
Brief Announcement: Hazard Eras - Non-Blocking Memory
Reclamation

Pedro Ramalhete
Cisco Systems

pramalhe@gmail.com

Andreia Correia
Concurrency Freaks

andreiacraveiroramalhete@gmail.com

ABSTRACT
For non-blocking data-structures, only memory reclamation with
pointer-based techniques can maintain non-blocking progress, but
there can be high overhead associated to these techniques, with the
most notable example being Hazard Pointers.

We present a new algorithm we named Hazard Eras, which al-
lows for efficient lock-free or wait-free memory reclamation in
concurrent data structures and can be used as drop-in replacement
to Hazard Pointers. Results from our microbenchmark show that
when applied to a lock-free linked list, Hazard Eras will match
the throughput of Hazard Pointers in the worst-case, and can out-
perform Hazard Pointers by a factor of 5x. Hazard Eras provides
the same progress conditions as Hazard Pointers and can equally
be implemented with the C11/C++11 memory model and atomics,
making it portable across multiple systems.

CCS CONCEPTS
• Theory of computation → Concurrent algorithms;

KEYWORDS
memory reclamation; hazard pointers; lock-free; wait-free; non-
blocking; concurrent data structures

1 INTRODUCTION
Concurrent data structures are often measured on two vectors:
the throughput they provide and the progress they guarantee.
Data structures with lock-free progress are not that common, and
with wait-free characteristics even less. To make things worse,
the progress conditions of the memory reclamation technique can
further reduce the progress of either readers (threads calling meth-
ods that de-reference pointers in the data structure) or reclaimers
(threads calling methods that attempt to reclaim and delete an
object/node in the data structure). Existing techniques for man-
ual concurrent memory reclamation fall into one of three groups:
quiescence-based, reference counting, and pointer based.

Quiescence-based techniques, like the Epoch-based by Fraser [3],
Harris [5], or Userspace RCU [6], reclaimmemorywhenever readers
pass though a quiescent state in which no reader holds a reference
to a shared object. These techniques have light synchronization and
can be wait-free for readers, but their throughput is significantly

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’17, July 24-26, 2017, Washington DC, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4593-4/17/07.
https://doi.org/10.1145/3087556.3087588

impacted by delays on readers, which can block the reaching of
quiescent states, thus preventing any other thread from reclaiming
memory [2]. Moreover, they can have an unbounded amount of un-
reclaimed memory, which can fatally exhaust all memory available
to the application when there is a slow reader, or just because there
is high oversubscription (more threads than cores to run them on).

Reference counting techniques [4] require expensive synchro-
nization on the readers side [6], cause contention among readers
and have several limitations as described in chapter 9.1 of [8].

Pointer-based techniques, such as Hazard Pointers [9], Pass
The Buck [7], or Drop The Anchor [1], explicitly mark live objects
(objects accessible by other threads) which can not be de-allocated.
These techniques are wait-free for reclamation and it is possible to
use them in a wait-free way for readers for some algorithms [11],
but they are typically deployed lock-free.

2 OVERALL DESIGN
Hazard Eras (HE) combines the low synchronization overhead of
epoch-based techniques with the non-blocking properties of Hazard
Pointers (HP) for both readers and reclaimers, while providing the
same API as Hazard Pointers, specifically, the API that is currently
being proposed to the C++ standard library [10].

In HE, the object’s lifetime is tracked with a global monotonic
clock, the eraClock. When an object is created, the current value
of eraClock is stored in object.newEra, and when the object is
retired, the current value of eraClock is stored in object.delEra,
and subsequently the eraClock is atomically incremented. Every
time an object’s lifetime arrives at an end, the current era ends and
a new era begins.

Unlike HP, where readers publish the pointer that they are using,
in HE the reader publishes the era that was in eraClock at the
point in time when the hazardous reference was read. One era must
be published for each different pointer in use, just like on HP.

A reader that publishes an era with a value of x is guarantee-
ing that (after re-validation of eraClock) no object with a lifetime
that encompasses x will be deleted. By definition, all objects cur-
rently in a live state are now protected from deletion, however,
objects created after this era may be subsequently deleted, which is
not possible in Epoch-based reclamation. In Epoch-based memory
reclamation, all objects retired after a reader has started, will not
be deleted unless the reader completes, because there is still an
ongoing reader and it may be accessing those objects.

