
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic*

Stefan Dobrev†

Inst. of Mathematics
Slovak Academy of Sciences

Bratislava, Slovakia
Stefan.Dobrev@savba.sk

Manuel Lafond‡

School of Eng. and Comp, Sci.
Université d’Ottawa
Ottawa, Canada

lafonman@iro.umontreal.ca

Lata NarayananS

Dept. Comp. Sci. & Soft.Eng.
Concordia University
Montréal, Canada

lata@cs.concordia.ca

Jaroslav Opatrny
Dept. Comp. Sci. & Soft.Eng.

Concordia University
Montréal, Canada

opatrny@cs.concordia.ca

ABSTRACT

We consider a problem of routing on directed paths and
trees to a single destination, with rate-limited, adversarial
traffic. In particular, we focus on local buffer management
algorithms that ensure no packet loss, while minimizing the
size of the required buffers.

While a centralized algorithm for the problem that uses
constant-sized buffers has been recently shown [21], there is
no known local algorithm that achieves a sub-linear buffer size.
In this paper we show tight bounds for the maximum buffer
size needed by ℓ-local algorithms for information gathering
on directed paths and trees, where an algorithm is called
ℓ-local if the decision made by each node 𝑣 depends only on
the sizes of the buffers at most ℓ hops away from 𝑣.
We show three main results:
∙ a lower bound of Ω(𝑐 log𝑛/ℓ) for all ℓ-local algorithms on
both directed and undirected paths, where 𝑐 is an upper
bound on the link capacity and injection rate.
∙ a surprisingly simple 1-local algorithm for directed paths
that uses buffers of size 𝑂(log𝑛), when 𝑐 = 1.
∙ a natural 2-local extension of this algorithm to directed
trees, for 𝑐 = 1, with the same asymptotic bound.

Our Ω(log𝑛) lower bound is significantly lower than the
Ω(𝑛) lower bound for greedy algorithms, and perhaps surpris-
ingly, there is a matching upper bound. The algorithm that
achieves it can be summarized in two lines: If the size of your

*

†Supported by VEGA grant
‡Supported in part by NSERC grant.
SSupported in part by NSERC grant.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SPAA ’17, July 24-26, 2017, Washington, DC, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4593-4/17/07. . . $15.00
https://doi.org/10.1145/3087556.3087577

buffer is odd, forward a message if your successor’s buffer
size is equal or lower. If your buffer size is even, forward a
message only if your successor’s buffer size is strictly lower.
For trees, a simple arbitration between siblings is added.

CCS CONCEPTS

• Theory of computation → Network flows;

KEYWORDS

Buffers, Buffer size, Routing, Trees, Directed paths, Informa-
tion gathering, Local algorithms, Adversarial traffic

1 INTRODUCTION

Buffer or queue management in packet-switched networks
has been an extensive subject of study for decades. Early
theoretical work in the area studied static routing problems;
the source-destination pairs corresponding to a finite set of
packets is given as input to the network, and the goal is to
route packets from their sources to their respective destina-
tions, while minimizing the worst-case arrival time as well as
the maximum size of buffer needed. In the case when multiple
routes use the same link, a node may need to store incom-
ing packets in a buffer, and to use a buffer management or
scheduling policy that dictates which packet, if any, should be
forwarded along each output port in each step. Well-known
examples of scheduling policies include First-In-First-Out
(FIFO), Last-in-First-Out (LIFO), Furthest-to-Go (FTG),
Nearest-to-Go (NTG), etc. The policy used for buffer man-
agement has an impact on many crucial quality-of-service
parameters for networks.

More recently, buffer management has been studied in the
context of dynamic routing, where packets are continuously
injected into the network. In a seminal paper, Borodin et al
[11] introduced an adversarial model for traffic to analyze the
worst-case performance of a scheduling strategy for dynamic
routing. In this model, time proceeds in discrete steps. Given
a network, in every step, an adversary injects packets at a
certain set of nodes, and specifies, for each packet, a path to
a destination, where it is consumed. The scheduling policy

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

265

https://doi.org/10.1145/3087556.3087577

now chooses at most one packet to forward over each link of
the network. Clearly, the network would be overwhelmed if
the adversary generates more packets than can be sustained
by the bandwidth in the network. Therefore, the adversary
is assumed to be rate-constrained.

A key question is whether a given scheduling policy is
stable for a given network, i.e., whether the sizes of the
buffers remain bounded. One class of scheduling strategies
that has been extensively studied is the so-called greedy
or work-conserving policies, wherein a packet is always for-
warded along an edge 𝑒 if there are packets waiting to use
𝑒. It has been shown that there are work-conserving policies
that are stable; however, the worst case buffer size can be
polynomial in the size of the network. Even for a path, the
worst-case buffer size for the greedy algorithm is Ω(𝑛) [23].

In this paper, we study a class of routing problems called
information gathering or convergecast, where the network
has a special node called the sink node, and all packets
generated in the network are destined for the sink. Such a
communication pattern has been widely studied, particularly
in the case of sensor networks, where sensor nodes collect
data and forward it to a sink node for processing. We are
interested in ℓ-local scheduling policies: every node must
make its decision based on the contents of its own buffer, and
knowledge of the buffer sizes of nodes in its ℓ-neighborhood.
The goal of our work is to find upper and lower bounds on
the buffer size required to achieve convergecast on trees with
no packet loss, while using a local scheduling policy.

1.1 Related work

Adversarial queuing theory was introduced in [11] as a new
approach to the study of queueing networks in general, and
in particular, to the performance of scheduling algorithms
in the context of dynamic packet routing in a network. The
authors proposed a fixed-rate adversary to generate the input
consisting of the nodes where new packets are injected into
the network, together with specific paths to their respective
destinations. The main question considered in [11] was the
stability of a queuing discipline for a particular network, viz.
given a network 𝐺 and a scheduling policy 𝒮, is there a con-
stant 𝑀 (which can depend on the size of the network but is
independent of the length of the input stream) so that for
any input stream, the size of all buffers in the network remain
bounded by 𝑀? Related questions of interest that were posed
were the existence of universally stable policies, i.e. stable for
all networks, and universally stable networks, i.e. stable for
all policies of a given class. It was shown in [11] that every
greedy queueing discipline is stable for rate 1 adversaries on
any DAG, and that Furthest-to-Go is stable for rate 1 adver-
saries in a uni-directional ring. Andrews et al [5] extended
the result by showing that every greedy queueing discipline
is stable for rate 1 adversaries in a unidirectional ring. They
also showed that certain scheduling policies, such as Farthest-
to-Go (FTG), Nearest-to-Source (NTS), Longest-in-System
(LIS), and Shortest-in-System (SIS) are universally stable,
while common policies such as FIFO, LIFO, and NTG, and

Farthest-from-source (FTS) are not. However, the aforemen-
tioned policies were shown to require queues and delays of
size exponential in the size of the network in the worst case.
Finally, they give a local distributed and randomized sched-
uling policy that uses polynomial size buffers in the worst
case. For further studies of this problem see for example,
[3, 4, 6, 8, 10, 12, 19, 20].

Aeillo et al [2] proposed the related Competitive Network
Throughput model in which the buffer size at every node is
fixed to a constant 𝐵 in advance, and the goal is to minimize
the number of dropped packets. They show that all greedy
protocols have bounded competitive ratio on DAGs. NTG,
FTS, and LIS have competitive ratios that are bounded
for all networks, while FTG, NTS, SIS have an unbounded
competitive ratio on cycles. For the line network, it has been
shown that if 𝐵 = 1, any online deterministic algorithm
is Ω(𝑛)-competitive while for 𝐵 > 1, a competitive ratio
of 𝑂(

√
𝑛) can be achieved. For further research using this

framework, see for example [1, 7, 9, 13, 14, 16, 23].
For information gathering on a line, all greedy protocols

are identical from the point of view of throughput or packet
loss. A lower bound of Ω(

√
𝑛) on the competitive ratio of

the greedy protocol was given in [2]. Rosen and Scalosub
[23] give tight bounds on the competitive ratio of the greedy
algorithm as a function of the injection rate of the adversary
and the buffer size 𝐵. Their results imply that the greedy
policy requires Θ(𝑛)-sized buffers to assure no packet loss.
Further studies in lines, rings, and trees, were done by Azar
and Zachut [9] and for directed grids in [14, 15].

