching of
user expectations with provider-offers is not considered.

S4P [4] focuses on matching privacy policies of users to
those of service providers. To this end, S4P policies are
specified in first-order function-less signatures and policies of
users and service providers are compared using formal meth-
ods. This approach aims at realizing functionality and does
not consider minimizing storage or processing overheads.

FLAVOR [36] focuses on legal rules which define conse-
quences for infringements. To this end, FLAVOR does not
only specify which policy a system should adhere to, but also
which actions have to be taken if a posteriori verification de-
tects a policy breach. FLAVOR’s logic expressions enable
specification of obligations with deadlines, triggers for exter-
nal events, and context information. However, while focus-
ing on a posteriori verification it does not consider matching
of expectations and offerings of a service provider. Moreover,
the storage overhead of a policy is not addressed.

To conclude, our analysis shows that no existing policy
language supports all requirements for fine-grained privacy
protection in an increasingly interconnected world. Most
notably, existing languages either do not achieve a suffi-
ciently small storage size to enable policies on item level or
do not provide the necessary expressiveness and extendibil-
ity to cope with future, yet unknown privacy requirements.
Furthermore, most existing works do not consider the im-
portance of matching efficiency although it determines ap-
plicability for various upcoming scenarios, e.g., in the IoT.

3. INTRODUCING A COMPACT PRIVACY
POLICY LANGUAGE

In an interconnected world, fine-granular user-centric pri-
vacy policies are a practical and much-needed solution for
users to stay in control over their data. The main goal of this
paper is to fill the identified gap between the requirements
for privacy policies (Section 2.2) and the existing works (Sec-

101

Figure 2: The core idea of CPPL is the compres-
sion of privacy policies through incorporating flexi-
bly specifiable domain knowledge.

tion 2.3). Most notably, we require a high level of expres-
siveness and a minimal storage footprint at the same time.

To achieve this, we present CPPL, our Compact Privacy
Policy Language which relies on a two-step approach: First,
a privacy policy is specified in a human-readable represen-
tation (as in related work). Here, we derive a policy repre-
sentation that is as expressive as related work. In a second,
novel step, we compress this policy by taking advantage of
flexibly specifiable domain knowledge. Any further process-
ing of the privacy policy, e.g., interpretation at nodes in the
network, takes place directly on the compressed policy.

We depict an overview of our core design idea behind
CPPL in Figure 2. Here, a user defines her privacy policy
in a human-readable representation, possibly using a GUI
or an editor. Our policy compressor uses this representation
and a set of domain parameters to derive the compressed
policy. The domain parameters define a CPPL dialect for
a specific application scenario or deployment domain and
define the variables and values that can be expressed in a
privacy policy. Each dialect is specified by a central entity,
e.g., a standardization organization. When interpreting a
policy, CPPL uses the compressed policy, the domain pa-
rameters, and node capabilities of the node in question to
evaluate whether the policy can be fulfilled by this node.

The design of CPPL has three main parts: (i) the speci-
fication of policies (in human-readable form), (ii) the com-
pression of policies, and (iii) the interpretation of policies.

We provide a complete example of CPPL’s specification,
compression, and interpretation of policies in Appendix A.

3.1 Specification of Policies
For our specification of policies, we observed a common

pattern in related work: Policies typically specify rules that
list allowed (or forbidden) actions and individual rules can
be combined using conjunction or disjunction. Hence, CPPL
allows users to express their privacy policies as policy atoms
(e.g., location = "DE") which are connected via Boolean
algebra. Our limitation to simple Boolean algebra is delib-
erate, since it enables even non-expert users to determine
the meaning of a policy. However, CPPL is not inherently
bound to this specification and can also work with other
policies, e.g., XACML [11] and its derivates. Hence, with
CPPL we do not propose a conceptually new policy lan-
guage (in terms of what can be expressed) but rather show
how to combine the concepts of existing policy languages
with domain knowledge to achieve huge policy size savings.

We depict an example of CPPL’s human-readable policy
specification in Listing 1. In this example, data must not be
stored at CompanyA, access to data must be logged, data
has to be deleted after a certain point in time, backups have
to be kept for one month, and the replication factor must be

provider != "CompanyA"
& log_access = true
& deleteAfter(1735693210)
& backupHistory("1M")
& replication >= 2
& (location = "DE"

| (location = "EU" & encryption = true)
)

Listing 1: Example of CPPL’s human-readable pol-
icy that restricts co-location, location, and lifetime.
It also enforces logging, backups, replication, and,
depending on the location, encryption of the corre-
sponding data item.

R → varbool ; !varbool
R → varnum = valuenum ; varnum 6= valuenum ;

varnum < valuenum ; varnum ≤ valuenum ;
varnum > valuenum ; varnum ≥ valuenum

R → varstring = valuestring ; varstring 6= valuestring
R → varenum = valueenum ; varenum 6= valueenum
R → func(par1, ...,parN) ; !func(par1, ...,parN)
F → R ; !F ; (F) ; F &F ; F |F

Listing 2: In CPPL’s policy grammar, relations
specify a comparison between variables and values,
functions add support for triggers, and Boolean in-
terconnections of these relations and functions (R)
create a policy formula (F).

at least two. Furthermore, data has to be stored in Germany
or, alternatively, in encrypted form in the European Union.

We depict the complete formal grammar of CPPL’s human-
readable policies in Listing 2 and in the following describe
the important parts of this specification that we will later
use to present an efficient policy compression in more detail.

Policy Atoms. Each CPPL policy is constructed out
of different atoms, such as variables, relations, and func-
tions. Properly differentiating between different types of
atoms lays the foundation for efficient compression later on.

Variable Types: We differentiate between Booleans, nu-
meric variables (integers and floats of different size), and
strings. To ease compression of variables with a predefined
set of values, we additionally support enumerations.

