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ABSTRACT

In this paper we focus on the Clairvoyant Dynamic Bin Packing

(DBP) problem, which extends the classical online bin packing

problem in that items arrive and depart over time and the departure

time of an item is known upon its arrival. �e problem naturally

arises when handling cloud-based networks. We focus speci�cally

on the MinUsageTime cost function which aims to minimize the

overall usage time of all bins that are opened during the packing

process. Earlier work has shown aO (
log µ

log log µ ) upper bound where µ

is de�ned as the ratio between the maximal and minimal durations

of all items. We improve the upper bound by giving an O (
√

log µ )-
competitive algorithm. We then provide a matching lower bound

of Ω(
√

log µ ) on the competitive ratio of any online algorithm, thus

closing the gap with regards to this problem. We then focus on

what we call the class of aligned inputs and give a O (log log µ )-
competitive algorithm for this case, beating the lower bound of

the general case by an exponential factor. Surprisingly enough,

the analysis of our algorithm that we present, is closely related to

various properties of binary strings.
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1 INTRODUCTION

�e classical online bin packing problem has been widely researched

[11] [14]. In this problem, items arrive in an online fashion, remain
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permanently, and must be assigned to bins upon their arrival (with-

out delay). Furthermore, the goal is to minimize the maximum

number of bins opened during the packing process. Later, mo-

tivated by practical applications (such as cloud computing), the

dynamic version of the problem has been introduced and studied

[6] [2] [3], namely, the Dynamic Bin Packing (DBP) problem. In

this version, items arrive in an online fashion. In addition, items

not only arrive but also depart over time. �e de�nition of this

variant gives rise to two di�erent se�ings, i.e., clairvoyant and

non-clairvoyant. In the non-clairvoyant se�ing, the departure time

of each item is unknown until its departure, whereas in the clair-

voyant se�ing, the item’s departure time is revealed to the online

algorithm upon its arrival.

Traditionally one used the goal function of minimizing the max-

imum number of bins opened throughout the entire process and

compare the online algorithm’s performance with that of an optimal

algorithm. An alternative approach is to use the momentary goal

function. In this goal function the online algorithm is compared to

the optimal algorithm at every moment with respect to its number

of opened bins, i.e., the goal function is de�ned as the maximal

possible (at any moment in time) ratio between the number of bins

opened by the online algorithm at that time and the number of bins

opened by the optimal algorithm at that same time. In the classical

online bin packing problem, since once items arrive they remain

permanently, these goal functions collide. Unfortunately, both goal

functions fail to distinguish between the case where the online

algorithm’s cost function is high throughout the entire process and

the case where the online algorithm’s cost function is only momen-

tarily high and low throughout the rest of the process (in both cases

the optimal algorithm’s cost function remains low throughout the

entire process). �erefore, the MinUsageTime goal function was

introduced [7] [9], which be�er captures the total performance of

online algorithms in the dynamic case.

�e newly introduced MinUsageTime goal function aims to min-

imize the total accumulated time of all open bins, throughout the

entire packing process [7] [9] (which can also be viewed as the

total energy used by the algorithm). �is is a problem that typically

arises in cloud-based networks. Users apply to use a server band-

width for a certain period of time, and the aim is to assign users

to servers such that the overall time the servers are functioning

is minimized, while maintaining the invariant that the overall re-

quested bandwidth applied for by the users does not exceed the

server’s overall bandwidth. �us, looking at the users as items

and servers as bins, a natural formalization of this problem is the

MinUsageTime DBP.

In our paper we focus on the clairvoyant version of this prob-

lem. �is variant also arises in real-life applications, such as cloud

gaming. In such applications, the users’ server-time requests can

be accurately predicted upon their arrival [8]. �is problem was
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de�ned and researched by Ren et al . [10]. In [10], they present a

O (
log µ

log log µ )-competitive algorithm where µ is de�ned as the ratio

between the maximal and minimal lengths of all items. Furthermore,

they show a constant lower bound of
1+
√

5

2
.

Shalom et al . [12] researched a similar problem, namely, the

online version of interval scheduling with bounded parallelism.

In this problem interval jobs arrive in an online manner and are

assigned to machines such that each machine may treat a bounded

number of jobs at any given moment. �e above problem di�ers

from our MinUsageTime DBP in that all jobs have the same resource

demand of 1/д for some given д. In [12] a lower bound of д was

described. Although they did not explicitly write as much, by

choosing appropriate parameters in their analysis one can get a

non-constant lower bound for our se�ings.

A natural question would be to ask whether these upper or lower

bounds are tight. We show that in fact, neither is tight. Speci�cally,

we provide an algorithm which combines the First-Fit approach

with the Classify-by-Duration approach, to produce a matching

upper bound ofO (
√

log µ ) (even when our performance is compared

with an optimal algorithm that may repack items at any moment),

improving quadratically upon the result given in [10]. As stated

above, we also provide a new approach towards establishing a

matching lower bound of Ω(
√

log µ ) (where the optimal algorithm,

to which we compare our performance, may not repack items)

which is strictly greater than the bound that can be deduced from

[12]. �us, e�ectively closing the gap on the competitive ratio of

this problem.

To beat the given lower bound, we turn our focus to an inter-

esting class of input, namely, aligned inputs. In this class of input,

items of length ∈ (2i−1, 2i ] may only arrive at multiples of 2
i

(i.e.

c · 2i for some c ∈ N). Note that this may also be viewed as the

following: items need to be assigned to a speci�c bin by the on-

line algorithm at their arrival. However they only start taking up

bin space at their appropriate binary times (c · 2i for some c ∈ N).

We provide an O (log log µ )-competitive algorithm, which beats the

former lower bound by an exponential factor.

We also note the di�erence between the Non-Clairvoyant se�ing

and the Clairvoyant one. As opposed to the Clairvoyant case, in the

Non-Clairvoyant case, the best competitive ratio for a deterministic

algorithm one could hope to achieve is µ which was shown via

a lower bound by Li et al . [7]. On the other hand, the First-Fit

algorithm was shown to perform nearly optimally, achieving a com-

petitive ratio of µ + 4 [13].

Contributions of this paper In this paper, we provide the

following results.

• In the Clairvoyant se�ing, we present a hybrid algorithm

that combines the �rst-�t and classify-by-duration strate-

gies. By reducing the problem to inputs that end at binary

times (2
i

for some i , depending on the item’s duration), we

show that the above algorithm achieves a competitive ratio

ofO (
√

log µ ). We note that this algorithm does not assume

early knowledge of µ, but rather adapts as µ increases.