In HE, all objects created with a newEra greater than the highest
of the published eras by all readers, can be retired and deleted. The
algorithm guarantees that readers which published a precedent era
can not have access to the objects of a higher era, and to be able
to access those objects they will observe the era has changed and

SESSION 8 SPAA’17, July 24-26, 2017, Washington, DC, USA

367

https://doi.org/10.1145/3087556.3087588


Algorithm 1 Hazard Eras class

1 template<typename T> class HazardEras {
2
3 private:
4 static const uint64_t NONE = 0;
5 const int maxHEs;
6 const int maxThreads;
7 std::atomic<uint64_t> eraClock = { 1 };
8 std::atomic<uint64_t> he[MAX_THREADS][MAX_HES];
9 std::vector<T∗> retiredList[MAX_THREADS];
10
11 public:
12 HazardEras(int maxHEs, int maxThreads) :
13 maxHEs{maxHEs}, maxThreads{maxThreads} {
14 for (int ith = 0; ith < MAX_THREADS; ith++) {
15 for (int ihe = 0; ihe < MAX_HES; ihe++) {
16 he[ith][ihe].store(NONE, std::memory_order_relaxed);
17 }
18 }
19 }
20
21 ~HazardEras() {
22 for (int ith = 0; ith < MAX_THREADS; ith++) {
23 for (auto i = 0; i < retiredList[ith].size(); i++) {
24 delete retiredList[ith][i];
25 }
26 }
27 }

will be forced to re-read the atomic variable corresponding to the
pointer and then re-publish the most recent era.

3 HAZARD ERAS ALGORITHM
In our implementation, the HazardEras class is composed of three
objects, a global clock named eraClock, a bidimensional array of
eras named he, and an array of lists named retiredList, as shown
in Algorithm 1. The era timestamps are 64 bit integers so that
they are large enough not to cause ABA issues and still be used
atomically on recent CPUs. An instance of type T has two eras
associated to it: the era of its birth newEra, which indicates the
moment the instance was made visible to other threads, and the era
of its death delEra, where delEra+1 indicates the moment in time
after which it is no longer visible for new accesses to objects on the
data structure. The birth era of each object must be set on newEra
before the object is made visible to other threads, i.e. inserted in the
data structure, which can be easily done in the constructor of T or
one of its base classes. The death era follows a reversed procedure,
where the object is first removed from the data structure and only
then is the eraClock read and its value stored in delEra.

Similarly to Hazard Pointers [10], in Hazard Eras we have three
main APIs (get_protected(), clear(), retire()) plus one extra
(getEra()). The method retire() is called during a reclamation

Algorithm 2 Reader’s API

28 T∗ get_protected(std::atomic<T∗>& atom, int index, int tid) {
29 auto prevEra = he[tid][index].load(std::memory_order_relaxed);
30 while (true) {
31 T∗ ptr = atom.load();
32 auto era = eraClock.load(std::memory_order_acquire);
33 if (era == prevEra) return ptr;
34 he[tid][index].store(era);
35 prevEra = era;
36 }
37 }
38
39 void clear(const int tid) {
40 for (int ihe = 0; ihe < maxHEs; ihe++) {
41 he[tid][ihe].store(NONE, std::memory_order_release);
42 }
43 }
44
45 int64_t getEra() { return eraClock.load(); }

operation, done by reclaimers, while the other three methods are
called during a read operation, done by readers.

The method get_protected() in Algorithm 2 shows a lock-free
loop for protecting an hazardous reference. There is a kind of fast-
path-slow-path approach. When the eraClock has not changed
from the previous published value (line 33), there is no need to
publish again the same era value and pay the synchronization
cost of doing a sequentially-consistent (seq-cst) store (line 34). By
following this fast-path, the reader does two seq-cst loads instead
of the two seq-cst loads and one seq-cst store that are needed for
HP. This may seem a minor gain, however, seq-cst loads have an
almost free cost on x86 architectures, having very little overhead,
and therefore, providing high throughput for the readers. Even on
non-x86 architectures, the price of doing a seq-cst load relative to a
seq-cst store is much lower, thus providing higher throughput also
on architectures like PowerPC and ARM. In the object’s constructor
or before inserting it in the data structure, the return value of
getEra() must be placed in object.newEra.

The retire() method saves the current era in object.delEra
and puts the object in the thread’s retiredList. Then, to guaran-
tee progress, it will advance the eraClock if another thread has
not done so in the meantime (line 51), and scan the retiredList
for objects that can be safely deleted. If there is at least one thread
with a published era in the range [newEra;delEra] (line 68) the
object can not be deleted yet.

A rarely mentioned advantage of HP is its low bound on mem-
ory usage. Quiescent-based techniques with delegation or defer-
ral typically have no bound on memory usage. When using HP
with an R factor of 1, there is the guarantee that there are at most
MAX_THREADS × MAX_HPS objects in the retired list of each reclaimer,
and therefore, there may be at most MAX_THREADS 2× MAX_HPS re-
tired objects waiting to be deleted.