Relations: Boolean variables support negation (!), string
variables can employ equality (=, 6=), and numeric variables
additionally support ordering (>,≥, <,≤). A relation eval-
uates to true if and only if the comparison evaluates to true.
This enables the comparison of expected (as specified in the
policy) and actual environmental context.

Functions: Expectations with very flexible input such as
event-based triggers, e.g., notification upon data access, and
time-based triggers, e.g., performing backups within specific
time frames or requiring data deletion at a specific point
in time, cannot be expressed using relations in a scalable
fashion. Hence, we support the specification of functions
which consist of a function name and a list of parameters
(e.g., backupHistory("1M")). Similar to relations, a func-
tion evaluates to true if and only if the node supports the
expectation given by the function and its parameters.

Policy Formulas. We construct privacy policies out of
the above relations and functions by interconnecting them
with Boolean operations, i.e., and (&), logical or (|), and
negation (!). To allow for concise formulas and increase read-
ability, policy parts can be grouped with (nested) brackets.

102

Domain Parameters. To realize huge policy size sav-
ings, we, in contrast to related work, incorporate domain
knowledge, i.e., what variables are available, which values
they can take, and which functions can be utilized. This
heavily depends on the individual use case. For example,
the available variables might differ between a cloud and an
IoT deployment. To this end, CPPL is parameterized to the
individual use case through domain parameters, i.e., avail-
able variables, their type and value range, as well as avail-
able functions. Together domain parameters form a CPPL
dialect which is provided by a central entity, e.g., a stan-
dardization body, for each domain.

For each variable, the specification states name and type,
e.g., Boolean, string, or int32. Similarly, the available func-
tions are also listed in the specification, together with the
types of the function’s parameters. For enumerations the
specification lists all possible values. CPPL dialects solve
three inherent challenges of policy languages: First, they
provide users with a list of possible requirements they can
specify in their privacy policies for a certain domain. Sec-
ond, they enable verification of a policy, i.e., that it contains
only valid variables and values. Third, they allow to extend
the policy language to new demands in existing or new use
cases. Notably, domain parameters are not defined by indi-
vidual users and we expect them to stay rather static, oc-
casionally being updated with a new version similar to the
introduction of new versions of network protocols.

3.2 Compression of Policies
The centerpiece of our approach is the compression of pri-

vacy policies by taking advantage of specifiable domain pa-
rameters. To achieve a high compression ratio, we introduce
the domain parameter specification to be able to incorporate
domain knowledge into the compression step. The domain
parameter specification lists the available variables, func-
tions, and values in a well-defined order. This allows replac-
ing variable and function names with a numerical identifier
for their position in the domain parameter specification. A
similar approach can be taken for enumerations.

A compressed CPPL policy consists of different parts.
More precisely, we divide a compressed CPPL policy into
four parts as illustrated in Figure 3: (i) the policy header
stores an identifier for the domain parameter specification
the policy relates to, (ii) the formula stack stores the logic
operations connecting the relations of a formula, (iii) the re-
lation stack encodes relation information, and (iv) the vari-
able stack stores the numerical variable and function iden-
tifiers as well as actual values and parameters. With this
separation we can leverage redundancies in privacy policies
for compression. If a relation, variable identifier, or value is
used repeatedly in a policy, we need to store it only once and
can reference it repeatedly. In the following, we describe the
encoding and compression of the parts of compressed CPPL
policies in more detail.

Policy Header. To achieve a high compression rate,
CPPL makes heavy use of information derived from the do-
main parameters defined in the used CPPL dialect. Hence,
it is necessary to know a policy’s CPPL dialect when in-
terpreting the resulting compressed policy. As we cannot
assume that this is always implicitly given by the context,
we explicitly add the CPPL dialect in a 16 bit identifier field.
As we strive for space efficiency, CPPL’s policy header con-
tains no further information. Notably, we completely waive

Figure 3: A compressed CPPL policy consists of a
header and three stacks which reference each other
to leverage redundancies for compression.

length fields (which are quite common for bit level encod-
ings) as they introduce constant space overhead and put a
limit on the overall policy size. Instead, we will show in the
following how we encode lengths using special symbols and
implicit knowledge derived directly from the encoded policy.

Formula Stack. We use a formula stack to encode in-
terconnection of relations, i.e., logical operations, evaluation
order as given by brackets, and references to relations. The
overall goal of CPPL is to do this as space efficient as possible
while still allowing for fast interpretation of the underlying
policy. To save the space for an explicit encoding of the eval-
uation order, we rely on polish notation in the formula stack.
While this automatically provides the correct evaluation or-
der, we still require a space efficient encoding for combining
references of relations using logical operations. To achieve
this goal, we follow two paths: (i) reduce the number of log-
ical operations that need to be encoded in the formula and
(ii) reduce the space required for referencing relations.

We reduce the space for encoding logical operations by
deferring the handling of negations to the relation stack
through De Morgan’s laws. Thus, we only need to differenti-
ate between and and or, which can be encoded with only one
bit. Alternatively, we can employ logic synthesis tools for
hardware circuit design to minimize the size of the Boolean
formula or optimize its representation for fast execution.

To reduce the space required for referencing individual re-
lations, we order the relation stack according to the position
of relations in the formula stack. Hence, we can omit refer-
ences to relations in the formula stack and simply refer to the
next relation on the relation stack. While this allows refer-
encing relations very space efficiently, it prevents referencing
one relation more than once (and thus saves space by lever-
aging redundancies). Hence, we introduce the concept of a
redundant relation which allows referencing a relation that
has already been used in the formula. The address of the
referenced relation is specified in a fixed-size bit sequence1.