• We provide a matching lower bound of Ω(
√

log µ ) on the

competitive ratio of any online algorithm (in the Clairvoy-

ant se�ing), thus closing the gap for this problem.

• We beat the lower bound by focusing on an interesting

family of inputs, namely, aligned input (once again in the

Clairvoyant se�ing). In this type of input, if the item is of

duration ∈ (2i−1, 2i ], it may only arrive at multiples of 2
i

(i.e. c · 2i for some c ∈ N).

We provide an O (log log µ )-competitive algorithm, which

indeed beats the former lower bound by an exponential

factor.

Table 1 summarizes the results known in the various se�ings

regarding MinUsageTime DBP.

Upper Bound Lower Bound

Clairvoyant

General Inputs O (
√

log µ ) [*] Ω(
√

log µ ) [*]

Aligned Inputs O (log log µ ) [*] Ω(1)

Non-Clairvoyant General Inputs µ + 4 [13] µ [7]

Table 1: A summary of the asymptotic upper and lower

bounds on the competitive ratios of deterministic algo-

rithms in the various settings regardingMinUsageTimeDBP.

[*] �ese results are shown in the following chapters.

Related Work �e classical online bin packing problem was

introduced by Johnson et al . [5] and has since been extensively

researched. �e problem is de�ned such that items of sizes in [0, 1]

are released in an online manner, and these items must be packed

into bins while maintaining the invariant that each bin packs at

most a load of 1. Our goal under this se�ing is to minimize the

number of bins used. For this problem, the currently best known

algorithm is presented by Heydrich et al . [4] and has a competitive

ratio of roughly 1.58. On the other hand, the current best known

lower bound for any deterministic algorithm has been shown to be

about 1.54 [1].

Later, the DBP problem was introduced by Co�man et al . [6]

(which will be later termed as the Non-Clairvoyant DBP problem).

�is problem generalizes the online bin packing problem such

that each item has a departure time as well, which is revealed

to the online algorithm only at its departure. Under this se�ing

the goal function remains the same as in the classical online bin

packing problem. �e current best known algorithm [6] achieves

a competitive ratio of 2.788. On the other hand, the current best

known lower bound for any deterministic algorithm is 2.666 [15].

Both of the above problems aim to minimize the overall number

of bins used. A natural extension would be to look at a di�erent

type of goal function, namely, the momentary goal function. In

this goal function, the competitive ratio of the online algorithm is

de�ned as the maximum ratio between the number of bins opened

by the online algorithm, compared to the number of bins opened

by the optimal algorithm, where the maximum is taken over any

moment.

Later, a new type of problem was introduced by Li et al . [7] [9],

namely, the MinUsageTime DBP problem. �e goal in this problem

is to minimize the overall usage time of all bins being used in the

packing process. For this problem, the current best known upper

bound is achieved by the First-Fit algorithm and is shown to have

a competitive ratio of µ + 4 [13], µ being the max/min item interval

length ratio. Furthermore, a lower bound of µ with respect to the

competitive ratio of any online algorithm, has been shown in [7].
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More recently, Ren et al . [10] introduced a variant of this prob-

lem where the departure time of an item is revealed to the online

algorithm at the time of its arrival. �is was termed the Clairvoy-

ant DBP problem, whereas the former problem may sometimes be

referred to as the Non-Clairvoyant DBP problem.

For the Clairvoyant DBP problem, the best known upper bound

was O (log µ ) when µ is not known to the online algorithm, and

minn≥1 µ
1

n + n + 3 = O (
log µ

log log µ ), otherwise [10]. On the other

hand, as stated earlier, a non constant lower bound exists which

appears implicitly in [12]. In this paper, we improve the upper

bound to O (
√

log µ ) even if µ is not known to the online algorithm,

and give a matching lower bound of Ω(
√

log µ ). Furthermore, we

focus on a speci�c set of aligned inputs (to be formally de�ned

later) which we feel capture the essence of the problem and show a

O (log log µ )-competitive algorithm for this case.

Techniques We give an overview of the two algorithms pre-

sented in our paper, the Hybrid Algorithm (HA) and the Classify-

by-Duration-First-Fit (CDFF) algorithm.

• �ere are two natural strategies one would try using under

this se�ing. �e �rst is to apply the First-Fit strategy, but

this is known to be at least Ω(µ )-competitive. �e other is

to classify items by their duration, but this is typically as

worse as Ω(log µ )-competitive (we note that this approach

may be tweaked in order to give a θ (
log µ

log log µ )-competitive

algorithm). Surprisingly, HA combines the two strategies

starting with First-Fit and temporarily switching when

needed to the classify-by-duration strategy, to achieve a

tight upper bound of O (
√

log µ ). Speci�cally, at any mo-

ment the algorithm holds two types of bins - general (GN)

type bins and classify-by-duration (CD) type bins. Upon

arrival of an item, HA looks at the overall load this type

of items currently contribute. If the overall load is under a

de�ned threshold, pack this item into any GN-type bin in a

First-Fit manner. Otherwise, pack this item into a CD-type

bin that holds this speci�c type. Packing the item into a

CD-type bin is also done in a First-Fit manner, however

in this case, only CD-type bins that hold this speci�c type,

are considered
1
.

Upon analysing the competitive ratio of our algorithm

we de�ned a reduction on inputs that delays each items’

departure time resulting in a moderately small number

of di�erent item types such that items of the same type

either depart together or do not intersect. We then apply

the reduction only to the optimal algorithm (the online

algorithm remains oblivious to the reduction) and show

the desired competitive ratio.

• CDFF gives a O (log log µ ) upper bound for aligned inputs.

Given a collection of items, σ , at any moment, t , CDFF clas-

si�es all items based on their lengths. Furthermore, CDFF

maintains rows of bins for each type of items. However,

instead of statically packing types into rows, at any given

moment di�erent rows are considered for di�erent types,

1
We note that using any Any-Fit approach towards packing items into the GN-type

bins or the CD-type bins will work just as well.

i.e., items of a speci�c type are packed into di�erent rows

according to their arrival time. �is adaptation is what

ultimately improves the competitive ratio by an exponen-

tial factor. Surprisingly enough, the analysis of CDFF’s

performance is done by observing various properties of

random binary strings which ultimately results in an upper

bound of O (log log µ ).
Upon analysing the competitive ratio of CDFF, we �rst

evaluate the algorithm’s performance on a very structured

input and then relate any other aligned input to it. We then

apply the reduction (which was de�ned earlier) only to the

optimal algorithm and show the desired competitive ratio.

2 NOTATIONS AND PRELIMINARIES

We �rst formally de�ne the Clairvoyant MinUsageTime DBP prob-

lem.