SESSION 8 SPAA’17, July 24-26, 2017, Washington, DC, USA

368



Algorithm 3 Reclaimer’s API

46 void retire(T∗ ptr, const int mytid) {
47 auto currEra = eraClock.load();
48 ptr−>delEra = currEra;
49 auto& rlist = retiredList[mytid∗CLPAD];
50 rlist.push_back(ptr);
51 if (eraClock == currEra) eraClock.fetch_add(1);
52 for (unsigned iret = 0; iret < rlist.size();) {
53 auto obj = rlist[iret];
54 if (canDelete(obj, mytid)) {
55 rlist.erase(rlist.begin() + iret);
56 delete obj;
57 continue;
58 }
59 iret++;
60 }
61 }
62
63 private:
64 bool canDelete(T∗ obj, const int mytid) {
65 for (int tid = 0; tid < maxThreads; tid++) {
66 for (int ihe = 0; ihe < maxHEs; ihe++) {
67 const auto era = he[tid][ihe].load();
68 if (era < obj−>newEra || era > obj−>delEra ||
69 era == NONE) continue;
70 return false;
71 }
72 }
73 return true;
74 }
75 };

Hazard Eras’ upper bound is limited to the number of objects
that were in the data structure at a given clock era published in
the hazard eras array, for all reader threads. At a given time t , the
bound on the maximum number of unreclaimed objects is given
by:

#


⋃

x ∈X (t )
era ∈HEs(t)

x : x .newEra ≤ era ≤ x .delEra

 (1)

where HEs(t) is the set of all clock eras published by readers at
time t , X(t) is the set of objects created until clockEra at time t . By
definition, the delEra of a live object is the highest possible value
of eraClock.

The number of objects that can remain unreclaimed on each era
becomes limited as soon as a memory reclamation event occurs
(a call to retire()). Only the latest era can have an unbounded
amount of live objects, and any unreclaimed objects are always
on previous eras. As such, it is not possible for the program to
allocate an unbounded number of objects in a single era, except
on the latest era which only includes live objects. Depending on

the number of such objects and the number of threads, the bound
for HE may be higher, or lower than the bound for HP.

4 CONCLUSION
To the untrained eye, it may look as though there is little difference
between an Epoch-based memory reclamation and Hazard Eras.
However, in Epoch-based reclamation, each thread does one single
publishing of the global epoch it saw per method call, causing it to
have a small synchronization cost, but unbounded memory usage: a
single sleeping or blocked reader is enough to prevent any further
memory reclamation, even in variants of Epoch-based reclamation
where the epoch is updated regularly by the readers. In Hazard Eras,
each reader thread publishes the global era it saw, for each new
pointer that is accessed, if and only if the era has changed, which
incurs a small synchronization cost for each pointer. Furthermore,
HE have bounded memory usage: a sleeping or blocked reader may
prevent all currently allocated objects from being reclaimed, but
newly allocated objects can be subsequently reclaimed.

Compared with Hazard Pointers, Hazard Eras have the same
deployment complexity, with a lower synchronization cost for the
readers, which gives HE up to 5x the throughput of HP. This in-
crease in throughput comes with a price tag: higher memory usage.
Unlike HP, HE requires each tracked object to have a newEra once
created, a delEra once deleted, and the number of objects in mem-
ory which have been retired but not yet deleted, although finite,
can be higher for HE than for HP.

Hazard Eras fall between Epoch-based and Hazard Pointers, pro-
viding the best characteristics of each: high throughput due to
its low synchronization; non-blocking progress for readers and
reclaimers; and a bound on memory usage.

REFERENCES
[1] Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2013. Drop the anchor:

lightweight memory management for non-blocking data structures. In Proceed-
ings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and
architectures. ACM, 33–42.

[2] Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast non-intrusive memory
reclamation for highly-concurrent data structures. In Proceedings of the 2016 ACM
SIGPLAN International Symposium on Memory Management. ACM, 36–45.

[3] Keir Fraser. 2004. Practical lock-freedom. Ph.D. Dissertation. University of Cam-
bridge.

[4] Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, and Philippas Tsigas.
2009. Efficient and reliable lock-free memory reclamation based on reference
counting. IEEE Transactions on Parallel and Distributed Systems 20, 8 (2009),
1173–1187.

[5] Timothy L Harris. 2001. A pragmatic implementation of non-blocking linked-lists.
In Distributed Computing. Springer, 300–314.

[6] Thomas E Hart, Paul E McKenney, Angela Demke Brown, and Jonathan Walpole.
2007. Performance of memory reclamation for lockless synchronization. J.
Parallel and Distrib. Comput. 67, 12 (2007), 1270–1285.

[7] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2002. The repeat offender
problem: A mechanism for supporting dynamic-sized lock-free data structures.
(2002).

[8] Paul E McKenney. 2011. Is parallel programming hard, and, if so, what can you
do about it? Linux Technology Center, IBM Beaverton (2011).

[9] Maged M Michael. 2004. Hazard pointers: Safe memory reclamation for lock-
free objects. Parallel and Distributed Systems, IEEE Transactions on 15, 6 (2004),
491–504.

[10] Maged M. Michael, Michael Wong, Paul McKenney, Arthur O’Dwyer, and David
Hollman. 2017. Hazard Pointers - Safe Resource Reclamation for Optimistic Con-
currency. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0233r3.
pdf. (2017).

[11] Pedro Ramalhete and Andreia Correia. 2017. POSTER: A Wait-Free Queue
with Wait-Free Memory Reclamation. In Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. ACM, 453–454.

SESSION 8 SPAA’17, July 24-26, 2017, Washington, DC, USA

369

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0233r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0233r3.pdf

	Abstract
	1 Introduction
	2 Overall Design
	3 Hazard Eras Algorithm
	4 Conclusion
	References