Based on these optimizations, we only need to encode
and, or, next relation, and redundant relation in the formula
stack, which can be encoded with two bits. However, this
does not allow us to signal the end of the formula stack (as
discussed above, we do not use length fields for space rea-
sons). To still be able to signal the formula stack’s end, we
introduce an additional bit to the redundant relation symbol
to signal the end of the formula stack. Consequently, this
adds an overhead of one bit to redundant relation identifiers
(which is the least used of all four symbols).

Relation Stack. Similar to the formula stack, the rela-
tion stack encodes the interconnection of variable identifiers
and variable values through relations. We use three bits

1We chose a fixed-size length to save overhead for a length
field. This constitutes a trade-off between the number of
relations that can be addressed and the space required for
encoding references. As this trade-off is domain specific, we
allow configuring this in the domain parameter specification.

103

to encode the relation types =, 6=, <,≤, >, ≥, = True, and
= False. Each relation type is followed by two respectively
one (for = True and = False) next variable and/or redun-
dant variable symbols encoded in a single bit each. As for
redundant relations, we add a fixed-size address to a vari-
able on the variable stack after the redundant variable bit.
In contrast to the formula stack, we do not explicitly signal
the end of the relation stack as we can derive the number of
relations on the relation stack from the formula stack.

Variable Stack. The variable stack encodes the vari-
ables (including functions) used in a CPPL policy. Each
variable is represented by an encoding of its type followed
by a type-dependent representation of the variable value. To
encode the variable type, we differentiate between variable
identifiers (where values are instantiated by the node in-
terpreting a policy later on) and actual values (where values
are already defined in the policy). We can derive all possible
variable types from the domain parameter specification and
encode them according to their order in the specification.
Hence, the number of bits required for encoding variable
types depends on the domain parameter specification. A
reasonable set for variable types contains Booleans, integers
(8 to 64 bits, signed and unsigned), doubles, strings, enumer-
ations, and functions. Additionally, we reserve one encoding
for variable identifiers. Hence, four bits suffice to distinguish
between different variable types and variable identifiers.

The encoding of a variable type is followed by a type-de-
pendent representation of the variable value as described in
the following (encoding for new variable types can be easily
deduced). First, variable identifiers are encoded as num-
bers as given by their order of appearance in the domain
parameter specification. The number of bits required for
this is determined by the number of variables in the specifi-
cation. Boolean values are encoded as a single bit, integers
and floats are encoded with their respective bit size, and
strings are encoded as null-terminated ASCII values. When
encoding numbers, we automatically use the smallest possi-
ble representation, e.g., a 32 bit integer will be automatically
casted to an 8 bit integer if possible. For enumerations, we
derive the encoding from the position in the sorted list of
possible values for this enumeration. The variable type of
an enumeration can be derived from the identifier of the
variable the value in the enumeration is compared to. Fi-
nally, we encode functions by numbering their positions in
the specification. Following the identifier for the function,
we can directly encode the function’s parameters, as their
types are already defined in the specification.

Similar to relations in the relation stack, the number of
variables in the variable stack can be derived from informa-
tion in the relation stack. Hence, we do not need to encode
the end of the variable stack and, thus, the end of a policy.

3.3 Interpretation of Policies
Once a CPPL policy has been compressed, it can be at-

tached to data that is sent to other nodes. Each node that
receives the data together with the policy interprets the pol-
icy, i.e., compares its own capabilities to the requirements in
the policy. We first discuss these node capabilities in more
detail before we present the actual policy interpretation.

Node Capabilities. The goal of privacy policies is to
formulate requirements on the handling of data. This is pre-
dominantly achieved by comparing requirements to environ-
mental context and supported triggers, i.e., the capabilities

of a specific node [18, 30]. Only if the capabilities of a node
match the requirements formulated by the user, this node
is allowed to process the corresponding data. Essentially,
node capabilities denote for each variable name in a domain
parameter specification the values supported by this specific
node. Furthermore, the node capabilities specify for each
function defined in the domain parameter specification if it
is supported by this node. If a node supports a function in
general, the node uses a small script to check if it supports
the parameters specified for this function as well.

Policy Interpretation. When interpreting a policy, i.e.,
deciding if a node supports the requirements in the policy, we
replace the variable identifiers in the policy with the values
listed in the node capabilities. To check if functions in the
policy are supported, we extract the parameters and evalu-
ate their support using the corresponding rules (see above).
Finally, we evaluate the individual relations and then the
complete Boolean formula. A node is eligible to process the
data if and only if the Boolean formula evaluates to true.

During policy interpretation, we apply logical operations
in the order given by the formula stack. This is possible,
since the polish notation eliminates all brackets. When it-
erating over the formula stack to find the start of the rela-
tion stack, we sequentially push the operations onto a stack,
obtaining reverse polish notation for the actual execution.
Furthermore, we cache the result of each relation’s interpre-
tation to save processing time for redundant relations.

Additionally, a policy does not necessarily define an unam-
biguous handling of data, i.e., there may be more than one
satisfying assignment. To cope with this challenge, we em-
ploy backtracking based on cached evaluation results to de-
rive the actual variable assignment that must be employed.

4. EVALUATION
To thoroughly quantify and evaluate the space and pro-

cessing savings of CPPL, we implemented CPPL in C++
using the Boost libraries. We utilize Flex++ and Bison to
automatically generate the scanner respectively parser to
process CPPL’s textual policies. Furthermore, we realize
the domain parameters and node capabilities specification
using JSON and parse them with jsoncpp.

We first perform synthetic benchmarks to get a thorough
view on the performance and scalability of CPPL and then
realize policies for real-world scenarios which allows us to
compare CPPL to related work. Based on this, we study
the large-scale feasibility of CPPL in two use cases: (i) stor-
ing millions of IoT messages and (ii) matching thousands of
policies when performing machine learning in the context of
big data. Finally, we revisit our requirements for a privacy
policy language in an interconnected world (cf. Section 2.2)
and discuss how CPPL fulfills these requirements.