�e input consists of an in�nite set of bins, {b1,b2, . . .}, and

a set of items σ = {r1, . . . , r |σ | }. Each item is associated with

an arrival time, tr , and departure time, fr . �erefore, each item

is associated with a time interval for which it is active, denoted

by I (r ) = [tr , fr ]. We sometimes denote tr by I (r )− and fr by

I (r )+. We also denote the interval length by l (I (r )). We further

associate each item with a size, denoted by s (r ) ∈ [0, 1]. For a given

σ , let µ denote the max/min item interval length ratio, meaning,

µ = maxr ∈σ l (I (r ))/minr ∈σ l (I (r )). Furthermore, let d (σ ) denote

the total space-time demand of all items in σ , namely, d (σ ) =∑
r ∈σ s (r ) · l (I (r )). Finally, let span(σ ) = l (∪r ∈σ I (r )), denote the

time during which at least one item in σ is active.

�e online algorithm has to pack each item into a single bin at

the time of its arrival. Furthermore, the online algorithm has no

knowledge of items which have not yet arrived. Nevertheless, at

the time of an item’s arrival, the online algorithm will also know

its departure time (since we are studying the clairvoyant se�ing).

We further assume that the online algorithm cannot repack items,

i.e., once it has assigned an item to a bin, it cannot be moved to a

di�erent bin. We de�ne the online algorithm’s goal function as its

MinUsageTime and denote it as ON(σ ), i.e., ON(σ ) =
∑∞
i=1

span({r :

r was assigned to bi }).We note that we may assume w.l.o.g. that

once all items from a given bin depart, that bin is considered closed

and never used again.

We de�ne two types of optimal algorithms, repacking and non-

repacking, to which we compare our online algorithm’s perfor-

mance. An optimal repacking algorithm is de�ned as the optimal

o�ine algorithm (in the sense that it sees the entire input together)

that may repack items at any moment. An optimal non-repacking

algorithm is de�ned as the optimal o�ine algorithm that may never

repack items. Denote the former as OPTR and the la�er as OPTNR .

Given an input, σ , we denote OPT’s number of open bins at moment

t as OPT
t (σ ) and the total load of all active items at moment t as

St (σ ).
We characterize an online algorithm’s performance by its compet-

itive ratio. We say that an online algorithm, ON, is c − competitive
for c ≥ 1, if there exists a constant, b ≥ 0, such that for any input,

σ , ON(σ ) ≤ c · OPT(σ ) + b for a given optimal algorithm.

We de�ne a First-Fit algorithm in the usual way. Given a set of

open bins and an incoming item to be packed, we pack the item
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into the earliest opened bin. If no bins are open, we open a new

bin. Furthermore, once all items depart from a given a bin, that bin

is closed and never used again.

Lastly, we give the de�nition on an aligned input.

De�nition 2.1. We de�ne an aligned input, σ , as follows:

Items of length ∈ (2i−1, 2i ] may only arrive at multiples of 2
i
, i.e.,

c · 2i for c ∈ N. We note that all items that arrive at time t , arrive

with some arbitrary order, meaning that our on-line algorithm must

handle each item before the next arrives.

3 UPPER BOUND OF O (
√

LOG µ )
�roughout this section we assume that the shortest item’s interval

is at least 1. Furthermore we assume that the input items form a con-

tinuous interval of active items (otherwise we apply our algorithm

to each such interval individually).

We �rst give a few basic observations. Recall that given an input,

σ , OPT
t
R (σ ) was de�ned as the number of bins OPT has open at

moment t and St (σ ) as the overall load of all active items at moment

t . �us we get the following bound,

• OPTR (σ ) =
∫
∪r ∈σ I (r )

OPT
t
R (σ ) dt ≥

∫
∪r ∈σ I (r )

dSt (σ )e dt.

Furthermore, the following two bounds hold,

• the time − space bound: OPTR (σ ) ≥ d (σ ).
• the span bound: OPTR (σ ) ≥ span(σ ).

�e time − space bound holds since d (σ ) =
∫
∪r ∈σ I (r )

St (σ ) dt. �e

span bound holds since at least one bin must be opened whenever

an item is active. Both bounds have been introduced in earlier work

[10] [7] [9].

Given the above two bounds a natural question would be to ask

whether these bounds are tight. �e following lemma shows that

this is indeed the case.

Lemma 3.1. For any sequence of items, σ ,

(1) OPTR (σ ) ≤
∫
t ∈span (σ ) 2dSt (σ )edt.

(2) OPTR (σ ) ≤ 2 · d (σ ) + 2 · span(σ ).

Proof. Let OPT
t
R (σ ) denote the number of bins OPT has open

at time t . In particular,∫
t

OPT
t
R (σ )dt = OPTR (σ ). (1)

Since OPT may repack at any moment we can assume that the

overall load of any two of OPT’s bins is strictly greater than 1

(otherwise OPT may pack the items of both bins into 1 at time t
and then repack them as before for time t ′ > t , only improving

upon its cost function).

Let OPT
t
R (σ ) = n and let d1, . . . ,dn denote the loads in OPT’s

bins at time t and St (σ ) denote the overall load of all active items

at time t . �erefore,

OPT
t
R (σ ) = n < 2

n∑
i=1

di ≤ 2dSt (σ )e, (2)

where the �rst inequality follows from the fact that the load of any

two bins is strictly greater than 1. By (1) and (2), we get,

OPTR (σ ) =

∫
t

OPT
t
R (σ )dt ≤

∫
t

2dSt (σ )edt.

�erefore,

OPTR (σ ) ≤

∫
t

2dSt (σ )edt ≤

∫
t

2 + St (σ )dt

= 2 · span(σ ) + 2 · d (σ ),

which gives us the desired results. �

We now turn to de�ne our online algorithm, HA (Hybrid Algo-

rithm):

HA �rst classi�es the items according to the following types. De�ne

r ’s type as the tuple T = (i, c ) such that l (I (r )) ∈ (2i−1, 2i ] and

I (r )− ∈ ((c − 1) · 2i , c · 2i ], such that 1 ≤ i ≤ log µ and c ∈ N. Note

that under such de�nition, given a speci�c i there may only be two

types of items alive at any moment in time (i.e., two di�erent values

of c).

We further de�ne two types of bins - GN (general) and CD

(classify-by-duration) bins.

Non-formally, HA acts as follows. HA �rst checks for an open

CD-type bin that holds type T items. If such a bin exists, HA will

pack r into one of these bins in a First-Fit manner (opening a new

CD-type bin if needed). Otherwise, it checks if the overall load of all

active items of type T (including the load of the currently handled

item) is strictly greater than
1

2

√
i
. If so, it opens a new CD-type bin

and packs r into it, otherwise it packs r into a GN-type bin in a

First-Fit manner (opening a new GN-type bin if needed). We note

that HA does not need to know µ in advance, but rather adapts as

µ grows.