The papers closest to our work are [21] and [17]. Patt-
Shamir and Miller [21] study the same problem as this paper.
They consider a more general injection model with injection
rate 𝜌 (equal to link capacities) and burstiness bounded by 𝜎.
In this model they give a centralized algorithm that achieves
information gathering without packet loss using buffers of size
𝜎+2𝜌 1 and provide a matching lower bound. The algorithm,
called Forward-If-Empty (FIE), is unavoidably centralized,
relying on simultaneously forwarding long trains of packets.
They also analyze several local algorithms and for each of
them show that in the worst case the buffer sizes are either
unbounded, or at least Ω(𝑛).

Kothapalli and Scheideler [17] study the competitive ratio
of the buffer size achieved by algorithms for the problem of
information gathering on an undirected path. Their adversar-
ial model is significantly different and much stronger than
ours: their adversary can not only choose the site of packet
injection, but can also decide which edges are active. They
show a lower bound of Ω(log𝑛) on buffer sizes, as well as an
algorithm which asymptotically matches this bound. Their
algorithm forward packets in both directions, and therefore
does not work on the directed path. In a follow-up paper [18],
the authors show that any deterministic algorithm requires
Ω(𝑛)-sized buffers in spider-graphs in the worst case.

1Actually, it can be shown that the algorithm as it is formulated in
[21] uses for 𝜌 > 1 buffers of size Ω(log 𝜌). However, it can be easily
corrected by not activating a single path and taking 𝜌 packets along
it, but by having 𝜌 activating steps, each applying to a single packet.

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

266

1.2 Our results

We start by pointing out that a slight variation of the Local-
Downhill algorithm, shown in [21] to require buffers of size
Ω(𝑛) in paths, can in fact work with buffers of size 𝑂(

√
𝑛),

improving upon the other local algorithms presented there.
We then show a tight bound of Θ(log𝑛) on the buffer size

needed by any local algorithm for information gathering on
directed paths and trees. On one hand, we prove a lower
bound of Ω(𝑐 log𝑛/ℓ) (more precisely 𝑐(1 + (log𝑛− 2 log ℓ−
1)/2ℓ)) for the buffer sizes required by ℓ-local algorithms on
directed paths of length 𝑛, where the injection rate of the
adversary and the link capacity are both 𝑐. The lower bound
also holds for bidirectional paths, albeit with a constant factor
that is worse by a factor of 4. This is significantly tighter
than the result of [17], and it applies to arbitrary constant
locality ℓ.

On the other hand, for 𝑐 = 1, we give local algorithms for
directed paths and trees that require buffers of size 𝑂(log𝑛).
For the directed path, we give a very simple 1-local algorithm
that achieves an upper bound of log𝑛+3, i.e. within a factor of
2 of the lower bound. In comparison with the algorithm from
[17], our algorithm is simpler, achieves a better bound and
works on a directed line, while the algorithm of [17] balances
queues by sending packets away from the sink. However, the
adversary considered in [17] is stronger, and thus the results
are not comparable. For the directed tree, we give a very
simple 2-local algorithm that achieves an upper bound of
𝑂(log𝑛). This is in contrast with the lower bound of Ω(𝑛)
shown in [18] for spider graphs, emphasizing the difference
between our adversary models.

To the best of our knowledge, the previous best local
algorithm for convergecast in trees required buffer size Ω(𝑛)
in the worst case. While our algorithms are very simple to
specify and implement, the analysis of both algorithms is
based on a sophisticated book-keeping scheme.

After this paper was accepted, we were notified that the
same algorithm for paths and trees was independently and
concurrently proposed by Patt-Shamir and Rosenbaum [22].

2 NOTATION AND PRELIMINARIES

We consider tree networks of 𝑛 nodes. The root of the tree,
denoted 𝑠, is the sink node, which consumes packets. The
nodes model hosts or routers in a communication network,
and the edges represent communication links between them.
Each edge can forward at most 𝑐 packets along every outgoing
link in every step. We consider an adversary of rate 𝑐; in
every time step, the adversary injects a total of at most 𝑐
packets at some nodes in the network. Our lower bounds
work for any 𝑐, while our algorithms assume that 𝑐 = 1. Since
every packet is to be routed to the sink, the path taken by
a packet is assumed to be the unique shortest path to the
sink and does not need to be specified. As is common in
the literature, we assume that time is divided into steps,
each of which can be divided into 2 mini-steps. In the first
mini-step, the adversary injects ≤ 𝑐 packets into the network,
and can choose the locations for the injections arbitrarily. In

the second mini-step, each node uses its scheduling policy to
forward at most 𝑐 packets on each of its outgoing links.

For every node 𝑣, we denote by 𝑠(𝑣) its successor along
the path to the sink. The height of a node 𝑣 is the number of
packets in its buffer, and is denoted by ℎ(𝑣). A configuration
𝐶 specifies the state of the network at the beginning of a
given step. For our purposes, a configuration is specified by
the heights of all nodes in the network. We denote the height
of a node 𝑥 in configuration 𝐶 by ℎ𝐶(𝑥). We assume that
ℎ𝐶(𝑠) is always 0. Let 𝐶 be a configuration at the start of a
step, and 𝐶′ be the configuration at the start of the following
step. We use shorthands ℎ(𝑥) and ℎ′(𝑥) for ℎ𝐶(𝑥) and ℎ𝐶′(𝑥),
respectively. Throughout the paper, we denote by 𝑡 the node
into which the adversary injected a packet.

3 LOWER BOUNDS

In this section, we show lower bounds on the buffer size of
ℓ-local algorithms for information gathering on paths; i.e.
a node sees the buffer states of all other nodes up to hop
distance ℓ, but not more.

Theorem 3.1. Any ℓ-local algorithm for information gath-
ering on a directed path with link capacities 𝑐 requires buffers
of size Ω(𝑐 log𝑛/ℓ).

Proof. Let 𝑛0 be the largest number of form ℓ2𝑖 that
is smaller than 𝑛. The adversary works in stages. At the
beginning of stage 𝑖, at time 𝑡𝑖, it assumes that there is a
contiguous block 𝐵𝑖 of nodes of size 𝐾𝑖 = 𝑛0/2

𝑖 such that
the average message density in 𝐵𝑖 is at least 𝐻𝑖 = 𝑐(1+ 𝑖/2ℓ),
i.e. the total number of messages 𝑀𝑖 in the block 𝐵𝑖 is at
least 𝐾𝑖𝐻𝑖. We show that as long as 𝐾𝑖 ≥ 2ℓ, in 𝑥𝑖 = 𝐾𝑖/2ℓ
steps, the adversary is able to construct a block 𝐵𝑖+1 of size
𝐾𝑖+1 and average density 𝐻𝑖+1. This implies a lower bound
of ⌈𝐻𝑖′⌉, where 𝑖′ = log(𝑛0/2ℓ) is the number of stages.

We start by showing that the assumption holds for stage
𝑖 = 0. In each of the first 𝑛0 steps, the adversary injects 𝑐
messages at the leftmost node of the path. Set the initial
block 𝐵0 to be the leftmost 𝑛0 nodes; i.e. 𝐾0 = 𝑛0 and
𝑡0 = 𝑛0. This yields 𝐻0 = 𝑐, as none of the messages had
time to travel outside block 𝐵0.

Consider now the inductive step i.e. assume the inductive
hypothesis holds for stage 𝑖. First, consider a scenario in
which the adversary injects 𝑐 messages at the rightmost node
of 𝐵𝑖 for 𝑥𝑖 = 𝐾𝑖/2ℓ steps starting at time step 𝑡𝑖 + 1. As
the number of injected messages equals the available outflow
from 𝐵𝑖, the number of messages in 𝐵𝑖 cannot decrease.