4.1 Influence Factors on CPPL’s Performance
Performance and scalability of CPPL are influenced by

policy size and volume of domain parameter specification.
To intensively quantify both the influence on performance
and scalability, we perform synthetic benchmarks for which
we utilize a local test setup that consists of a desktop-grade
machine (Intel i7 870, 4 GB RAM, Ubuntu 14.04). For each
measurement point, we performed 100 runs and depict the
mean value with 99% confidence intervals. We do not con-
sider the overhead for initialization (in the order of 1.2 ms
for compression and matching), e.g., for loading and pars-

104

Figure 4: Policy size vs. storage
footprint. Redundant variables,
relations, and integer optimiza-
tion improve compression.

Figure 5: Policy size vs. compres-
sion time. Runtime scales lin-
early and variables with larger
size increase runtime.

Figure 6: Policy size vs. match-
ing time. Runtime increases for
larger policies and strings benefit
from redundancies.

Figure 7: Domain parameter size
vs. storage footprint. Increasing
expressiveness increases storage
footprint logarithmically.

Figure 8: Domain parameter size
vs. compression time. Tendency
for a slight linear compression
runtime increase.

Figure 9: Domain parameter size
vs. matching time. Matching
runtime stays constant at a very
low level.

ing the domain parameters specification, as this has to be
performed only once when the system is started.

Increase in Policy Size. To evaluate the influence of
policy size on storage footprint, compression, and match-
ing runtime, we performed measurements with fixed domain
parameters specifying 100 Boolean, integer, and string vari-
ables, each. We construct policies with up to 150 relations of
the same variable type, allowing up to 50 (integer, strings)
respectively 2 (Boolean) actual values. First, we explic-
itly evaluate a scenario without introducing redundancies
for variables or relations (Relations 1 to 50). To study the
impact of redundant variables, we then repeat already used
variable values without repeating relations (Relations 51 to
100). Finally, to also study the effect of redundant relations,
we duplicate the first 50 relations (Relations 101 to 150).

We use two integer sizes to evaluate CPPL’s effect of au-
tomatically downsizing integers. While the domain parame-
ters always specify integers with 32 bit, we used values whose
representation requires 32 bit or only 8 bit in the policy.

We first depict the resulting storage footprint of a com-
pressed CPPL policy in Figure 4. Without the possibility
to leverage any redundancies, CPPL’s policy size scales lin-
early, e.g., when considering a 32 bit integer from 9 byte for
1 relation to 364 byte for 50 relations. When introducing re-
dundant variables, we observe a compression gain for strings
(ratio 3.53) and 32 bit integers (ratio 1.93). In contrast, 8 bit
integers and Booleans do not profit from redundant variables
as the identifier for redundant variables would also consume
8 bit. Redundant relations allow for a further compression
gain regardless of the variable type, e.g., by a ratio of 2.31
for 32 bit integers. Finally, the smaller storage overhead of
8 bit integers compared to 32 bit integers highlights the ad-
vantage of CPPL’s automatic integer downsizing.

Next, we present the compression runtime, i.e., the time
for transforming CPPL’s textual policy into its compressed
representation, depending on the policy size in Figure 5.
Policies are compressed with a linear influence of the policy
size. The compression runtime increases from 68µs for 1
relation to 418–431µs (502µs for strings) for 150 relations.
To put these numbers into perspective, CPPL is able to
compress 1 993 to 14 754 policies per second. Strings show
slightly more overhead due to slower encoding and compar-
ison in the redundancy search. Redundant variables or re-
lations do not noticeably influence compression runtime.

Finally, we show the matching runtime, i.e., the time for
matching a compressed CPPL policy against node prop-
erties, in Figure 6. Matching (which is performed in the
back-end and thus typically more often than compression),
happens faster than compression with a linear increase in
runtime for larger policy sizes. Without the possibility to
remove redundancies, matching time for strings (Booleans)
increases from 9µs (7µs) for 1 relation to 50µs (21µs) for
50 relations. Matching times for integers are slightly higher
than for Booleans. Especially for strings, we observe a bene-
fit of removing redundancies, reducing processing for strings
(Booleans) for 150 relations to 58µs (28µs). Hence, CPPL
is able to process 17 126 to 134 048 policies per second.

More Comprehensive Domain Parameters. We now
evaluate the influence of more comprehensive domain pa-
rameters, i.e., a larger variety of variables that can be used
in a policy, on policy size and processing time. To this end,
we use a static CPPL policy consisting of 1 Boolean, 1 inte-
ger, and 1 string relation. For each of these variable types,
we increase the number of domain parameters from 1 up to
150. Here, we do not differentiate between different integer
types as the actual values only appear in the (fixed) policy.

105

Figure 10: Real-world storage footprint comparison
with related work. CPPL significantly reduces stor-
age footprint compared to related work.

We depict the resulting storage footprint in Figure 7, where
all three lines lie on top of each other, i.e., only the top
most line is visible, as all variable types exhibit the ex-
act same behavior. When the number of available param-
eters increases, CPPL requires more bits to encode vari-
able identifiers, which is not affected by the variable type.
We observe an increase from 19.63 byte for 1 variable defini-
tion to 21.88 byte for 150 variable definitions. More specif-
ically, domain parameters that specify n variables require
dlog2(n)ebits to encode the identifier in the variable stack.

When considering the influence of increasing domain pa-
rameters on compression runtime, we observe a tendency for
a linear runtime increase in Figure 8. More precisely, the
compression runtime increases from 59µs for 1 variable to
70µs for 150 variables. This results in approximately 14 288
to 17 004 policy compressions per second.