In Algorithm 1 we formally de�ne the algorithm.

1 Upon arrival of request r do

2 T = (i, c ) ← r ’s type.

3 d ← overall load of all active items of type T , including r .

4 if (exists an open CD-type bin that holds type T ) then
5 Pack r in a �rst-�t manner over all CD-type bins that

hold type T . If needed, open a new CD-type bin for r .

6 else

7 if (d ≤ 1

2

√
i
) then

8 Pack r in a �rst-�t manner over all GN-type bins.

If needed, open a new GN-type bin for r .

9 else

10 Open a new CD-type bin for r .

11 end

12 end

13 Upon departure of request r do

14 Remove r from its bin and close bin if needed.

Algorithm 1: Description of the Hybrid Algorithm

We �rst state the main theorem of the section.

Theorem 3.2. For any sequence of items, σ , HA(σ ) = O (
√

log µ ) ·
OPTR (σ ).

Before proving �eorem 3.2, we �rst give the following lemma.
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Lemma 3.3. Given an input, σ , let GNt denote the number of
GN-type bins HA has open at time t . �erefore,

GNt ≤ 2 + 4

√
log µ .

Proof. Items of type T = (i, c ) add a load of at most
1

2

√
i

to the

GN-type bins. Since there can be at most 2 types of items active

at any given moment, for any given i ∈ {1, . . . , log µ}, the overall

load in all the GN-type bins is at most,

log µ∑
i=1

1

√
i
. (1)

Since,

∫
1√
x
= 2

√
x and the fact that

1√
x

is non-increasing for x ≥ 1,

we get,

log µ∑
i=1

1

√
i
≤ 1 +

∫
log µ

1

1

√
x

dx = 1 + 2

√
log µ . (2)

By (1) and (2), the overall load in all the GN-type bins, at time t , is

at most 1 + 2

√
log µ. Furthermore, this bound holds for all t . Since

i ≥ 1, the load of each item that is packed into the GN-type bins,

is at most 1/2. �erefore, if HA would have opened more than

2 + 4

√
log µ GN-type bins, at the time of the opening of such a

bin, we would have that the overall load of all items in all of the

GN-type bins would be strictly greater than 1 + 2

√
log µ which

would have lead us to a contradiction. �erefore, we know that

GNt ≤ 2 + 4

√
log µ as needed. �

Given a type of item, T = (i, c ), let kTt denote the number of

open CD-type bins HA has for type T at time t . Furthermore, let

kt =
∑
T kTt . We would have liked to have shown that OPT

t
R (σ ) ≥

max{1, kt
4

√
log µ
} which would have (as we will see) given us the

desired competitive ratio. Unfortunately, this is not the case. How-

ever, we can make it correct by means of amortization. Speci�cally,

by increasing the cost of OPT, using the following reduction.

Given an input σ , we convert it into an input σ ′ in the following

way:

Let r ∈ σ , let i ∈ {1, . . . , log µ} be such that l (I (r )) ∈ (2i−1, 2i ] and

let c ∈ N be such that I (r )− ∈ ((c − 1) · 2i , c · 2i ].
Given such r , de�ne r ′ as, I (r ′)− = I (r )− and I (r ′)+ = (c + 1) · 2i .
�us to convert σ to σ ′ we simply convert every item in σ as de-

�ned above.

Note that every two items of the same type (i.e., T = (i, c ))
depart together once the reduction is applied. Further note that the

reduction simply increases r ’s length by at most a multiplicative

factor of 4. �erefore, we get the following two observations.

Observation 1. span(σ ′) ≤ 4 · span(σ ).

Observation 2. d (σ ′) =
∑
r ′∈σ ′ l (I (r

′)) · s (r ′) ≤
∑
r ∈σ 4 ·

l (I (r )) · s (r ) = 4 · d (σ ).

�e following corollary shows that the optimal algorithm does

not lose too much due to the reduction.

Corollary 3.4. For any sequence of items, σ , let σ ′ denote the
items a�er the reduction is applied. If the items in σ form a continuous
interval of active items, then,

OPTR (σ ′) ≤ 16 · OPTR (σ ).

Proof.

OPTR (σ
′) ≤ 2 · span(σ ′) + 2 · d (σ ′)

≤ 8 · span(σ ) + 8 · d (σ ) ≤ 16 · OPTR (σ ),

where the �rst inequality is due to Lemma 3.1, the second is due to

observations 1 and 2 and the last inequality is due to the time−space
and span bounds. �

Recall that kt is the number of any CD-type bins HA has open

at time t .

Lemma 3.5. Given a sequence of items, σ , letσ ′ denote the sequence
a�er the above reduction is applied. Furthermore, let kt be as de�ned
above. �erefore,

OPTtR (σ
′) ≥ max{1,

kt

4

√
log µ

},

Proof. We �rst note that if kt = 0 then the lemma immediately

follows (since the items in σ form a continuous interval of active

items and by the reduction, so do the items in σ ′). �erefore, we

shall assume the contrary from now on.

Consider all active items of type T = (i, c ) at time t , in σ . Let r̂T
be the �rst item to arrive out of all considered items. By the above

reduction, since all items of a certain type depart together, we have

that at the time of r̂T ’s arrival, he was the only active item of that

type. Furthermore, any items of that type that are released between

the time of r̂T ’s arrival and t , do not depart. �us, we can give the

following two observations.

Firstly, by the de�nition of HA, items of this type placed in

the GN-type bins, plus the item that opened the �rst CD bin that

accepts only items of this type (there exists such a bin since kTt ≥ 1),

contribute an overall load of at least
1

2

√
i
≥ 1

2

√
log µ

(i being such

that T = (i, c )). �is is due to the fact that since HA opened such

a bin, we know that exists a moment, t ′ ≤ t , such that the overall

load of active items of type T , in σ , is at least
1

2

√
i

and since σ ′ is

the result of the reduction applied to σ , we know that these items

are active at time t as well (this is due to the fact that if items of

the same type intersect, they must depart together).

Secondly, we will show that if kTt ≥ 2, the other kTt − 1 bins of

this type contribute an overall load of at least
kTt −2

2
, in σ ′. Due to

the reduction, it is enough to show that if k CD-type bins for type

T were opened until time t , then items packed into these bins, by

HA, in σ , contribute a load of at least
k−1

2
(this is due to that fact

by the reduction’s de�nition, all these items will be active at time

t ). We will prove this using induction on k .