Let 𝑀𝑟 and 𝑀𝑙 be the number of messages in the right
and left half of 𝐵𝑖, respectively, at time 𝑡𝑖+1 = 𝑡𝑖 + 𝑥𝑖. By
the inductive assumption it holds 𝑀𝑙 +𝑀𝑟 ≥ 𝐾𝑖𝐻𝑖. If 𝑀𝑟 ≥
𝐻𝑖+1𝐾𝑖+1 = (𝐻𝑖 + 𝑐/2ℓ)𝐾𝑖/2 = 𝐻𝑖𝐾𝑖/2 + 𝑐𝐾𝑖/4ℓ = 𝐻𝑖𝐾𝑖 +
𝑐𝑥𝑖/2, then the right half of 𝐾𝑖 satisfies the condition for
stage 𝑖+ 1 at time 𝑡𝑖+1 and we are done. Otherwise, we have
𝑀𝑙 = 𝐻𝑖𝐾𝑖 −𝑀𝑟 ≥ 𝐻𝑖𝐾𝑖/2− 𝑐𝑥𝑖/2.

Consider now an alternative scenario, in which the adver-
sary instead injects messages into the leftmost node of 𝐵𝑖.
As 𝑥𝑖 is chosen in such a way that the information from the

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

267

boundary of 𝐵𝑖 is not able to reach the middle of 𝐵𝑖 in time
𝑡𝑖+1, the flow of messages through the middle link is the
same in both scenarios. Hence, the number of messages in
the left half of 𝐵𝑖 is now 𝑀𝑙 + 𝑐𝑥𝑖 ≥ 𝐻𝑖𝐾𝑖/2− 𝑐𝑥𝑖/2+ 𝑐𝑥𝑖 =
𝐻𝑖+1𝐾𝑖+1 + 𝑐𝑥𝑖/2 = 𝐻𝑖+1𝐾𝑖+1.
Therefore, the adversary can always select a scenario in which
the assumption for level 𝑖 + 1 are satisfied. This argument
holds as long as 𝑥𝑖 ≥ 1, i.e. 𝐾𝑖 ≥ 2𝑙. The number of stages is
log(𝑛0/2ℓ) = ⌊log(𝑛/2ℓ2)⌋, resulting in maximal buffer size
of at least 𝑐(1 + (log𝑛− 2 log ℓ− 1)/2ℓ) ∈ Ω(𝑐 log𝑛/ℓ) �

Corollary 3.2. If the insertion model allows for insertion
of 𝑐 messages with additional burstiness of 𝛿 [21], then then
the adversary can force buffers of size 𝑐(1 + (log𝑛− 2 log ℓ−
1)/2ℓ) + 𝛿 ∈ Ω(𝑐 log𝑛/ℓ+ 𝛿).

Proof. The adversary follows the same approach, and
in the final stage adds an insertion burst of additional 𝛿
messages. �

A natural question is whether giving the algorithm the
power to forward messages in both directions might help it
to overcome the Ω(log𝑛) barrier. We answer this question in
the negative and show below that using bidirectional links
only reduces the constant factor in the lower bound:

Theorem 3.3. Any ℓ-local algorithm for information gath-
ering on an undirected path with link capacities 𝑐 requires
buffers of size Ω(𝑐 log𝑛/ℓ).

Proof. Omitted due to lack of space. �

4 1-LOCAL ALGORITHM FOR PATHS

In this section, we give an optimal 1-local algorithm for
buffer management that achieves information gathering on a
directed path using Θ(log𝑛) buffer size, for injection rate and
link capacity 𝑐 = 1. Recall that the local algorithms discussed
in [21] have either unbounded buffer size (e.g., FIE) or use
buffers of size Ω(𝑛) (Downhill, Greedy). In fact, a simple
modification of Downhill can be shown to achieve significant
improvement to 𝑂(

√
𝑛):

Theorem 4.1. Consider the local algorithm Downhill-or-
Flat which forwards a packet whenever the buffer of its suc-
cessor contains equal or smaller number of packets than its
own buffer. Algorithm Downhill-or-Flat uses buffers of size
Θ(

√
𝑛).

Proof. Omitted. �

Looking at the lower-bound examples given by Miller and
Pat-Shamir for various local algorithms, we notice that:

∙ when the adversary injects at the left, the algorithm
should efficiently (at throughput 1) forward messages
to the right, otherwise the messages pile up on the
left (FIE and Downhill fail in this). In particular, this
suggests forwarding messages to the right if the buffer
heights are equal.

∙ when the adversary injects at the right, the messages
should not keep arriving from the left, otherwise they
pile up on the right (Greedy fails in this, but also
Downhill-or-Flat).

These two requirements seem contradictory, with no appar-
ent way to satisfy them both. The main idea of our algorithm
is to satisfy the first requirement for messages on odd heights,
and the second one on even heights. If the adversary starts
injecting at the right, the packets start to pile up to the next
height, switching to the “stopped” behaviour and spreading
the piling up leftwards instead of up. If the adversary starts
injecting on the left into stopped even-height nodes, the
height raises to even and the packets start efficiently flowing
to the right. In this way, the algorithm automatically adapts
to the adversary’s behaviour. Before having a closer look at

Algorithm 1: Algorithm Odd-Even executed by node 𝑣

1 if If ℎ(𝑣) is odd then
2 forward a packet to your successor 𝑠(𝑣) iff

ℎ(𝑠(𝑣)) ≤ ℎ(𝑣)
3 else
4 forward a packet to your successor 𝑠(𝑣) iff

ℎ(𝑠(𝑣)) < ℎ(𝑣)
5 end

the behaviour of Algorithm Odd-Even, let us introduce some
notation. Let us call a node an up node if its height went up,
and a down node if its height went down, i.e. ℎ(𝑥) < ℎ′(𝑥)
for up node 𝑥 and ℎ(𝑥) > ℎ′(𝑥) when 𝑥 is a down node; the
nodes of unchanged height are steady. Note that as the link
capacity is 1, the height of a down node is always reduced by
1, while an up node can have its height raised by 1 or by 2 (if
it received from its predecessor and from the adversary, but
did not send – at any round there can be at most one such
node, called 2up). There is a special type of up node: the
node that went up from 0 to 1, while all the nodes in front
of it are of height 0. We will call it a leading-zero node. Note
that there might not be an leading-zero node in the network.

Consider first a round in which the adversary did not inject
any message. In such case, up and down nodes must alternate
in the sense that the first node in any chain of sending nodes
is always down, and the first node following this chain is
always The injection of a message by an adversary merely
raises the height of the injected node by one, e.g. making an
up node out of a steady one, or a 2up node out of an up one.

4.1 Balanced Matchings

In order to show that the heights of nodes do not go up too
much, if the height of a node 𝑥 goes up, we would like to
“charge” that increase to another node 𝑦 whose height went
down in the same round. Intuitively speaking, this is as if 𝑦
gave one if its packets to 𝑥.

We say that a non-steady node 𝑥 is a neighbour of a non-
steady node 𝑦 iff there are only steady nodes between them.

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

268

Definition 4.2. A set 𝑃 of node pairs is a balanced matching
for a configuration 𝐶′ iff

∙ every up node is paired with a neighbouring down node,
except possibly for the leading-zero node

∙ every down node is paired with a neighbouring up or
2up node, except possibly the rightmost down node

∙ the 2up node, if any, is paired with its two neighbouring
down nodes

∙ no steady node is paired with another node

These possible pairs (and one triple) will be called down-
up, up-down and down-2up-down intervals, based on the type
of nodes when traversing from the left. In what follows, the
down-2up-down interval will implicitly be treated as a down-
up interval followed by an up-down interval.

Algorithm 2: Creating a Balanced Matching

1 Set 𝑋 to be the set of non-steady nodes of 𝐶′, with the
2up node (if any) treated as two consecutive up nodes.

2 while 𝑋 contains at least two nodes do
3 processing from the left, let 𝑥 and 𝑦 be the first two

non-steady nodes in 𝑋.
4 pair 𝑥 with 𝑦 and remove them from 𝑋

5 end

Claim 1. At most one non-steady node remains unmatched
after executing Algorithm 2, and it is either the rightmost
down node, or the leading-zero.