Figure 9 shows that the matching runtime is not influ-
enced by increasing domain parameters (independent from
the variable type). Matching runtimes are in the order of
12 to 13µs. Consequently, CPPL is able to match 76 453 to
85 251 policies per second.

4.2 Comparison to Related Work and Real-
World Performance

To verify the applicability of CPPL, we also evaluate CPPL
on real-world policies taken from related work in the context
of cloud computing and the IoT. To this end, we were able to
locate six XML-based policies, namely four A-PPL policies
(one limiting access based on location, purpose, and time
conditions [2]; one logging access, deletion, and sent oper-
ations; one specifying a deletion date; and one defining a
deletion date and notification on deletion [8]) and two PPL
policies (one specifying logging of three different actions and
one extending the former with a deletion date [33]).

Comparison to Related Work. First, we analyze the
required storage size for real-world policies. To this end,
we compare the original XML representation (without su-
perfluous whitespace) of the policy in A-PPL and PPL, re-
spectively, with equivalent CPPL policies. As CPPL uses a
compressed format, we also applied zlib and brotli, two com-
pression libraries, to the policy representations from related
work to also compare against generic compression methods.

We depict the resulting policy sizes in Figure 10. Overall,
zlib and brotli achieve some compression, however, CPPL
achieves by far the smallest size. For large policies, zlib and
brotli achieve a compression ratio of 2.18 up to 5.49 while
CPPL reduces the size by a ratio of 27.10 up to 112.47.
For smaller policies, zlib and brotli perform worse, achiev-
ing a compression ratio of only 1.63 up to 1.94 while CPPL

Figure 11: Real-world matching runtime for IoT and
cloud class devices. Even on IoT devices, CPPL can
perform thousands of matchings per second.

achieves a reduction by a ratio of 9.97 up to 29.63. In abso-
lute numbers, CPPL is able to reduce A-PPL LimitAccess
from 182 byte to 18.25 byte and PPL Log from 956 byte to
only 8.5 byte. As we will see in Section 4.3, this results in
an enormous reduction of the overall required storage space.

Real-World Performance. Finally, we evaluate CPPL’s
performance for the cloud and IoT domain. For our evalua-
tion for cloud services, we use an Amazon Web Services EC2
64-bit instance of type m4.large running Ubuntu 14.04. To
measure the performance for IoT devices, we utilize a Rasp-
berry Pi (Model B Revision 2.0) with a 700 MHz ARM11
CPU, 512 MB of RAM, and running Raspbian 8.0.

Our results in Figure 11 show that a cloud server can
perform more than 52 056 policy matchings per second for
our largest real-world policy. For smaller policies, this in-
creases to more than 67 024 matchings per second. To put
these numbers into perspective, even Dropbox had on av-
erage less than 20 000 insert/update requests per second in
June 2015 [10]. For IoT devices, the matching rate still
ranges from 2 632 up to 3 155 matchings per second. This is
more than sufficient to process all messages in a deployed
IoT platform (cf. Section 4.3), with the largest observed
throughput of 149 messages per second. Thus, we enable
policy awareness for the full data life-cycle from data collec-
tion by IoT devices to large scale processing in the cloud.

4.3 Large-scale Feasibility of CPPL
To demonstrate the feasibility of per-data item policies in

general and CPPL in specific, we analyze the policy-induced
storage overhead for data measurements in the IoT and in-
vestigate the impact of policy support for the runtime of
machine learning approaches in the context of big data.

Storage Overhead in the IoT. The Internet of Things
not only causes a massive growth in the amount of trans-
ferred data, e.g., up to 40 000 exabytes in 2020 compared to
130 exabytes in 2005 [12], but also significantly increases the
diversity of data sources [3], and the granularity of reported
data [21]. Hence, the question arises whether it is feasible
to attach per-data item policies to IoT data as suggested by
this paper and related work [15,18,28,30].

To study the impact of per-data item policies on IoT data,
we sampled frequency and size of real IoT data and analyze
the storage overhead of attaching privacy policies to it. We
collected real data of IoT devices from the API of dweet.io
[5], a data sharing utility for the IoT. Our dataset, which we
continuously collected over a period of 92 hours, consists of
18.41 million IoT messages originating from 7 207 distinct
devices. The size of IoT messages ranges from 72 byte to
9.73 KB with a mean size of 394 byte. Although this data

106

Figure 12: Impact of policies on storage footprint
of real IoT data. CPPL policies significantly reduce
storage footprint compared to related work.

is publicly available through dweet.io’s API, we took appro-
priate measures to protect the privacy of people potentially
monitored by IoT devices (data can, e.g., contain location
information). To this end, we only stored the identifier of the
IoT device and the timestamp of each data message. Fur-
thermore, we sampled only one IoT message per device and
solely stored the resulting message size (not the payload).

Figure 12 shows the cumulative distribution of IoT mes-
sage sizes with (solid lines) and without (dashed line) at-
tached per-data item policies. To this end, we uniformly ran-
domly selected one of the policies from related work (cf. Sec-
tion 4.2) for each IoT message and compare original uncom-
pressed policies to policies compressed with zlib and brotli
as well as our CPPL. These results show that CPPL adds
only a negligible storage and transmission overhead com-
pared to data without per-data item policy, while generic
compression algorithms and especially uncompressed poli-
cies from related work induce significantly higher storage
overheads. In total, storing all 18.41 million collected IoT
messages without policies requires 4.39 GB. This increases
to only 4.68 GB when attaching CPPL policies, 7.86 GB and
8.42 GB for brotli respectively zlib, and a total of 16.37 GB
when using policies from related work. As this corresponds
to less than 4 days of IoT data, it clearly highlights the ne-
cessity for space efficient privacy policy languages and the
reasonable storage overhead that CPPL implies.