For k = 2 the statement follows by the de�nition of �rst-�t

algorithms. For k > 2, consider time t ′ when bin k − 1 was opened.

By our induction hypothesis, we know that items of type T that

have arrived before time t ′ contribute a load of
k−2

2
. Again, by the

de�nition of �rst-�t algorithms, since bin k was opened, all items

that have arrived a�er time t ′ and before t (including at time t )
contribute a load of at least 1/2, giving us the desired result.
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�us, due to the fact that these items depart together, the overall

load contributed by typeT items, in σ ′ is at least
1

2

√
log µ
+

kTt −2

2
≥

kTt
4

√
log µ

, if kTt ≥ 2. Otherwise, kTt = 1, and the overall load is, once

again, at least
1

2

√
log µ

≥
kTt

4

√
log µ

.

If we sum over all types, by the time-space bound and since there

is at least one active item at time t , we get,

OPT
t
R (σ

′) ≥ max{1,
kt

4

√
log µ

},

as needed. �

We now turn to prove our main theorem, i.e., �eorem 3.2.

Proof of Theorem 3.2. Let σ ′ be σ a�er we apply the reduc-

tion. �erefore,

HAt (σ ) = GNt + kt ≤ 2 + 4

√
log µ + kt

≤ 2 + 2 ·max{4

√
log µ,kt }

= 2 + 8

√
log µ ·max{1,

kt

4

√
log µ

}

≤ O (
√

log µ ) · OPT
t
R (σ

′),

(1)

where the �rst inequality follows by Lemma 3.3 and the last by

Lemma 3.5.

Pu�ing it all together,

HA(σ ) =

∫
t

HAt (σ )dt ≤ O (
√

log µ )

∫
t

OPT
t
R (σ

′)dt

= O (
√

log µ ) · OPTR (σ
′) ≤ O (

√
log µ ) · OPTR (σ )

= O (
√

log µ ) · OPTR (σ ),

where the �rst inequality is due to (1) and the second inequality is

due to Corollary 3.4. �

4 LOWER BOUND OF Ω(
√

LOG µ )

In this section we show a lower bound of Ω(
√

log µ ) with respect

to the more general adversary, namely, an optimal algorithm that

can never repack items. Recall that such an optimal algorithm is

denoted as OPTNR .

De�nition 4.1. De�ne σ ∗t as the following sequence of items:

At time t , release one item for each length in {1, 2, 4, . . . , 2log µ }

sequentially, from shortest to longest. Furthermore, let all items be

of load
1√

log µ
.

Ren et al . [10] presented a 4-approximation (o�-line) algorithm

called the Dual Coloring Algorithm (note that this algorithm is

not admi�ed repacking), that was described and analysed against

an optimal algorithm that is admi�ed repacking. We restate their

theorem using our notations.

Theorem 4.2. For every sequence of items, σ , DC(σ ) ≤ 4OPTR (σ ).

Theorem 4.3. For every on-line, deterministic and clairvoyant
algorithm, ON, exists a sequence of items, σ , such that, ON(σ ) ≥
Ω(
√

log µ ) · OPTNR (σ ).

Note that this is the stronger case, in the sense that the lower

bound holds even w.r.t. a non-repacking o�-line algorithm.

Proof. Let ti = i for i = 0, . . . , µ − 1. We now turn to de�ne

our adversary.

For all i = 0, . . . , µ − 1, release a pre�x of σ ∗ti and stop as soon as

ON opens

√
log µ bins. Note that ON is indeed forced to open that

many bins since |σ ∗ti | = log µ + 1 and each items’ load is
1√

log µ
,

hence the overall load at that time is at least

√
log µ.

We now turn to analyse ON’s competitive ratio compared to a

repacking optimal o�-line algorithm. Since at any moment, t ≤ µ,

ON is forced to open

√
log µ bins,

µ
√

log µ ≤ ON(σ ). (1)

Let St (σ ) be the overall load of σ at time t . Furthermore, for any

given moment ti , let lti denote the length of the last released item

in σ ∗ti by the adversary (if no items were released, let lti = 0).

By the de�nition of our adversary, the last released item in σ ∗ti , for

any ti , forces ON to open a new bin for it. �erefore, ON must pay

for the full duration of each one of these items. �us, we get,

µ−1∑
i=0

lti ≤ ON(σ ). (2)

Since the lengths of the items given at any moment, ti , form a

geometric series, the sum of their lengths is at most 2 ·lti . �erefore,

∫
t ∈[0,2µ]

St (σ ) = d (σ ) ≤
1√

log µ
· 2 ·

µ−1∑
i=0

lti . (3)

�erefore,

OPTR (σ ) ≤ 2 ·

∫
t ∈[0,2µ]

dSt (σ )e ≤ 4µ + 2 ·

∫
t ∈[0,2µ]

St (σ )

≤ 4µ +
1√

log µ
· 4 ·

µ∑
i=0

lti ≤
8√

log µ
ON(σ ),

(4)

where the �rst inequality follows from Lemma 3.1, the second

inequality follows from (3) and the last inequality follows from (1)

and (2).

Pu�ing it all together,

ON(σ ) ≥ Ω(
√

log µ ) · OPTR (σ )

≥ Ω(
√

log µ ) · DC(σ ) ≥ Ω(
√

log µ ) · OPTNR (σ ),

where the �rst inequality follows from (4), the second inequality

follows from �eorem 4.2 and the last inequality follows from the

fact that DC is a non-repacking algorithm. �

5 UPPER BOUND OF O (LOG LOG µ ) W.R.T

ALIGNED INPUTS

Recall the de�nition of aligned inputs, i.e., that items of length

∈ (2i−1, 2i ] may only arrive at multiples of 2
i

and that items that

arrive at the same moment, t , arrive with an arbitrary order (mean-

ing that every item must be handled before the next one arrives).

Note that, in particular this means that any items that arrive strictly
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a�er c ·2i and strictly before (c+1) ·2i must depart by time (c+1) ·2i ,
for any c, i ∈ N.

By the de�nition of binary inputs, we may use the notation t+

to denote time t a�er all items arriving at t have arrived and t− to

denote time t a�er all items that depart at time t have departed and

before any other item arrives.

Given such an input, σ , with value µ, we �rst partition it in the

following way. Consider time t0 = 0 and consider all items that

arrive at that time. Let µ ′ denote the length of the longest item

that arrived at that time and let µ0 = 2
dlog µ′e

. By the de�nition of

aligned inputs, all items that arrive in the time interval [t0, t0 + µ0]

must also depart in that time interval (this is due to the fact that

if an item departs a�er t0 + µ0 then by the de�nition of aligned

inputs, it must have arrived at time t0. However, in this case that

would contradict the de�nition of µ0). �erefore, we may remove

all items that arrive in this interval (and denote them as σ0), from σ ,

and manage them as a separate input. We continue decomposing

σ in the same way, resulting in mutually disjoint inputs, σ0,σ1, . . .