Proof. First, note that Algorithm 2 fails to make up-
down or down-up pairs only if there are three consecutive
down or up nodes. However, this never happens: If there is
no injection, the down and up nodes alternate. If there is
an injection at node 𝑡, it can either make a steady node out
of a down node, make an up node out of a steady node or
make a 2up node out of an up node. In any case, as before
the injection the up and down nodes alternated, at most
two consecutive up nodes are created and there are no two
consecutive down nodes.

As each iteration of the while loop removes two non-steady
nodes, only the rightmost non-steady node remains unmatch-
ed, and only in case the number of non-steady nodes was even
(counting the 2up node as 2 and the down-and-injected node
as 0). Hence, it remains to be shown that if the remaining
node is an up node, it must be a leading-zero. If there is
leading-zero, by its definition it is the rightmost up node and
we are done. Consider the chain of sending nodes ending in
the sink. If there is no leading-zero node, the neighbour of
the sink must be of non-zero height and hence this chain is
non-empty. If there is no injection into this chain, the first
node of this chain must go down and being the rightmost
non-steady node, the lemma holds.

Finally, if there is injection into this chain, as the down
and up nodes alternate for non-injection case, before the
injection the number of non-steady nodes was odd (starting
with down and finishing with down). The injection either

creates a rightmost up node (if inserted inside the chain),
which will pair with the down node at the beginning of the
chain, or it transforms the rightmost down node into a steady
one. In either case, no unpaired non-steady node remains. �

Lemma 4.3. Algorithm 2 creates a balanced matching.

Proof. Consider the processing of 𝑋 in the while loop.
As the up and down nodes alternate, starting with a down
node, down-up intervals are created before encountering the
injected node. If an injection creates two neighboring up
nodes, switching to up-down intervals starting at the injected
node takes care of all the remaining non-steady nodes, with
Claim 1 taking care of the last non-steady node, if there is
any. Note that by construction no steady node is paired. �

The pairs of the balanced matching will be called matching
pairs.

The adversary could conceivably create a high-height node
𝑣 by first cheaply creating a lot of low-height nodes and then
charging those while increasing the height of 𝑣; we prevent
that be requiring ℎ𝐶(𝑦) ≥ ℎ𝐶(𝑥). The next lemma shows
that this requirement, as well as monotonicity of the intervals
between the nodes of the matching pairs, is indeed satisfied:

Lemma 4.4. Let (𝑥𝑑, 𝑥𝑢) be a matching pair with 𝑥𝑢 being
the up node of this pair. Then ℎ(𝑥𝑢) ≤ ℎ(𝑥𝑑).

Moreover, if (𝑥𝑑, 𝑥𝑢) is a down-up interval, then ℎ(𝑧) ≥
ℎ(𝑠(𝑧)) for all nodes 𝑧 ̸= 𝑥𝑢 between 𝑥𝑑 and 𝑥𝑢, and if
(𝑥𝑢, 𝑥𝑑) is an up-down interval, then ℎ(𝑧) ≤ ℎ(𝑠(𝑧)) for all
nodes 𝑧 ̸= 𝑥𝑑 between 𝑥𝑢 and 𝑥𝑑.

Proof. Let us first consider the case of (𝑥𝑑, 𝑥𝑢) being
a down-up interval, i.e. 𝑥𝑑 is behind 𝑥𝑢. As 𝑥𝑑 went down,
𝑥𝑑 ̸= 𝑡 and it sent a message to 𝑠(𝑥𝑑)), i.e. ℎ(𝑥𝑑) ≥ ℎ(𝑠(𝑥𝑑)).
As none of the nodes between 𝑥𝑑 and 𝑥𝑢 changed their height,
each one of them must have received and sent a message2.
Combining with the fact that in any chain of sending nodes,
the node heights are non-increasing yields the lemma.

If (𝑥𝑢, 𝑥𝑑) is an up-down interval, then 𝑥𝑑 has sent to 𝑠(𝑥𝑑),
but received nothing from its predecessor 𝑝𝑟(𝑥𝑑). If none of
the nodes from 𝑥𝑢 to 𝑝𝑟(𝑥𝑑) has sent a message, then their
heights form a non-decreasing sequence and the lemma holds.
However, there cannot be a node 𝑥′ between 𝑥𝑢 and 𝑥𝑑 that
has sent a message – the first non-steady successor of such a
node would be an up node, violating the definition of up-down
interval. �

4.2 Attachment Scheme

If ℎ(𝑥𝑑) > ℎ(𝑥𝑢), the adversary pays for raising the height
of 𝑥𝑢 by lowering the height of a costlier, higher height node,
a net loss. However, the case of ℎ(𝑥𝑑) = ℎ(𝑥𝑢) allows the
adversary to raise a node height without losing the effort
invested into another node of higher height. The core of the
proof is to show that in Algorithm Odd-Even such a situation
cannot occur too often. To accomplish this, when 𝑥𝑢 charges
to 𝑥𝑑 and ℎ(𝑥𝑑) = ℎ(𝑥𝑢), we take note that 𝑥𝑑 “gave” 𝑥𝑢 a

2Observe that if a node sends a message and receives injection, it is
not included in the balanced matching

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

269

2 · · · 2 · · · 4 4 5 5 4 · · · 3 · · · 1 · · · 1 · · · 1

1 2 3

1

1 2

(1)

(2)

(3)

(4)

(5)

Figure 1: An illustration of a node 𝑥 of height 5 and
all the nodes attached to its packet slots. Only the
node heights are shown, and the nodes are depicted
from left to right in decreasing order of distance from
the sink.The gray boxes correspond to the packets
of 𝑥, each accompanied with its available slots and
attachments. Residues attached to a packet of 𝑥 ap-
pear in boldface and underlined.

packet by attaching 𝑥𝑑 with the new ℎ′(𝑥𝑢)-th packet of 𝑥𝑢.
This attachment will remain until either 𝑥𝑑 changes height
or until 𝑥𝑢 loses its ℎ′(𝑥𝑢)-th packet. In this way, creating a
node 𝑥 of height ℎ+ 1 uses up two nodes of height ℎ: both
𝑥 itself (as it is no more of height ℎ), but also a node 𝑦
that attached to 𝑥. Taken to its conclusion, this means that
creating a node of height ℎ incurs cost exponential in ℎ –
provided the attached node is not reused for another up node.
The key observation (and design goal) is that once a node
𝑦 gives away a packet and becomes attached, it cannot be
charged again by another up node as long as this attachment
persists. Such a 𝑦 then becomes useless to the adversary, and
we will thus call 𝑦 a residue - it is a leftover that resulted
from the creation of a node of higher height.

In order to maintain proper bookkeeping, some attach-
ments may need to be “passed” to other nodes. To keep track
of the fact that 𝑦 virtually gives a packet to 𝑥, we create a
pointer from 𝑥 to 𝑦. However, when 𝑦 virtually received this
packet from some other node 𝑧 in a previous step, it would
have had a pointer to 𝑧; we retain this history by directly
creating a pointer from 𝑥 to 𝑧. Intuitively, the greater the
height of a node, the more pointers it will have. We formal-
ize all this in the notion of an attachment scheme defined
below. For 𝑖 ≥ 3, a packet 𝑥[𝑖] has 𝑖 − 2 available slots de-
noted 𝑥[𝑖, 1], 𝑥[𝑖, 2], . . . , 𝑥[𝑖, 𝑖− 2]. Note that every slot 𝑥[𝑖, 𝑗]
satisfies 1 ≤ 𝑗 ≤ ℎ(𝑥)− 2.