Policy Matching for Big Data. The massive growth
in the amount of data is especially interesting for machine
learning in big data which benefits from larger datasets for
training models to increase their accuracy [26]. Per-data
item policies can significantly increase willingness of individ-
uals to contribute their data as these enable them to stay
in control over their data. However, policies lead to addi-
tional processing for policy matching to determine if a policy
allows usage of the data item for the desired application.

To investigate the performance of CPPL, we measure the
overhead of policy matching when it is used to determine if
data items can be used for a machine learning based study.
We compare execution times of the training phase of the sup-
port vector machine LIBSVM [7] with the time required to
process CPPL policies for this input data (we uniformly ran-
domly assigned one of the policies from related work to each
input and considered policy initialization overhead for the
first occurrence of each domain parameters specification).

Figure 13 shows the share of the runtime that is required
for policy processing for different numbers of input records
of the UCI Adult dataset [31]. That is, the remaining share
of the runtime is required for the actual training of the
support vector machine (SVM). For a very small number

Figure 13: Impact of CPPL on machine learning
(UCI Adult dataset [31]). For larger data sets,
CPPL’s share of the runtime becomes negligible.

of records, processing of policies takes 10.6% of the run-
time that is required for the full process (policy processing
and training of the SVM). More specifically, policy process-
ing accounts for 18.9 ms while the training of the SVM re-
quires 178.2 ms. However, with increasing number of data
items used for SVM training, the fraction of time required
for processing of policies considerably decreases. Consider-
ing, e.g., 32 561 data items, policy processing is responsi-
ble for only 0.6% (377.7 ms) of the total runtime whereas
SVM training accounts for the other 99.4% (59.8 s). Hence,
for larger datasets in the context of big data, the runtime
overhead for CPPL policy processing is negligible. Thus,
CPPL enables privacy policy-aware machine learning based
approaches with almost no overhead on processing time.

4.4 Discussion of Requirements
We conclude our evaluation with a discussion on how we

achieve the requirements that any privacy policy language
in an interconnected world must fulfill (cf. Section 2.2).

Our benchmarks show that CPPL indeed achieves a min-
imal storage footprint, in which we significantly outperform
related work. At the same time, our measurements illustrate
that CPPL allows for efficient policy checking and is viable
for real-world scenarios, especially at large scales. Further-
more, by reformulating existing privacy policies in CPPL we
illustrate support for incremental deployment as it is com-
patible with existing policy languages. Through our concept
of node capabilities in CPPL, we are able to realize match-
ing of users’ privacy expectations with the data handling
offered by service providers. With our concept of domain
parameters, we address the challenges of expressiveness and
extendibility in CPPL. By combining Boolean expressions
with run-time interpreted functions, we can cover all privacy
requirements that are nowadays supported by related work
simply by providing fitting domain parameters. Notably, do-
main parameters are what makes CPPL extendable: If ad-
ditional privacy requirements in one of CPPL’s application
domains emerge, CPPL can easily be extended to support
these by merely updating the corresponding domain param-
eter specification. Similarly, if completely new application
domains emerge, CPPL can be effectively adapted to those
by creating a new domain parameter specification (CPPL
dialect). As this is done centrally by one entity, e.g., a stan-
dardization body, it does not place any burden on users.

5. CONCLUSION
In this paper, we presented CPPL, a Compact Privacy

Policy Language for an interconnected world. CPPL allows
users to specify their privacy requirements regarding rout-

107

ing, processing, and storage of data, e.g., in the context of
cloud computing, the IoT, and big data. To this end, we
follow a two-step approach: The owner of data first defines
a policy in a human-readable representation (as with tradi-
tional policy languages). Then, CPPL compresses this pol-
icy, thereby optimizing policy size down to the bit level. To
this end, CPPL takes into account the specific application
scenario (e.g., cloud computing or IoT) and extensively uti-
lizes domain knowledge to further reduce policy sizes. Still,
our concept of domain parameters allows for easy adaption
to new, even yet unforeseen use cases. CPPL further distin-
guishes itself from related work by its specific focus on the
reduction of policy storage and processing overheads.

Our evaluation confirms that CPPL indeed drastically re-
duces policy sizes. Compared to related work, CPPL reduces
policy sizes by up to two orders of magnitude, e.g., from
956 byte to only 8.5 byte. At the same time, CPPL can per-
form tens of thousands of policy matchings on a cloud server
and still thousands of matchings on a tightly resource con-
strained IoT device. When considering the storage of mas-
sive amounts of IoT data, CPPL, in contrast to related work,
adds only a marginal storage overhead. Likewise, CPPL
can be used to express allowed purposes of data usage, e.g.,
in the context of large scale medical studies. To conclude,
CPPL realizes a significant size reduction for privacy poli-
cies, which for the first time allows per-data item policies for
fine-grained privacy protection in an interconnected world.

Acknowledgments
This work has received funding from the European Union’s
Horizon 2020 research and innovation program 2014–2018 un-
der grant agreement No. 644866. It reflects only the authors’
views and the European Commission is not responsible for any
use that may be made of the information it contains.

6. REFERENCES
[1] M. Ali et al. Obligation language and framework to

enable privacy-aware SOA. In DPM. 2009.

[2] M. Azraoui et al. A-PPL: An accountability policy
language. In DPM, 2014.

[3] P. Barnaghi et al. Semantics for the Internet of Things:
Early progress and back to the future. IJSWIS, 2012.

[4] M. Y. Becker et al. A practical generic privacy language.
In ICISS. 2010.

[5] Bug Labs, Inc. dweet.io – Share your thing like it ain’t no
thang. https://dweet.io/.

[6] L. Bussard et al. Downstream usage control. In
POLICY, 2010.

[7] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM TIST, 2011.

[8] R.-A. Cherrueau et al. Policy representation framework.
Tech. report, A4Cloud Consortium, 2013.