(in the sense that no two items from di�erent inputs, intersect).

Under such a partition, given any σi , changing its starting time, ti ,
to 0, results in the input remaining aligned. �erefore, from now

on we will assume each σi starts at time 0. We note that every

σi is de�ned such that an item of length (
µi
2
, µi ] arrives at time 0.

In particular, this means that µi ≤ 2µ (where µ is de�ned by the

original input, σ ).

�is partition can be done in an online manner, therefore we

may apply a f (µi )-competitive algorithm to each σi separately and

achieve a f (2µ )-competitive algorithm (where µ is de�ned with

respect to the original input, σ ) assuming f is a non-decreasing

function. �us, from now on we shall assume that our input is

aligned, an item of length µ arrives at time 0, all items arrive and

depart during the time interval, [0, µ] and µ is a power of 2, i.e.,

µ = 2
n

for some n ∈ N.

Before de�ning our algorithm, CDFF (Classify-by-Duration-First-

Fit), we �rst give a few de�nitions. We �rst partition the possible

lengths of items, i.e.,

⋃log µ
i=0

(2i−1, 2i ] (note that the interval, (1/2, 1],

may only include items of length 1, however we use the entire

interval for convenience of notation). By the de�nition of aligned

inputs, at any moment t , the longest item that may arrive is bounded

from above (e.g., items of length 1 may arrive any moment, however

items of length µ may only arrive at time 0). For any given moment,

t , let (2mt−1, 2mt
] denote the longest interval for which items of

length in that interval may arrive. Note that mt is de�ned by t and

can therefore be computed in an online manner before any items

arrive.

We now turn to de�ne CDFF on aligned inputs. At time t− = 0
−

,

open log µ + 1 bins, b1

0
, . . . ,b1

log µ (some of these bins may remain

empty throughout the process). We note that by the de�nition of

aligned inputs, items of any length may arrive. Given an item, r ,

CDFF �rst classi�es it according to its length, i.e., l (r ) ∈ (2i−1, 2i ],

and then packs r into bin b1

log µ−i . Note that items with larger

intervals are packed into bins with smaller lower indexes. For

example, an item of length µ is packed into b1

0
and item of length 1

is packed into b1

log µ . Once b1

i is too full to accept an item, we open

b2

i and so on and so forth. Meaning, item of length ∈ (2i−1, 2i ] is

put into bin b
j
log µ−i for minimal j s.t. b

j
log µ−i can accept said item.

Later on, we will address the bins {b
j
i }j , for a given i , as the ith row

of bins.

We note that although CDFF is de�ned as having prior knowl-

edge of µ, at time t− = 0
−

it packs items according to type and may

therefore adapt as larger items arrive. �is means it does not in

fact need any prior knowledge of µ. Furthermore, items of length

∈ (
µ
2
, µ] arrive at time 0, thus, during the following item arrivals

CDFF will already know the value of µ.

We turn to de�ne our algorithm for time t− > 1:

Let (2mt−1, 2mt
] denote the longest interval for which items of

length in that interval may arrive. Now, CDFF �rst classi�es items

according to their length and then packs items that belong to the

ith smallest interval, into row (mt − i ), in a �rst-�t manner (further-

more, once a bin b
j
i becomes empty, remove it from the ith row and

update indexes). Again we note that the bins’ numbering is oppo-

site to the interval numbering, i.e., items with interval i are packed

into row mt − i . Meaning that given an item r , if l (r ) ∈ (2i−1, 2i ]

for 0 ≤ i ≤ mt , then r is packed into b
j
mt−i

for a minimal j that can

accept it. Figure 1 shows a representation of what CDFF’s bins will

look like at any moment.

b1

2
b2

2

b1

1

b1

0
b2

0
b3

0

Figure 1: Representation of CDFF’s bins at a given moment,

t . Each rectangle represents a bin with some load.

In Algorithm 2 we formally de�ne CDFF.

/* Denote b
j
i as bin j in row i of bins. */

1 Init: Open loдµ + 1 bins labelled b1

0
, . . . ,b1

log µ .

2 Upon arrival of request r do

3 t− ← r ’s arrival time.

4 (2mt−1, 2mt
]← longest interval for which items of length

in that interval may arrive.

5 i ← r ’s type, i.e., l (I (r )) ∈ (2i−1, 2i ].

6 Pack r into rowmt − i of open bins in a First-Fit manner. If

needed open a new bin in that row.

7 Upon departure of request r do

8 Remove r from its bin, close the bin and update indexes if

necessary.

Algorithm 2: Description of CDFF Algorithm

We �rst state the main theorem of the section.
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Theorem 5.1. For any aligned input, σ ,

CDFF(σ ) = O (log log µ )OPTR (σ ).

Before proving our �eorem 5.1, in the next section we de�ne

a speci�c type of aligned input, namely, binary input, and show

that for any binary input, σµ such that µ = 2
n

, we get CDFF(σµ ) =
O (log log µ ) · OPTR (σµ ). We then argue that in a sense, this is the

worst case scenario and that in fact for any aligned input, σ , we

have CDFF(σ ) = O (log log µ ) · OPTR (σ ).

5.1 Upper Bound of O (log log µ ) w.r.t Binary
Inputs

De�nition 5.2. De�ne a binary input of size µ = 2
n

, denoted as

σµ , as the following collection of items:

For every i ∈ {0, 1, . . . , log µ}, items of duration 2
i

arrive at times,

0 ·2i , 1 ·2i , . . . , (
µ
2
i −1) ·2i . Furthermore, all items’ loads are 1/ log µ.

For example, �gures 2 and 3, show what a binary input, σ8 would

look like and how CDFF would handle such an input.

t
0 1 2 3 4 5 6 7 8

Figure 2: Representation of σ8. Each segment represents an

item.

b1

3

b1

2

b1

1

b1

0

t
0 1 2 3 4 5 6 7 8

Figure 3: Representation of how CDFF packs σ8.

Proposition 5.3. ∀µ : CDFF(σµ ) ≤ (2 log log µ + 1)OPTR (σµ ).

Surprisingly, our problem is closely related to the binary repre-

sentation of time t and a few of its properties. In order to prove our

proposition, we �rst give a few de�nitions and a few lemmas.

De�nition 5.4. For t ∈ N, let binary (t ) denote t ’s binary repre-

sentation.