Definition 4.5. An attachment scheme 𝐴 for a configura-
tion 𝐶 is a set of ordered pairs of the form (𝑥[𝑖, 𝑗], 𝑦), where
𝑥[𝑖, 𝑗] is a packet slot and 𝑦 is a node distinct from 𝑥, such
that

(1) 𝑗 = ℎ(𝑦);
(2) each packet slot or node is attached to exactly one

element, i.e. for any (𝑥′[𝑖′, 𝑗′], 𝑦′) ∈ 𝐴 distinct from
(𝑥[𝑖, 𝑗], 𝑦), we have 𝑥[𝑖, 𝑗] ̸= 𝑥′[𝑖′, 𝑗′] and 𝑦 ̸= 𝑦′;

If (𝑥[𝑖, 𝑗], 𝑦) ∈ 𝐴, we say that slot 𝑥[𝑖, 𝑗] is attached to
node 𝑦, and similarly that node 𝑦 is attached to slot 𝑥[𝑖, 𝑗]
(we may also say 𝑥[𝑖, 𝑗] is the guardian of a residue 𝑦, as will
be explained later). We may sometimes write (𝑥, 𝑦) instead
of (𝑥[𝑖, 𝑗], 𝑦) when the values of 𝑖, 𝑗 are irrelevant. The node
𝑦 attached to 𝑥[𝑖, 𝑗] is denoted 𝑎𝑡𝑡𝐴(𝑥[𝑖, 𝑗]).

Figure 1 illustrates a node 𝑥 with all its available packet
slots attached to a node of appropriate height.

Lemma 4.6. Let 𝐴 be an attachment scheme for a con-
figuration 𝐶. Let 𝑚 := max𝑥∈𝑉 ℎ𝐶(𝑥), and assume 𝑚 ≥ 3.
Then there are at least 2𝑚−2 − 1 distinct nodes that are a
residue of 𝐴.

Proof. For a node 𝑥 ∈ 𝑉 , denote by 𝑅′(𝑥) the set of
residues of 𝐴 that are attached to a packet slot of 𝑥, i.e.
𝑅′(𝑥) =

⋃︀
3≤𝑖≤ℎ(𝑥)

⋃︀
1≤𝑗≤𝑖−2{𝑎𝑡𝑡𝐴(𝑥[𝑖, 𝑗])}. Define 𝑅(𝑥) in-

ductively as follows: if ℎ(𝑥) ≤ 3, then 𝑅(𝑥) = 𝑅′(𝑥), and
if ℎ(𝑥) ≥ 4, then 𝑅(𝑥) = 𝑅′(𝑥) ∪

⋃︀
𝑥′∈𝑅′(𝑥) 𝑅(𝑥′). That is,

𝑅(𝑥) is the set of residue nodes that are attached to 𝑥 di-
rectly or indirectly. Observe that for any two 𝑥 and 𝑥′ with
ℎ(𝑥) = ℎ(𝑥′), we have |𝑅(𝑥)| = |𝑅(𝑥′)|.

For an integer 𝑝, denote by 𝑟(𝑝) the cardinality of 𝑅(𝑥) for
a node 𝑥 such that ℎ(𝑥) = 𝑝. We show that 𝑟(𝑝) = 2𝑝−2 − 1.
We have 𝑟(1) = 𝑟(2) = 0, since nodes of height 1 or 2 have no
available slots for residues. For 𝑝 ≥ 3, a node 𝑥 with ℎ(𝑥) = 𝑝
has a packet 𝑥[𝑝] with each slot 𝑥[𝑝, 1], . . . , 𝑥[𝑝, 𝑝−2] attached
to a residue, and there are 𝑝 − 2 of those. Also, for each
1 ≤ 𝑖 ≤ 𝑝−2, the residue 𝑎𝑡𝑡𝐴(𝑥[𝑝, 𝑖]) implies the existence of
𝑟(𝑖) other residue nodes. Moreover, the packet 𝑥[𝑝−1] implies
the existence of 𝑟(𝑝−1) residue nodes. Note that by Rule 2 of
attachment schemes, no residue is double-counted. Thus, we
get 𝑟(𝑝) = 𝑝−2+

∑︀𝑝−1
𝑖=1 𝑟(𝑖) = 𝑝−2+𝑟(𝑝−1)+

∑︀𝑝−2
𝑖=1 𝑟(𝑖) =

𝑝−2+𝑟(𝑝−1)+𝑟(𝑝−1)− (𝑝−3) = 1+2𝑟(𝑝−1) = 2𝑝−2−1,
when 𝑟(2) = 0 (the third equality is due to 𝑟(𝑝 − 1) =

𝑝−3+
∑︀𝑝−2

𝑖=1 𝑟(𝑖)). The Lemma follows by setting 𝑝 = 𝑚. �

Lemma 4.7. Let 𝐴 be an attachment scheme for a config-
uration 𝐶. Then max𝑥∈𝑉 ℎ𝐶(𝑥) ≤ log𝑛+ 3.

Proof. By Lemma 4.6, if 𝑚 := max𝑥∈𝑉 ℎ𝐶(𝑥), then there
are at least 2𝑚−2 − 1 nodes that are a residue. Since all these
nodes are distinct, we have 2𝑚−2 − 1 ≤ 𝑛, which yields
𝑚 ≤ log𝑛+ 3. �

4.3 Maintaining an Attachment Scheme

Due to lack of space, proofs of lemmas are omitted in this
subsection.

If for every configuration 𝐶, there exists an attachment
scheme, it follows from Lemma 4.7 that the height of every
node in the path is always upper bounded by log𝑛+ 3. We
now proceed to show by induction that every configuration
indeed admits an attachment scheme. The initial configu-
ration consists of height 0 (i.e. slot-free) nodes, hence it
vacuously admits an attachment scheme. If a configuration
𝐶 admits an attachment scheme, then we will show that the
next configuration 𝐶′ also admits one. The transition from
𝐶 to 𝐶′ is done by handling separately and independently
the matching pairs of 𝐶′: We present an algorithm which
processes a matching pair {𝑥𝑢, 𝑥𝑑} by changing the heights
of its nodes to their new values in 𝐶′ and rearranging some
attachments coincident with 𝑥𝑢 or 𝑥𝑑 so that an attachment
scheme is maintained.

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

270

2 · · · 4 · · · 6 (7 7 5 4) 5 · · · 3 · · · 1

2 · · · 4 · · · 6 (6 7 5 5) 5 · · · 3 · · · 1

2 · · · 5 (4 4 4) 3 · · · 1

2 · · · 5 (5 4 3) 3 · · · 1

5 · · · (3 4 4 6) · · · 3

5 · · · (4 4 4 5) · · · 3

(1) (2) (3)

xd xu

xd xu

xu

xu

xd

xd

xd

xd

xu

xu

Figure 2: Three examples of applying Algorithm 4. Top: the state before, bottom: the state after. The paren-
theses surround the processed matching pair. We only represent the packets, attachments and residues of
interest. (1) A down-up interval illustrating how 𝑥𝑑 passes all possible attachments to 𝑥𝑢 (line 7 of Algo-
rithm 4). Note that the residues of value 4 and 5 gets detached in 𝐶𝑃 ′ . (2) An up-down interval in which
ℎ𝑑 = ℎ𝑢 = 4. Here 𝑥𝑑 passes all its attachments, in addition to becoming a residue attached to 𝑥𝑢 (line 9). (3)
An up-down interval in which 𝑥𝑢 was a residue attached to some slot 𝑧[𝑖, ℎ𝑢] (here 𝑧 is the node of value 5), and
𝑥𝑑[ℎ𝑑, ℎ𝑢] is attached to a node 𝑦 (𝑦 is the node of value 3). After processing, 𝑦 is attached to 𝑧[𝑖, ℎ𝑢] (line 18).

In order to carry out the inductive step, we need to
strengthen the definition of an attachment scheme:

Definition 4.8. An attachment scheme 𝐴 is valid, if in
addition to Rules 1 and 2, the following rules are satisfied for
each residue 𝑦 and its guardian 𝑥 of 𝐴:

(3) if ℎ(𝑦) is even, then 𝑥 is in front of 𝑦;
(4) if ℎ(𝑦) is odd, then 𝑥 is behind 𝑦;
(5) for every node 𝑧 on the path between 𝑥 and 𝑦, ℎ(𝑧) ≥

ℎ(𝑦).

