GENOTOXICITY AND OXIDATIVE STRESS BIOMARKER RESPONSES OF JAPANESE MEDAKA (*Oryzias latipes* Temminck and Schlegel, 1846) EXPOSED TO PROFENOFOS

A Thesis Presented to the Department of Chemistry University of San Carlos Cebu City, Philippines

In partial fulfillment of the requirements for the degree of Master of Science in Chemistry

> BY ROSALYN P. ALBURO OCTOBER 2015

APPROVAL SHEET

This thesis entitled "Genotoxicity and Oxidative Stress Biomarker Responses of Japanese Medaka (*Oryzias latipes* Temminck and Schlegel, 1846) Exposed to Profenofos" prepared and submitted by ROSALYN P. ALBURO in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN CHEMISTRY has been examined and is recommended for acceptance and approval for ORAL EXAMINATION.

THESIS COMMITTEE

EUGENE T. BACOLOD, Ph.D. Adviser

NOEL D. ROBLE, Ph.D. Member PATRICK JOHN Y. LIM, Ph.D. Member

MA. LIGAYA S. SUICO, M.S. Member

PANEL OF EXAMINERS

Approved by the Committee on Oral Examination with a grade of ______.

PATRICK JOHN Y. LIM, Ph.D.

Chairperson

EUGENE T. BACOLOD, Ph.D.

Adviser

NOEL D. ROBLE, Ph.D. Member

MA. LIGAYA S. SUICO, M.S. Member

Accepted and approved for partial fulfillment of the requirements for the degree of Master of Science in Chemistry.

Comprehensive Examination PASSED: August 2014

<u>September 30, 2015</u> Date of Oral Examination

DELIA E. BELLEZA, Ph.D.

Dean, School of Arts and Sciences

ACKNOWLEDGEMENT

My deepest expression of gratitude to:

The University of San Carlos faculty and staff for giving me the wealth of wisdom and experience and sense of family;

The Cebu Technological University administration for the opportunity to pursue this degree;

The Commission on Higher Education for the generous support extended to my studies;

The Marine Science Education and Research Institute, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan for providing me the avenue and resources to conduct my research;

Dr. Eugene T. Bacolod, my thesis adviser for not only extending his precious time and expertise but also for accompanying me to Kagoshima, Japan;

Dr. Patrick John Y. Lim, Chair, Panel of Examiners, for his valuable insights and suggestions to improve the quality of my thesis;

Prof. Ma. Ligaya S. Suico and Dr. Noel D. Roble, members, Panel of Examiners, for their significant assistance and encouragement;

Dr. Jiro Koyama, Dr. Seiichi Uno, Dr. Emiko Kokushi, Miss Machiko Kawano, Mr. Masayuki Hagura, lab mates at the Marine Science Education and Research Institute, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan for welcoming me and for providing assistance every time its needed;

Nathaniel Maglasang, Lora Mae Villegas, Virgie Celestial, Mae Revecho, Ma'am Fraulein Cabanag, Ma'am Nathalie Daminar, Sir Allan Ramal, Andrew Gil Desabelle, Kristie Reyes, Erlinda Deguilmo, JV Nazareno for generously sharing their friendship, making my student life surprisingly fun, colorful and memorable;

To my parents and siblings, especially Bobong who did all my statistical analysis;

To my ever-supportive and enduring husband, Hemres and to my understanding children Chem Lloyd and Cassandra Ayumi Rose;

And finally, to God Almighty for making all these possible. To YOU be the glory.

ABSTRACT

Assessment of toxicity risks posed by pesticides to aquatic organisms may be a prerequisite to adverse effects on the ecosystem. Effects of the organophosphate pesticide (OP) profenofos to the different biomarkers namely thiobarbituric acid reactive susbtances (TBARS), acetylcholinesterase enzyme (AChE) activity inhibition and genotoxicity in terms of micronuclei (MN) and nuclear abnormalities (NA) were investigated. Biological samples of liver, brain and blood from Japanese medaka (*Oryzias latipes*) were used.