[9] A. Dehghantanha et al. Towards a pervasive formal
privacy language. In AINA Workshops, 2010.

[10] Dropbox Inc. 400 million strong, 2015.

[11] eXtensible access control markup language (XACML)
version 3.0. OASIS Standard, 2013.

[12] J. Gantz and D. Reinsel. The digital universe in 2020:
Big data, bigger digital shadows, and biggest growth in
the far east. IDC iView, 2012.

[13] O. Garcia-Morchon and K. Wehrle. Modular context-

aware access control for medical sensor networks. In
ACM SACMAT, 2010.

[14] D. Geer. Will binary XML speed network traffic?
Computer, 2005.

[15] M. Henze et al. Towards data handling requirements-
aware cloud computing. In CloudCom, 2013.

[16] M. Henze et al. A comprehensive approach to privacy in
the cloud-based Internet of Things. FGCS, 2016.

[17] M. Henze et al. Moving privacy-sensitive services from
public clouds to decentralized private clouds. In IEEE
IC2E Workshops, 2016.

[18] M. Henze et al. The cloud needs cross-layer data
handling annotations. In IEEE S&P Workshops, 2013.

[19] M. Henze et al. Towards transparent information on
individual cloud service usage. In CloudCom, 2016.

[20] M. Hilty et al. A policy language for distributed usage
control. In ESORICS. 2007.

[21] R. Hummen et al. A cloud design for user-controlled
storage and processing of sensor data. In CloudCom,
2012.

[22] I. Ion et al. Home is safer than the cloud!: Privacy
concerns for consumer cloud storage. In SOUPS, 2011.

[23] W. Itani et al. Privacy as a service: Privacy-aware data
storage and processing in cloud computing
architectures. In IEEE DASC, 2009.

[24] L. Kagal et al. A policy language for a pervasive
computing environment. In IEEE POLICY, 2003.

[25] P. Kumari et al. Distributed data usage control for web
applications: A social network implementation. In
CODASPY, 2011.

[26] S. Lohr. The age of big data. New York Times, 2012.

[27] R. V. Nehme et al. Fence: Continuous access control
enforcement in dynamic data stream environments. In
CODASPY, 2013.

[28] T. Pasquier et al. Data-centric access control for cloud
computing. In ACM SACMAT, 2016.

[29] S. Pearson and A. Benameur. Privacy, security and trust
issues arising from cloud computing. In CloudCom, 2010.

[30] S. Pearson and M. C. Mont. Sticky policies: An
approach for managing privacy across multiple parties.
Computer, 44(9), 2011.

[31] J. C. Platt. Fast training of support vector machines
using sequential minimal optimization. In Advances in
Kernel Methods, chapter 12. 1999.

[32] J. Poroor and B. Jayaraman. C2L: A formal policy
language for secure cloud configurations. In ANT, 2012.

[33] PPL FI-WARE data handling generic enabler. GitHub,
https://github.com/fdicerbo/fiware-ppl.

[34] S. Sundareswaran et al. Ensuring distributed
accountability for data sharing in the cloud. IEEE Trans
Dependable Secure Comput, 2012.

[35] H. Takabi et al. Security and privacy challenges in cloud
computing environments. IEEE Security Privacy, 2010.

[36] R. Thion and D. Le Metayer. FLAVOR: A formal
language for a posteriori verification of legal rules. In
IEEE POLICY, 2011.

[37] C. Thoma et al. PolyStream: Cryptographically
enforced access controls for outsourced data stream
processing. In SACMAT, 2016.

[38] J. H. Ziegeldorf et al. Privacy in the Internet of Things:
Threats and challenges. Secur Commun Netw, 2014.

108

APPENDIX
A. FULL EXAMPLE OF CPPL

In this paper, we presented the compression of a policy
together with a reasoning of our design decisions. To fully
embrace the inner workings of CPPL, we now present a de-
tailed example for such a specification and compression of a
policy as well as a description of its interpretation.

A.1 Specifying a Policy with CPPL
Listing 3 shows the textual representation of the policy

which we will compress with the help of the domain param-
eters specification (CPPL dialect) given in Listing 4. The
policy is an extended version of the policy discussed in Sec-
tion 3.2 (see Listing 1) which, in the extended version, incor-
porates a redundant variable as well as a redundant relation
to show the corresponding compression mechanisms.

A.2 Compressing a Policy with CPPL
The resulting compressed policy is depicted in Listing 5.

The formula stack encodes the boolean operands OR (01)
and AND (11). Furthermore, it refers to relations on the
relation stack: either next relation (00) or to a relation at a
specific position on this stack (011<position>). The position
is specified as index of the relation on the relation stack
starting with index 0 for the first relation. Thereby, the
number of bits to encode the position of a variable is fixed
and can be derived from the domain parameters (8 bits in
our example). The end of the formula stack is signaled by
the bit sequence 010.

Following the formula stack, the relation stack encodes
the relations = (000), 6= (001), < (010), ≤ (011), > (100),
≥ (101), = True (110), = False (111). Thereby, it refers
to one or two variables (depending on the relation type) on
the variable stack: either to the next variable (0) or to a
variable at a specific position on this stack (1<position>).
Again, the position is given as the index of the corresponding
variable on the variable stack starting with index 0 for the
first variable. The length of the position field is specified by
the domain parameters (here we use 8 bits which allows for
referencing variables with index up to 255 — far more than
required for the real-world policies in Section 4.2)

Finally, the variable stack encodes booleans (0000), vari-
able identifiers that refer to variables specified in the do-
main parameters (0001), strings (0010), enumerated vari-
ables (0011), functions (0100), int64 (0101), int32 (0110),
int16 (0111), int8 (1000), uint32 (1001), uint16 (1010), uint8
(1011), and double values (1100). Each of these type iden-
tifiers is followed by the actual value of the variable whose
length is determined by the type, e.g., fixed to 8 bits for
uint8 or terminated by a special symbol, e.g., for null-byte
terminated strings.