Since, by the de�nition of σµ , at time t only items of length 2
i

such that t/2i ∈ N, may arrive, we get the following observation.

Observation 3. Given a binary input, σµ , and for any
t ∈ {0, 1, . . . , µ − 2, µ − 1}, the number of requests that arrive at time
t is equal to 1 + the length of the longest sequence of zeros that starts
at the least signi�cant bit (LSB) of binary (t ).

For any t ∈ {0, 1, . . . , µ−1} let bt = (1| |binary (t )) ∈ {0, 1}log µ+1

(where a | |b denotes the concatenation of binary strings, a and b).

Furthermore, let bt = ((bt )log µ , . . . , (bt )0).
Given σµ and time t , we de�ne a mapping, ft , from items in σµ to

bits in bt as follows.

∀r ∈ σµ : ft (r ) = (bt )log(l (I (r )) . (1)

For example, if r is an item of length 1 given at time 0, f0 (r ) =
(b0)log(1) = (10 · · · 0)0 = 0.

By the de�nition of σµ , an item of every length is active at every

moment, and therefore this mapping is one-to-one and onto the

log µ least signi�cant bits in bt . Meaning that every item in σµ at

any moment has an associated bit and every bit at every moment

has an associated item.

Lemma 5.5. Let σµ be a binary input and let t ∈ {0, 1, . . . , µ − 1}.
�erefore,

(1) For any item r ∈ σµ , if ft (r ) = 1 then r is assigned by CDFF
to b1

0
.

(2) For any item r ∈ σµ , if ft (r ) = 0 and the maximal sequence
of zeros that starts at (bt )log(l (I (r )) and continues towards
the most signi�cant bit (MSB), is of size s (not including
(bt )log(l (I (r ))), then r is assigned by CDFF to b1

s+1
.

For example, if bt = 1001000, then item of length 4 will be

assigned to bin b1

1
.

Proof. We will prove this by induction on t .

For t = 0, b0 = 10 · · · 0 and by the de�nition of CDFF only the

item of length 2
k

for k ∈ {0, 1, . . . , log µ}, is assigned to bin b1

log µ−k .

Furthermore, only one item arrives of each length, meaning that

b1

log µ−k will indeed have room for the item. �us 1 and 2 follow.

For t > 0, let bt = 1| |α | |β such that β = 10 · · · 0 ∈ {0, 1}k ,

α ∈ {0, 1}log µ+1−k
and k ∈ {1, 2, . . . , log µ}. By Observation 3 we

know that the arriving items are of lengths 1, 2, 4, . . . , 2k−1
. By our

inductive hypothesis and since items of lengths greater than 2
k−1

have arrived before time t , we know that these items were assigned

to bins correctly. �erefore, it is enough to show that any item of

length li = 2
i

for i ∈ {0, 1, . . . ,k − 1} is assigned to bin b1

k−1−i .

Every item in σµ has a load of 1/ log µ and at any moment there

are log µ active items, therefore for the entirety of σµ , no bin of

type b1

i will ever be full (and we will never have to open a bin of

type b2

i ). By the de�nition of our algorithm, item of length li is

assigned to the row of bins, bk−1−i , and will therefore be assigned

to bin b1

k−1−i as needed. �

De�nition 5.6. For an aligned input, σ , let CDFFt+ (σ ) be the

amount of open bins in CDFF at time t+.

De�nition 5.7. For b ∈ {0, 1}n , let max0 (b) be the length of the

longest consecutive sequence of zeros in b.
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Corollary 5.8. ∀t ∈ {0, 1, . . . , µ − 1} : CDFFt+ (σµ ) =
max0 (binary (t )) + 1.

Proof. If t = µ − 1 then bt =

log µ + 1 bits︷    ︸︸    ︷
(11 · · · 1) and by Lemma 5.5 all

items are assigned to b1

0
. On the other hand, max0 (binary (t )) =

max0

log µ bits︷    ︸︸    ︷
(11 · · · 1) = 0, implying the correctness of our lemma in this

case.

If t < µ − 1, by Lemma 5.5, the item assigned to b1

s for maximal

s , is the item that has an associated bit 0 with a maximal number

of consecutive zeros (counting towards the MSB). �is is exactly

the bit which is 0 and starts the longest sequence of consecutive

0’s in binary (t ). �erefore, the length of the longest consecutive

sequence of 0’s starting at the items’ bit (and counting towards

MSB) is equal to max0 (binary (t )) − 1 and by Lemma 5.5 this item is

assigned to b1

max0 (binary (t ))
. Since the rows are indexed beginning

at 0, CDFFt+ (σµ ) = max0 (binary (t )) + 1. �

Lemma 5.9. Let b = (b1, . . . ,bn ) ∈ {0, 1}
n be n i.i.d. bits such that

Pr[bi = 1] = 1/2. �erefore,

E[max

0

(b)] ≤ 2 logn.

Proof. By the union bound we have,

Pr[max0 (b) ≥ 2 logn] ≤

n−2 logn∑
i=1

Pr[(bi , . . . ,bi+2 logn ) = (0, . . . , 0)]

≤ n ·
1

2
2 logn

=
1

n
.

�erefore,

E[max0 (b)] =

2 logn−1∑
i=1

i · Pr[max0 (b) = i] +
n∑

i=2 logn

i · Pr[max0 (b) = i]

≤ 2 logn − 1 + n · Pr[max0 (b) ≥ 2 logn] ≤ 2 logn.

�

Corollary 5.10.

∑µ−1

t=0
max0 (binary (t )) ≤ 2µ · log log µ.

Proof. Let n = log µ. �erefore,∑µ−1

t=0
max0 (binary (t ))

µ
=

∑
b ∈{0,1}n max0 (b)

2
n = E[max0 (b)]

≤ 2 logn = 2 log log µ .

�

We now turn to prove Proposition 5.3.

Proposition 5.3. ∀µ : CDFF(σµ ) ≤ (2 log log µ + 1)OPTR (σµ ).

Proof.

CDFF(σµ ) =

µ−1∑
t=0

CDFFt (σµ ) =

µ−1∑
t=0

(max0 (binary (t )) + 1)

= µ +

µ−1∑
t=0

max0 (binary (t )) ≤ µ + 2 · µ · log log µ

≤ (2 log log µ + 1)OPTR (σµ ),

where the �rst inequality is by Corollary 5.10, the second equality

is by Corollary 5.8 and the last inequality is due to the fact that

OPTR (σµ ) ≥ µ. �

5.2 Upper Bound of O (log log µ ) w.r.t Aligned
Inputs

In this section we show that CDFF isO (log log µ ) - competitive w.r.t.

arbitrary aligned inputs. Recall the reduction we used in section 3:

Given an input σ , de�ne σ ′ as follows:

Let r ∈ σ , let i ∈ {1, . . . , log µ} be such that l (I (r )) ∈ (2i−1, 2i ] and

let c ∈ N be such that I (r )− ∈ ((c − 1) · 2i , c · 2i ].
Given such r , de�ne r ′ as, I (r ′)− = I (r )− and I (r ′)+ = (c + 1) · 2i .
Note that in our case, i.e. aligned inputs, I (r ) is always equal to

c ·2i . �erefore, the reduction simply increases the item’s departure

time to the next multiple of 2
i
.