Let 𝑃 be a subset of matching pairs of a balanced matching
of 𝐶′. We say that 𝐶𝑃 is an intermediate configuration for 𝑃
iff ∀𝑥, 𝑥 ∈ 𝑃 : ℎ𝐶𝑃 (𝑥) = ℎ(𝑥), while ∀𝑥, 𝑥 /∈ 𝑃 : ℎ𝐶𝑃 (𝑋) =
ℎ′(𝑥).

We will need the following three technical lemmas:

Lemma 4.9. If (𝑥𝑢, 𝑥𝑑) is a matching pair with ℎ(𝑥𝑢) =
ℎ(𝑥𝑑) = ℎ then 𝑥𝑢 is not a residue.

The following lemma is crucial in proving that the residues
are not shared:

Lemma 4.10. Let 𝑦 be a residue of 𝐴. Then 𝑦 is not a
down node.

Lemma 4.11. The following facts hold when Algorithm 4
processes a matching pair (𝑥𝑑, 𝑥𝑢):

(1) after being processed, no up node remains a residue of
another node

(2) no existing slot has become empty
(3) no new empty slot has been created
(4) whenever an attachment to residue 𝑦 is transferred

a) from 𝑥𝑑 to 𝑥𝑢 on line 7
b) from 𝑧 to 𝑥𝑑 on line 15
c) from 𝑥𝑑 to 𝑧 on line 18
ℎ′(𝑤) ≥ ℎ′(𝑦) holds for all nodes between the nodes
transferring the attachment (endpoints included)

(5) the relative order (in front of, or behind) between residues
and their guardians never changes

Algorithm 3: Processing a balanced matching.

Input : Configurations 𝐶 and 𝐶′ and an attachment
scheme 𝐴 for 𝐶

Output : An attachment scheme 𝐴′ for 𝐶′′, where 𝐶′′

differs from 𝐶′ (and equals 𝐶) only for the
possible down-2up-down triple, the leading-zero
and the unmatched rightmost down node

1 Let 𝑀 be a balanced matching for 𝐶′

2 Set 𝑃 := 𝑀 and 𝐴′ := 𝐴

3 while 𝑃 ̸= ∅ do
4 Let (𝑥𝑑, 𝑥𝑢) be a matching pair from 𝑃

5 Set 𝐴′ := processPair(𝐶𝑃 , 𝐴
′, 𝑥𝑑, 𝑥𝑢);

6 Set 𝑃 := 𝑃 ∖ {𝑥𝑑, 𝑥𝑢};
7 end

8 Return (𝐴′)

This allows us to prove that all the rules of the attachment
scheme are satisfied:

Lemma 4.12. Processing one pair by Algorithm 4 main-
tains all the rules of the attachment scheme.

We can now prove the upper bound on buffer sizes.

Theorem 4.13. Algorithm Odd-Even uses buffers of size
at most log𝑛+ 3.

Proof. It follows from Lemma 4.12 that processing all
pairs of a balanced matching by Algorithm 4 (including the
two pairs concerning down-2up-down interval) maintains a
valid attachment scheme. What remains to be dealt with is
the right-most down node and the leading-zero node. The
last one is not a problem, as it was of height 0 and hence not
a residue, nor does it have a packet slot, as it is of height 1.
The right-most down node could have only released some
attachments, and did not gain any, so it does not need any
sophisticated (creation/passing) attachment processing (by
Lemma 4.10 it was not a residue, so no empty slots were
created either).

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

271

Algorithm 4: Handling a matching pair.

1 function processPair (𝐶𝑃 , 𝐴𝑃 , 𝑥𝑑, 𝑥𝑢);
Input : An intermediate configuration 𝐶𝑃 , an

attachment scheme 𝐴𝑃 for 𝐶𝑃 , and a matching
pair (𝑥𝑑, 𝑥𝑢) ∈ 𝑃 with 𝑥𝑑 and 𝑥𝑢 being the up
and down nodes, respectively.

Output : An attachment scheme 𝐴𝑃 ′ for 𝐶𝑃 ′ , where 𝑃 ′

is obtained from 𝑃 by removing (𝑥𝑑, 𝑥𝑢).
2 Let ℎ𝑑 := ℎ(𝑥𝑑) and ℎ𝑢 := ℎ(𝑥𝑢)

3 Let 𝐴′ := 𝐴𝑃 .

4 if there is a slot 𝑥𝑑[𝑖, ℎ𝑢] such that (𝑥[𝑖, ℎ𝑢], 𝑥𝑢) ∈ 𝐴′

and 𝑖 ̸= ℎ𝑑 then
5 Swap the 𝑥𝑑[𝑖, ℎ𝑢] and 𝑥𝑑[ℎ𝑑, ℎ𝑢] attachments: in 𝐴′,

replace (𝑥𝑑[𝑖, ℎ𝑢], 𝑥𝑢) by (𝑥𝑑[𝑖, ℎ𝑢], 𝑎𝑡𝑡𝐴𝑃 (𝑥𝑑[ℎ𝑑, ℎ𝑢]))
and replace (𝑥𝑑[ℎ𝑑, ℎ𝑢], 𝑎𝑡𝑡𝐴𝑃 (𝑥𝑑[ℎ𝑑, ℎ𝑢])) by
(𝑥𝑑[ℎ𝑑, ℎ𝑢], 𝑥𝑢). ; // Here we ensure that when

𝑥𝑢 gets detached, it does not leave slot

𝑥𝑑[𝑖, ℎ𝑢] empty

6 end

7 Pass all possible attachments from the 𝑥𝑑[ℎ𝑑] packet to
the 𝑥𝑢[ℎ𝑢 + 1] packet and remove the others, i.e. remove
from 𝐴′ all the attachments
{(𝑥𝑑[ℎ𝑑, 𝑖], 𝑎𝑡𝑡𝐴𝑃 (𝑥𝑑[ℎ𝑑, 𝑖])) : 1 ≤ 𝑖 ≤ ℎ𝑑 − 2} and add to
𝐴′: {(𝑥𝑢[ℎ𝑢 + 1, 𝑗], 𝑎𝑡𝑡𝐴𝑃 (𝑥𝑑[ℎ𝑑, 𝑗])) : 1 ≤ 𝑗 ≤
min(ℎ𝑑 − 2, ℎ𝑢 − 1)}

8 if ℎ𝑑 = ℎ𝑢 and ℎ𝑑 ≥ 2 then
9 Add (𝑥𝑢[ℎ𝑢 + 1, ℎ𝑢 − 1], 𝑥𝑑) to 𝐴′

10 end

11 if 𝑥𝑢 is a residue of 𝐴𝑃 then
12 Let 𝑧[𝑖, ℎ𝑢] be the packet slot attached to 𝑥𝑢 in 𝐴′

13 Remove the (𝑧[𝑖, ℎ𝑢], 𝑥𝑢) attachment from 𝐴′

14 if ℎ𝑑 = ℎ𝑢 + 1 then
15 Add to 𝐴′ the attachment (𝑧[𝑖, ℎ𝑢], 𝑥𝑑)

16 else if ℎ𝑑 ≥ ℎ𝑢 + 2 and 𝑧 ̸= 𝑥𝑑 then
17 Let 𝑦 = 𝑎𝑡𝑡𝐴′(𝑥𝑑[ℎ𝑑, ℎ𝑢])

18 Add to 𝐴′ the attachment (𝑧[𝑖, ℎ𝑢], 𝑦)

19

20 end

21 Return 𝐴′ as 𝐴𝑃 ′

Note that handling the down-2up-down interval as a se-
quence of two intervals sharing an up node is perfectly fine:
from the point of the right pair this looks the same as if 𝑡
was of height ℎ(𝑡) + 1 and received a message from the left.
Lemma 4.7 now completes the proof of the theorem. �

5 2-LOCAL ALGORITHM FOR TREES

Notice that in this section, due to lack of space, all proofs
are omitted.