This encoding enables us to reduce the 180 byte textual
encoding to a 42 byte representation of the policy. This en-
ables efficient transmission and storage of data annotations.

A.3 Interpreting a Policy with CPPL
When a node receives a data item, e.g., to store or process

it, the node first must check if the desired action is possible
within the boundaries specified by the policy. Compressed
data typically requires decompression before its processing.
However, with CPPL we are able to omit a separate decom-
pression step and instead efficiently integrate decompression

provider != "CompanyA"
& (tenant != "CompanyA"

| encryption = true
)

& log_access = true
& deleteAfter(1735693210)
& backupHistory("1M")
& replication >= 2
& (location = "DE"

| (location = "EU" & encryption = true)
)

Listing 3: Extended version of the previously used
CPPL policy (Listing 1). The extended version fea-
tures a redundant variable and a redundant relation
to showcase their processing during compression.

{
"version": 23,
"relationPositionLen": 8,
"variablePositionLen": 8,
"variables": [

{ "name": "provider",
"type": "string"

},
{ "name": "tenant",

"type": "string"
},
{ "name": "log_access",

"type": "boolean"
},
{ "name": "deleteAfter",

"type": "function",
"parameters": ["int32"]

},
{ "name": "backupHistory",

"type": "function",
"parameters": ["string"]

},
{ "name": "location",

"type": "string",
"values": ["DE", "FR", "US", "GB",

"NL", "EU"]
},
{ "name": "encryption",

"type": "boolean"
},
{ "name": "replication",

"type": "int32"
}

]
}

Listing 4: Domain parameters specification (CPPL
dialect) in JSON format. The important content
with respect to our example is highlighted in bold.

into the interpretation of the policy (cf. Section 3.3). In the
following, we describe the interpretation of CPPL policies
in more detail based on our example.

At the beginning of the compressed policy, the header
enables the matching algorithm to determine the domain
parameters specification (CPPL dialect) that applies to this
policy. Following this, the formula stack encodes the boolean
interconnection of relations in polish notation. During the
matching process, the algorithm iterates over the formula

109

Figure 14: Decompression of a policy during match-
ing. First, the algorithm iterates over the formula
stack to find the beginning of the relations, thereby
pushing elements of the formula stack onto an in-
terpretation stack (left) which yields the policy in
reverse polish notation. In a second step, the al-
gorithm evaluates the policy based on the reverse
polish notation, i.e., it resolves and evaluates rela-
tions and applies the boolean operations to the cor-
responding results.

stack until its end to find the beginning of the relation stack.
Thereby, it sequentially pushes the content of the formula
stack onto an interpretation stack. For our example, we
depict this stack in Figure 14 (left). When reaching the end
of the formula stack, the interpretation stack contains the
policy in reverse polish notation. This order is used for the
actual interpretation of the policy.

To this end, the algorithm sequentially takes the next ele-
ment from the top of the interpretation stack. This element
may be a reference to a relation or a boolean operand. The
typical case for relations is a reference to the next relation
on the relation stack. In this case, the algorithm locates the
next relation on the relation stack, resolves corresponding
variables, interprets the relation, and stores the truth value
(values for variable identifiers are retrieved from the node
parameters). In case of a reference to a specific relation (as
identified by a relation position), we know that this rela-
tion has already been evaluated and the truth value can be
reused (see reference to Relation 1 in Figure 14).

When retrieving a boolean operand from the interpreta-
tion stack, the algorithm can directly apply it as the reverse
polish notation ensures that the corresponding relations al-
ready have been interpreted. Furthermore, reverse polish
notation ensures that the last element of the interpretation
stack is a boolean operand whose application yields the final
result of the interpretation process.

As shown in Sections 4.2 and 4.3, this interpretation al-
gorithm provides an efficient interpretation of policies ren-
dering CPPL policies suitable for cloud and IoT scenarios.

Policy Header
0000000000010111 version (23)

Formula Stack
11 AND
00 Next Relation
11 AND
10 OR
00 Next Relation
11 AND
011 00000001

Reference to Relation at
index 1

00 Next Relation
11 AND
00 Next Relation
11 AND
00 Next Relation
11 AND
00 Next Relation
11 AND
00 Next Relation
10 OR
00 Next Relation
00 Next Relation
010 End of formula stack

Relation Stack
001 0 0 6=, Next Var, Next Var
110 0 =True, Next Var
001 0 1 00000001

6=, Next Var, Reference to
Variable at index 1

110 0 =True, Next Var
110 0 =True, Next Var
110 0 =True, Next Var
000 0 0 =, Next Var, Next Var
000 0 0 =, Next Var, Next Var
101 0 0 ≥, Next Var, Next Var

Variable Stack
0001 001 ID 1 (tenant)
0010 string

01000011011011110110110101110000
01100001011011100111100101000001
00000000 "CompanyA"

0001 110 ID 6 (encryption)
0001 000 ID 0 (provider)
0001 010 ID 2 (log_access)
0100 011 Function, ID 3 (deleteAfter)

01100111011101001001001110011010
int32 (value: 1735693210)

0100 100 Function, ID 4 (backupHistory)
001100010100110100000000

string "1M"
0001 101 ID 5 (location)
0011 101 enum value 5 ("EU")
0001 101 ID 5 (location)
0011 000 enum value 0 ("DE")
0001 111 ID 7 (replication)
1011 00000010

uint8 (value: 2)

Listing 5: Compressed Policy. The policy is shown
as a sequence of bits (bold) complemented by de-
scriptive text for their respective meanings.

110