Profenofos caused significant oxidative stress in terms of TBARS to *O. latipes* on Day 2 of exposure for all profenofos concentrations of 0.04 ppm, 0.20 ppm and 1.00 ppm, but was significantly reduced the longer the exposure period owing to the capability of fishes to metablize OPs. For AChE activity inhibition and genotoxicity, response to profenofos showed a positive dose-dependent and exposure-time dependent relationship. On Day 2, the highest concentration (1.00 ppm) was already causing significant AChE activity inhibition. Day 5, all exposure concentrations were already significantly different from Control. The highest recorded MN and NA frequencies per 1000 erythrocytes at Day 10 were 3 (\pm 0.27) and 11.67 (\pm 2.16); and 43.11 (\pm 0.63) and 58.22 (\pm 4.49), for low and high concentrations respectively, with control registering only 1.33 (\pm 0.27) and 20.89 (\pm 2.78) per 1000 erythrocytes, respectively. Concentration lower than what was observed in the field caused significant effect to the three biomarkers implying that the aquatic organisms present in Dalaguete River are subjected to possible toxicity risk. Evaluating the three biomarkers, TBARS cannot be a reliable measure for toxicity to fishes since fishes can metabolize OPs over time. AChE activity inhibition test and genotoxicity can be good indicators of possible risk of pesticides to the aquatic biota. Pairing the two biomarkers can further provide ample information on the toxicity risk and lethality of profenofos.

It is recommended that further studies using other aquatic organisms be also conducted. Long-term sampling considering wet and dry seasons, bioaccumulation, and degradation and studies on fate and transport of profenofos and possible other pesticides in Dalaguete river are also recommended.

TABLE OF CONTENTS

APPROVAL SHEET	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF APPENDICES	x
LIST OF APPENDIX TABLES	xi

CHAPTER

1	INTRODUCTION	1
	Rationale of the Study	1
	Review of Literature	5
	Statement of the Problem	17
	Significance of the Study	18
	Scope and Limitations of the Study	18
2	RESEARCH METHODOLOGY	20
	Sampling Site	20
	Survey of Pesticides Used	23
	Sample Collection	23
	Chemicals	23
	Pesticide Analysis in Water	24
	Range Finding Test	24
	Exposure Test	25
	Sampling of Fish for Biochemical Test	27
	TBARS Test	27
	Acetylcholine Esterase Enzyme Inhibition Test	28
	Genotoxicity	29

	Evaluation of the Different Biomarkers	29
	Statistical Analysis	30
3	RESULTS AND DISCUSSION	31
	Survey of Pesticides Used	31
	Pesticide Concentration in River Water	31
	Range Finding Tests and Setting of Pesticide Concentration	32
	Biochemical Test	33
	TBARS Assay	33
	AChE Inhibition Test	35
	Genotoxicity	38
	Evaluation of the Pesticide Risk	41
4	SUMMARY, CONCLUSIONS AND	
	RECOMMENDATIONS	44
	Summary	44
	Conclusions	45
	Recommendations	46
REFERENCE	S	47
APPENDICES	S	56

LIST OF FIGURES

1	Map showing the sampling sites in Dalaguete River	22
2	Photograph of flow-through exposure set-up	26
3	Concentration of TBARs measured as malonyldialdehyde in <i>O. latipes</i>	34
4	AChE Activity on <i>O. latipes</i> exposed to different concentrations of profenofos	36
5	Typical photograph of erythrocyte cells showing normal and micronuclei and nuclear abnormalities in <i>O. latipes</i>	39
6	Average number of MN/1000 erythrocytes of <i>O. latipes</i> with respect to concentration and exposure time	39
7	Average number of NA/1000 erythrocytes of <i>O. latipes</i> with respect to concentration and exposure time	40

LIST OF TABLES

		Page
1	Commonly used organophosphate pesticides	8
2	Commonly used carbamate pesticides	10
3	Commonly used organochlorine pesticides	11
4	Commonly used pyrethroid pesticides	12
5	Sampling site characteristics	22
6	Pesticide residue in the river water samples	32
7	Range Finding Test Using Profenofos (n=6)	33
8	Two-way interaction between length of exposure and pesticide	
	concentration on the AChE Activity of O. latipes.	38

LIST OF APPENDICES

Page

А	Acetylcholine Esterase Enzyme Inhibition Test	56
В	Bio-Rad Protein Assay	57
С	Genotoxicity Test	58
D	Pesticide Residue Analysis Results	59
E	Certificate of Research Fellowship at Kagoshima University	60