We now turn to prove that CDFF is O (log log µ ) competitive as

we did in section 3 - given an input, σ , we compare CDFF(σ ) to

OPTR (σ
′). �en, by Corollary 3.4, we get the desired result.

First we give the following de�nition.

De�nition 5.11. Givenσ andσ ′ such thatσ is an arbitrary aligned

input and σ ′ is the input we get by applying the reduction to σ ,

we de�ne dt
+

r (σ ′) to be the overall load of all items that have ever

been packed into row r by CDFF (in σ ) and that are active at time

t+ (in σ ′). �at is, if e ∈ σ , then its load is added to dt
+

r (σ ′) only if

e was packed by CDFF into row r of bins and t+ ∈ I (e ′) s.t. e ′ is e
a�er we apply the reduction.

Lemma 5.12. Given an arbitrary aligned input, σ , if at anymoment
t+, CDFF has k open bins in row r , then dt

+

r (σ ′) ≥ k−1

2
.

Proof. Consider CDFF’s r ’th row of bins, b1

r , . . . ,b
k
r at time t+.

We will prove by induction on k that the overall load of all items

that have ever been put into one of these bins by CDFF and that

are active at time t+, in σ ′, is at least
k−1

2
.

�e case k = 1 is trivial. We now assume we have k ≥ 2 open

bins at time t+, b1

r , . . . ,b
k
r . By our induction hypothesis we may

assume that the overall load of all items that were packed into

b1

r , . . . ,b
k−1

r and are active at time t+ in σ ′, is at least
k−2

2
. We now

show that the overall load of all items that were packed into all k

bins and that are active at time t+ in σ ′, is at least
k−1

2
. Consider

an item that is packed into bin bkr and that is active at time t+

in σ . Denote this item as r̃ , its arrival time as tr̃ and its load as

s (̃r ). If s (̃r ) ≥ 1/2 then together with our induction hypothesis,

dt
+

r (σ ′) ≥ k−1

2
as needed.

Otherwise, consider r̃ ’s arrival time. Since CDFF packed items

into row r , in a First-Fit manner, we know that at time tr̃ each bin,

b1

r , . . . ,b
k−1

r , has a load of at least 1/2 and therefore the overall

load is at least
k−1

2
. We argue that all items that are active at time

tr̃ , in σ , in bins b1

r , . . . ,b
k−1

r are also active at time t+ in σ ′, thus

concluding our proof. To that end, consider an item in one of the

k − 1 bins, b1

r , . . . ,b
k−1

r , that is active at time tr̃ and denote it as r̂
and its arrival time as tr̂ . By the de�nition of CDFF we know that

if items that arrive at the same time are packed into the same row

of bins, then they must depart at the same time (in σ ′). �erefore,
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if tr̃ = tr̂ then, r̂ and r̃ depart together (in σ ′). Since r̃ is active at

time t+ in σ , it is also active at time t+ in σ ′, meaning that tr̂ is

also active at time t+ in σ ′, as needed.

Otherwise, tr̂ < tr̃ . Since r̂ arrived before r̃ in σ , this is also

the case in σ ′ (since arrival times are not altered). Furthermore,

since both items are active at time tr̃ in σ , this is also the case in

σ ′ (since items’ lengths are only increased). Meaning that in σ ′, r̂
arrived strictly before r̃ and their time intervals intersected. By the

de�nition of σ ′, r̂ must therefore depart a�er r̃ . In particular this

means that r̂ is active at time t+ in σ ′, as needed. �us, in any case,

we get that dt
+

r (σ ′) ≥ k−1

2
as needed. �

We now turn to prove our main theorem.

Proof of Theorem 5.1. Let Ct+
r denote CDFF’s number of

open bins in row r at time t+. �erefore,

CDFF(σ ) =

µ−1∑
t=0

CDFFt+ (σ ) =

µ−1∑
t=0

Rt+∑
i=1

Ct+
i

≤

µ−1∑
t=0

Rt+∑
i=1

(2 · dt
+

r (σ ′) + 1)

=

µ−1∑
t=0

Rt+∑
i=1

1 + 2 ·

µ−1∑
t=0

Rt+∑
i=1

dt
+

r (σ ′),

(1)

where the �rst inequality follows by Lemma 5.12.

�e sum

∑µ−1

t=0

∑Rt+
i=1

(1) represents the number of bins of type

b1

j open at any given time. We have shown an upper bound for this

number in Proposition 5.3, since in σµ at any given time items of

all lengths available at that time arrive, meaning every bin of such

type that could be opened is indeed opened. �erefore,

µ−1∑
t=0

Rt+∑
i=1

1 ≤ µ · (2 log log µ + 1). (2)

For any r and t , dt
+

r (σ ′) accounts for loads that are disjoint and

therefore no load is counted twice. �us,

µ−1∑
t=0

Rt+∑
i=1

dt
+

r (σ ′) ≤ d (σ ′). (3)

Pu�ing it all together,

CDFF(σ ) ≤ µ · (2 log log µ + 1) + 2 · d (σ ′)

≤ (3 + 2 log log µ ) · OPTR (σ
′)

≤ (8 + 16 log log µ ) · OPTR (σ )

= O (log log µ ) · OPTR (σ ),

where the �rst inequality is due to (1), (2) and (3), the second in-

equality is due to the time − space and span bounds (note that the

span bound follows from our assumption that an item of length µ
arrives at time 0) and the last inequality is due to Corollary 3.4.

�

6 CONCLUSIONS AND OPEN PROBLEMS

We provide a O (
√

log µ )-competitive algorithm and show a match-

ing lower bound of Ω(
√

log µ ) on the competitiveness of any online

algorithm, both bounds are with respect to general inputs. We

also provide a O (log log µ )-competitive algorithm with respect to

aligned inputs. A natural open question would be to either show

that with respect to aligned inputs our algorithm is optimal (by

improving the lower bound) or improving the upper bound by

showing a be�er performing algorithm. Another natural continua-

tion of the research would be to inspect other interesting families

of inputs.
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