The first observation is that lookahead of 1 is not suffi-
cient: Consider node 𝑢 having

√
𝑛 neighbours and the same

schedule as discussed in its caption. When the packets arrive
simultaneously to 𝑣’s, each 𝑣𝑖 will send a packet to 𝑢, forcing
𝑢 to need buffer of size

√
𝑛.

Hence, we consider a 2-local algorithm. The algorithm is a
straightforward generalization of Algorithm Odd-Even:

Algorithm 5: Algorithm Tree

1 if the height ℎ of the node is odd then
2 forward a packet to your successor iff its height is at

most ℎ and you have the highest priority among
your siblings

3 else
4 forward a packet to your successor iff its height is

less than ℎ and you have the highest priority among
your siblings// even height ℎ

5 end

The algorithm is completed by specifying the priority
scheme: A sibling with a higher height has higher priority.
Among the siblings of the same maximal height, choose
arbitrarily.

Let us now introduce more nomenclature. An internal node
𝑣 of in-degree at least 2 will be called an intersection. For a
fixed round, in each intersection there will be at most one
incoming packet; the branch where it comes from will be
called a priority line3. A non-priority line ends in a blocked
node. Hence, the tree can be viewed as a set of lines, starting
in leaves and ending in blocked nodes, with one branch, called
drain making it all the way to the sink. One of the lines might
contain the injected node – we will call it the injected line.
All other lines are normal. Note that the up and down nodes
on non-injected lines alternate, starting with a down node
(exactly like in paths) and ending with a leading-zero or down
node if the line is a drain, otherwise ending with an up node.

Algorithm 6: Balanced Matching on a Tree

1 For each line, apply the balanced matching algorithm for
paths:

2 if the injection was on the priority line to the sink then
3 we are done, nothing left to do

4 else
5 while there is an unmatched up node 𝑥𝑢 do
6 Let 𝑣 be first intersection in front of 𝑥𝑢, and let

𝑝𝑣 be the priority line containing 𝑣.
7 Let 𝑥𝑑 be the first down node behind 𝑣 on 𝑝𝑣.

8 Remove the pairs (including the one containing
𝑥𝑑) in front of 𝑥𝑑 on the line of 𝑥𝑑

9 Add (𝑥𝑑, 𝑥𝑢) to the set of matching pairs

10 Process the remainder of the 𝑥𝑑’s line using the
algorithm for paths (i.e. add up-down pairs while
possible)

11 end

12 end

3It can happen that the intersection has no incoming packet. In such
a case, we choose as the priority line, the line into which there was an
injection; if no such line is behind, select arbitrarily.

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

272

The first step is a generalization of balanced matchings to
trees: The matchings for each normal line translate directly
(they are each just a collection of down-up intervals from left
to right). If the injected line is also the drain one, this is
handled as in the single line case with injection. But if the
injected and drain lines are different, let 𝑣 be the intersection
on which the injected line blocks. As each normal blocked line
has an equal number of up and down nodes, the injected line
has an excess of one up node: Applying Algorithm 2 leaves
it with the rightmost up node 𝑥 unpaired. At this moment,
it is impossible to carry on constructing balanced matching
as a union of balanced matchings of the lines: We need to
introduce crossover pairs containing nodes from different
lines. This is what is done in the while loop: As the last non-
steady node 𝑦 of the priority line is down, we pair 𝑥 with 𝑦 to
form a crossover pair. Since we have removed 𝑦 from its line,
we need to re-do its pairings that were in front of 𝑦, switching
to up-down intervals. This possibly leaves another unmatched
up node at the end, which needs to be handled in the same
manner. We make these crossover pairs until we eventually
reach the drain, where the up-down matchings do not leave
an unmatched up node at the end. An example of applying
Algorithm 6 is shown in Figure 3. Hence, a tree-version of
Lemma 4.3 holds:

down node

up node

blocked node

leading zero

priority path

matching pair

blocked edge

crossover pair

u1

u2

d1

d2

v1

v2

injected node

w1 w2

w3 w4 w5

Figure 3: Constructing balanced matching on a tree.
Due to adding the (𝑢1, 𝑑1) matching, the matchings
(𝑑1, 𝑤1) and (𝑤2, 𝑢2) were removed and replaced by
(𝑤1, 𝑤2), leaving 𝑢2 unpaired. This forced the (𝑑2, 𝑢2)
matching, then switching the (𝑑2, 𝑤3) and (𝑤4, 𝑤5) into
(𝑤3, 𝑤4) and leaving 𝑤5 unpaired.

Lemma 5.1. Algorithm 6 creates a balanced matching.

We will often make use of the following simple property of
matching pairs.

Lemma 5.2. Let 𝑥𝑢 be an up node lying on a priority path
𝑝 that is not the drain, and let 𝑣 be intersection node on
which 𝑝 does not have priority. Then 𝑥𝑢 is matched with a
node 𝑥𝑑 behind 𝑣.

In paths, the notion of between two nodes is straightforward.
In trees, we will generalize it to fit our purpose: between 𝑥
and 𝑦 is satisfied by all nodes on the path from 𝑥 to 𝑦, except
for the node 𝑣 (if any) in which this path changes direction
from forward to backward. This node will be called the tip
of the crossover pair.

Before introducing the tree-version of Lemma 4.4 we need
a bit more notation: Let (𝑥, 𝑦) be a crossover pair with tip 𝑣.
𝑝𝑣(𝑧) will denote the predecessor of 𝑣 on the path from 𝑧 to
𝑣. If clear from the context, we will omit the subscript 𝑣.

We now show a tree-version of Lemma 4.4:

Lemma 5.3. Let (𝑥𝑑, 𝑥𝑢) be a matching pair with 𝑥𝑢 being
the up node of this pair. Then ℎ(𝑥𝑢) ≤ ℎ(𝑥𝑑) and ℎ(𝑧) ≥
ℎ(𝑥𝑢) for all nodes 𝑧 between 𝑥𝑢 and 𝑥𝑑.

Moreover, the nodes on the path from 𝑥𝑑 to 𝑥𝑢 appear in
non-increasing order of height, with the possible exception of
the tip 𝑣 between 𝑥𝑑 and 𝑥𝑢.

The attachment scheme is defined analogously as for the
path case. However, in order to limit technicalities, we limit
Rule 2 to residues of even value. This implies that Lemmas 4.6
and 4.7 yield a 2 log𝑛+𝑂(1) bound.

The Rules 3, 4 and 5 are replaced as follows:

Definition 5.4. For each pair (𝑥, 𝑦) of an attachment scheme,
where 𝑦 is a residue and 𝑥 is its guardian, the following rules
must be satisfied:

(6) if ℎ(𝑦) is even, 𝑥 is not behind 𝑦;
(7) if (𝑥, 𝑦) is not a crossover pair, then ℎ(𝑧) ≥ ℎ(𝑦) holds

for every node 𝑧 on the path between 𝑦 and 𝑝(𝑦);
otherwise if (𝑥, 𝑦) is a crossover pair, ℎ(𝑧) ≥ ℎ(𝑦) holds
for every node 𝑧 on the path between 𝑦 and 𝑝(𝑦), and
ℎ(𝑧) > ℎ(𝑦) holds for every node 𝑧 on the path between
𝑥 and 𝑝(𝑥).

This allows us to prove (using the same arguments; note
that the proof is not valid for odd-height residues) the tree-
version of Claim 4.10:

Claim 2. Let 𝑥 be an even-height residue of 𝐴. Then 𝑥
does not go down.

In the rest of the proof, when we discuss residues and
attachments, we limit ourselves to even height residues and
corresponding attachment pairs.

First, we show that Lemma 4.9 holds also for trees. As
this was the only necessary ingredient for Fact 2, this implies
that after running Algorithm 4 on every matching pair, the
resulting attachment scheme is still full.

Lemma 5.5. If (𝑥𝑢, 𝑥𝑑) is a matching pair with ℎ𝑢 = ℎ𝑑 =
ℎ, then 𝑥𝑢 is not a residue.