LIST OF APPENDIX TABLES

Page

1	One-way ANOVA during Day 2 of exposure	61
2	Interaction of treatment means on Day 2 of exposure	61
3	One-way ANOVA during Day 5 of Exposure	61
4	Interaction of treatment means on Day 5 of exposure	61
5	One-way ANOVA during Day 10 of exposure	62
6	Interaction of treatment means on Day 10 of exposure	62
7	One-way ANOVA for Control	62
8	Interaction of treatment means for Control (0 ppm)	62
9	One-way ANOVA for T ₁	63
10	One-way ANOVA for T ₂	63
11	One-way ANOVA for T ₂	63
12	Interaction of treatment means for T_2 (0.20 ppm)	63
13	One-way ANOVA for T ₃	64
14	Interaction of treatment means for T_3 (1.00 ppm)	64
15	Two-way ANOVA for Length of Exposure and Pesticide	
	Concentration	64
16	Two-way interaction between length of exposure and pesticide	
	concentration on the TBARS of O. latipes	64
17	One-way ANOVA during Day 2 of exposure	65
18	Interaction of treatment means on Day 2 of exposure	65
19	One-way ANOVA during Day 5 of exposure	65

20	Interaction of treatment means on Day 5 of exposure	65
21	One-way ANOA for Day 10 of exposure	66
22	Interaction of treatment means on Day 10 of exposure	66
23	One-way ANOVA for Control	66
24	One-way ANOVA for T ₁	66
25	Interaction of treatment means for T_1 (0.04 ppm)	67
26	One-way ANOVA for T_2 (0.20 ppm)	67
27	One-way ANOVA for T3 (1.00ppm)	67
28	Two-way ANOVA for Length of Exposure and Pesticide	
	Concentration	67
29	One-way ANOVA during Day 2 of exposure	68
30	Interaction of treatment means on Day 2 of exposure	68
31	One-way ANOVA during Day 5 of exposure	68
32	Interaction of treatment means on Day 5 of exposure	68
33	One-way ANOVA during Day 10 of exposure	69
34	Interaction of treatment means on Day 10 of exposure	69
35	One-way ANOVA for Control	69
36	One-way ANOVA for T ₁ (0.04ppm)	69
37	Interaction of treatment means for T_1 (0.04ppm)	69
38	One-way ANOVA for T ₂ (0.20ppm)	70
39	Interaction of treatment means for T_2 (0.20ppm)	70
40	One-way ANOVA for T ₃ (1.00ppm)	70
41	Interaction of treatment means for T ₃ (1.00ppm)	70

42	Two-way ANOVA for Length of Exposure and Pesticide	
	Concentration	70
43	One-way ANOVA during Day 2 of exposure	71
44	Interaction of treatment means on Day 2 of exposure	71
45	One-way ANOVA during Day 5 of exposure	71
46	Interaction of treatment means on Day 5 of exposure	71
47	One-way ANOVA during Day 10 of exposure	71
48	Interaction of treatment means on Day 10 of exposure	72
49	One-way ANOVA for Control	72
50	One-way ANOVA for T ₁ (0.04ppm)	72
51	Interaction of treatment means for T_1 (0.04ppm)	72
52	One-way ANOVA for T ₂ (0.20ppm)	72
53	Interaction of treatment means for T_2 (0.20ppm)	73
54	One-way ANOVA for T ₃ (1.00ppm)	73
55	Interaction of treatment means for T_3 (1.00ppm)	73
56	Two-way ANOVA for Length of Exposure and Pesticide	
	Concentration	73
57	Biometrics of the test organisms	74
58	Protein determination for liver tissues	79
59	Protein determination for brain tissues	80
60	AChE Activity	81
61	TBARS Result	81
62	Average Number of Micronucleus/1000 erythrocytes	82

63	Average Number of Nuclear Abnormalities/1000 erythrocytes	83
64	Correlation Analysis of the different biomarkers for Day 2	84
65	Correlation Analysis of the different biomarkers for Day 5	85
66	Correlation Analysis of the different biomarkers for Day 10	86