The proofs of Facts 1, 2 and 3 of Lemma 4.11, as well as the
proofs from Lemma 4.12 that Rules 1 and 2 are satisfied are

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

273

based on the behaviour of Algorithm 4, using in addition only
Claim 4.10 and Lemma 4.9; using Claim 2 and Lemma 5.5
instead, the same proofs apply to trees without need for any
modifications.

We prove that, after running Algorithm 4 on a single
matching pair, crossover or not, Rules 6 and 7 are satisfied
directly (here we do not refer to Facts 4 and 5). As before,
ℎ(𝑥) is the height of a node at the start of the round, and
ℎ′(𝑥) its height after the round.

We first establish that unmodified attachments are still
valid, then proceed with the new attachments created by the
algorithm.

Lemma 5.6. Let (𝑥, 𝑦) be an attachment of 𝐴 that has not
changed after running Algorithm 4 on a matching pair. Then
(𝑥, 𝑦) still satisfies Rules 6 and 7.

Lemma 5.7. Let (𝑥𝑢, 𝑥𝑑) be a new attachment created on
line 9. Then (𝑥𝑢, 𝑥𝑑) satisfies Rules 6 and 7.

Lemma 5.8. Let (𝑥𝑢, 𝑦) be an attachment formed by pass-
ing 𝑦 from 𝑥𝑑 to 𝑥𝑢 on line 7 of Algorithm 4. Then (𝑥𝑢, 𝑦)
satisfies Rules 6 and 7.

Lemma 5.9. Let (𝑧, 𝑥𝑑) be an attachment formed by swap-
ping the residue of 𝑧 from 𝑥𝑢 to 𝑥𝑑 on line 15 of Algorithm 4.
Then (𝑧, 𝑥𝑑) satisfies Rules 6 and 7.

Lemma 5.10. Let (𝑧, 𝑦) be an attachment formed on line 18
of Algorithm 4. Then (𝑧, 𝑦) satisfies Rules 6 and 7.

We have shown that after running Algorithm 4 on a given
matching pair (𝑥𝑑, 𝑥𝑢), all the unmodified attachments are
still valid, and the newly created ones also satisfy the required
rules. As before, after processing every single matching pair,
we reach the final configuration along with a full attachment
scheme. As the handling of the possible leading-zero, down-
2up-down intervals, and unpaired rightmost down node is
the same as for paths, this completes the proof that a full
attachment scheme is maintained in trees. Combining with
Lemmas 4.6 and 4.7 yields:

Theorem 5.11. Algorithm Tree uses buffers of size at
most 𝑂(log𝑛).

6 CONCLUSIONS

We studied the information gathering problem in paths and
trees under the assumption of adversarial traffic. Given an
adversary that can inject at most 𝑐 packets into the network
in every step, we showed an Ω(log𝑛) lower bound on the
buffer space needed to ensure no packet loss. For 𝑐 = 1, we
gave deterministic local algorithms that match this bound for
directed paths and trees. The existence of local algorithms
with 𝑂(log𝑛) buffers for higher rate adversaries remains open.
A natural question to ask is if our algorithms generalize to
arbitrary routing patterns, or to DAGs. Another intriguing
direction for further research is the delay characteristics of
our algorithm as well as those of other algorithms proposed
in the literature (for example [17]).

REFERENCES
[1] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosén. 2005.

Competitive Queue Policies for Differentiated Services. Journal
of Algorithms 55, 2 (2005), 113–141.

[2] W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén. 2003.
Dynamic routing with fixed size buffers. In Proceedings of SODA.
771–780.

[3] C. Alvarez, M. Blesa, and M. Serna. 2004. A characterization of
universal stability in the adversarial queueing model. SIAM J.
Comput. 34, 1 (2004), 41–66.

[4] M. Andrews. 2004. Instability of FIFO in session-oriented net-
works. Journal of Algorithms 50, 2 (2004), 232–245.

[5] M. Andrews, B. Awerbuch, A. Fernández, T. Leighton, Z. Liu, and
J. Kleinberg. 2001. Universal-stability Results and Performance
Bounds for Greedy Contention-resolution Protocols. J. ACM 48,
1 (Jan. 2001), 39–69.

[6] M. Andrews, A. Fernandez, A. Goel, and L. Zhang. 2005. Source
routing and scheduling in packet networks. J. ACM 52, 4 (2005),
582–601.

[7] S. Angelov, S. Khanna, and K. Kunal. 2009. The network as a stor-
age device: dynamic routing with bounded buffers. Algorithmica
55 (2009), 71–94.

[8] E. Anshelevich, D. Kempe, and Kleinberg. J. 2008. Stability of
load balancing algorithms in dynamic adversarial systems. SIAM
Journal of Computing 37, 5 (2008), 1656–1673.

[9] Y. Azar and R. Zachut. 2005. Packet routing and information
gathering in lines, rings, and trees. In Proceedings of ESA. 484–
495.

[10] R. Bhattacharjee, A. Goel, and Z. Lotker. 2005. Instability of
FIFO at arbitrarily low rates in the adversarial queueing model.
SIAM J. Comput. 34, 2 (2005), 318–332.

[11] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P.
Williamson. 2001. Adversarial Queuing Theory. J. ACM 48, 1
(2001), 13–38.

[12] J. Diaz, D. Koukopoulos, S. Nikoletseas, M. Serna, P. Spirakis,
and D. Thilikos. 2001. Stability and non-stability of the FIFO
protocol. In Proceedings of SPAA. 48–52.

[13] G. Even and M. Medina. 2010. An 𝑂(log𝑛)-Competitive Online
Centralized Randomized Packet-Routing Algorithm for Lines. In
Proceedings of ICALP, Part II. 139–150.

[14] G. Even and M. Medina. 2011. Online packet routing in grids
with bounded buffers. In Proceedings of SPAA. 215–224.

[15] G. Even and M. Medina. 2016. Online packet routing in grids
with bounded buffers. Algorithmica (2016). https://doi.org/10.
1007/s00453-016-0177-0

[16] E. Gordon and A. Rosén. 2005. Competitive Weighted Throughput
Analysis of Greedy Protocols on DAGs. In Proceedings of PODC.
227–236.

[17] K. Kothapalli and C. Scheideler. 2003. Information gathering in
adversarial systems: lines and cycles. In Proceedings of SPAA.
333–342.

[18] K. Kothapalli and C. Scheideler. 2006. Lower bounds for in-
formation gathering in adversarial systems. In Proceedings of
International Conference on Distributed Computing in Sensor
Systems.

[19] D. Koukopoulos, M. Mavronicolas, S. Nikoletseas, and P. Spirakis.
2002. On the stability of compositions of universally stable, greedy
contention-resolution protocols. In Proceedings of DISC. 88–102.

[20] Z. Lotker, B. Patt-Shamir, and A. Rosén. 2004. New stability
results for adversarial queueing. SIAM J. Comput. 33, 3 (2004),
286–303.

[21] A. Miller and B. Patt-Shamir. 2016. Buffer Size for Routing
Limited-Rate Adversarial Traffic. In Proceedings of Distributed
Computing: 30th International Symposium, DISC 2016. 328–
341.

[22] B. Patt-Shamir and W. Rosenbaum. 2017. The Space Require-
ment of Local Forwarding on Acyclic Networks. In Proceedings
of PODC, to appear.

[23] A. Rosén and G. Scalosub. 2007. Rate vs. Buffer Size: Greedy
Information Gathering on the Line. In Proceedings of the Nine-
teenth Annual ACM Symposium on Parallel Algorithms and
Architectures ((SPAA)). 305–314.

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

274

https://doi.org/10.1007/s00453-016-0177-0
https://doi.org/10.1007/s00453-016-0177-0

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our results

	2 Notation and preliminaries
	3 Lower Bounds
	4 1-local algorithm for paths
	4.1 Balanced Matchings
	4.2 Attachment Scheme
	4.3 Maintaining an Attachment Scheme

	5 2-local algorithm for trees
	6 Conclusions
	References

